防护电路设计规范 华为

合集下载

华为PCB设计规范标准

华为PCB设计规范标准

华为PCB设计规范I. 术语1..1 PCB(Print circuit Board):印刷电路板。

1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。

1..3 网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。

1..4 布局:PCB设计过程中,按照设计要求,把元器件放置到板上的过程。

深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。

1..5 仿真:在器件的IBIS MODEL或SPICE MODEL支持下,利用EDA设计工具对PCB的布局、布线效果进行仿真分析,从而在单板的物理实现之前发现设计中存在的EMC问题、时序问题和信号完整性问题,并找出适当的解决方案。

深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。

II. 目的A. 本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。

B. 提高PCB设计质量和设计效率。

提高PCB的可生产性、可测试、可维护性。

III. 设计任务受理A. PCB设计申请流程当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料:⒈经过评审的,完全正确的原理图,包括纸面文件和电子件;⒉带有MRPII元件编码的正式的BOM;⒊PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸;⒋对于新器件,即无MRPII编码的器件,需要提供封装资料;以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB设计。

B. 理解设计要求并制定设计计划1. 仔细审读原理图,理解电路的工作条件。

如模拟电路的工作频率,数字电路的工作速度等与布线要求相关的要素。

防爆电路设计规范实施细则

防爆电路设计规范实施细则

防爆电路设计规范实施细则一、引言防爆电路设计是保证电气设备在易燃易爆环境中安全运行的重要措施。

本文将详细介绍防爆电路设计规范的实施细则,包括设计原则、设备选型、电气连接等方面的内容。

二、设计原则1. 安全性原则:设计防爆电路的首要原则是确保电气设备在可燃气体或粉尘环境下不会引发火花、电弧或过高温度,从而降低爆炸风险。

2. 可靠性原则:防爆电路的设计应坚持可靠性要求,确保电气设备在长期运行中能够保持稳定、高效的工作状态,减少维修和更换成本。

3. 灵活性原则:设计防爆电路时应考虑设备的维护和运行的便利性,方便电气设备的检修、维护和更新。

4. 经济性原则:在满足安全和可靠性的前提下,尽量选择经济有效的防爆电路设计方案,降低成本。

三、设备选型1. 防爆等级选择:根据实际应用环境,选择与之相适应的防爆等级,确保设备能够在相应的易爆环境中工作。

2. 防爆方式选择:根据设备的实际情况,选择适合的防爆方式,如隔爆式、增安式、压力卸载式等。

3. 设备特性考虑:选型时需综合考虑电压、电流、功率因数、额定工作温度等设备特性,确保选用的设备符合实际要求。

四、电气连接1. 接线方式:根据设备的特点和实际需求,选择合适的接线方式,如串联、并联、星形等。

2. 导线选用:防爆电路的导线应选用具有耐高温、阻燃等特性的防爆型导线,确保导线本身不会引起火花或高温。

3. 接头设计:电气连接过程中需要使用接头,应选择高质量的防爆接头,并按照要求进行连接和封装,确保接头不会导致火花飞溅或线路短路。

4. 接地保护:对于防爆电路设计,接地保护是非常重要的一环,应按照相关标准和规定进行接地设计,确保设备能够及时排除漏电、静电等危险。

五、其他注意事项1. 标志和警示:防爆电路上必须配备相应的标志和警示牌,提示人们该区域存在爆炸危险,并提醒注意安全。

2. 定期检测:防爆电路的设备需要进行定期的检测和维护,确保其正常工作状态,并及时修复和更换受损的设备。

华为pcb设计规范.doc

华为pcb设计规范.doc

华为PCB设计规范1..1 PCB(Print circuit Board):印刷电路板。

1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。

1..3 网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。

1..4 布局:PCB设计过程中,按照设计要求,把元器件放置到板上的过程。

深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。

1..5 仿真:在器件的IBIS MODEL或SPICE MODEL支持下,利用EDA设计工具对PCB的布局、布线效果进行仿真分析,从而在单板的物理实现之前发现设计中存在的EMC问题、时序问题和信号完整性问题,并找出适当的解决方案。

深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。

II. 目的A. 本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。

B. 提高PCB设计质量和设计效率。

提高PCB的可生产性、可测试、可维护性。

III. 设计任务受理A. PCB设计申请流程当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料:⒈经过评审的,完全正确的原理图,包括纸面文件和电子件;⒉带有MRPII元件编码的正式的BOM;⒊PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸;⒋对于新器件,即无MRPII编码的器件,需要提供封装资料;以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB 设计。

B. 理解设计要求并制定设计计划1. 仔细审读原理图,理解电路的工作条件。

如模拟电路的工作频率,数字电路的工作速度等与布线要求相关的要素。

印制电路板(PCB)设计规范(华为)

印制电路板(PCB)设计规范(华为)
本标准起草单位: CAD研究部、硬件工程室 本标准主要起草人:吴多明 韩朝伦 胡庆虎 龚良忠 张珂 梅泽良 本标准批准人:周代琪
0707
2
2
Q/DKBA-Y004-1999


目录
1. 1 适用范围
2. 2 引用标准
3. 3 术语
4. 4 目的
.1
4.1 提供必须遵循的规则和约定
.2
4.2 提高PCB设计质量和设计效率
宽度 电 mm 流
A 0.15 0.70 0.20 0.90 0.30 1.30 0.40 1.70 0.50 2.00 0.60 2.30 0.80 2.80 1.00 3.20 1.20 3.60 1.50 4.20 2.00 5.10 2.50 6.00
注: i. 用铜皮作导线通过大电流时,铜箔宽度的载流量应参考表中的数值降额50%去选择考
要力争在X或Y方向上保持一致,便于生产和检验。 6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度
敏感器件应远离发热量大的元器件。 7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器
件周围要有足够的空间。 8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。当安装孔
8
Q/DKBA-Y004-1999
布局基本确定后,应用PCB设计工具的统计功能,报告网络数量,网络密度,平均管脚 密度等基本参数,以便确定所需要的信号布线层数。 信号层数的确定可参考以下经验数据
Pin密度 1.0以上 0.6-1.0 0.4-0.6 0.3-0.4 0.2-0.3
<0.2
信号层数
2
虑。 ii. 在PCB设计加工中,常用OZ(盎司)作为铜皮厚度的单位,1 OZ铜厚的定义为

最新华为PCB设计规范标准

最新华为PCB设计规范标准

华为PCB设计规范I. 术语1..1 PCB(Print circuit Board):印刷电路板。

1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。

1..3 网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。

1..4 布局:PCB设计过程中,按照设计要求,把元器件放置到板上的过程。

深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。

1..5 仿真:在器件的IBIS MODEL或SPICE MODEL支持下,利用EDA设计工具对PCB的布局、布线效果进行仿真分析,从而在单板的物理实现之前发现设计中存在的EMC问题、时序问题和信号完整性问题,并找出适当的解决方案。

深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。

II. 目的A. 本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。

B. 提高PCB设计质量和设计效率。

提高PCB的可生产性、可测试、可维护性。

III. 设计任务受理A. PCB设计申请流程当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料:⒈经过评审的,完全正确的原理图,包括纸面文件和电子件;⒉带有MRPII元件编码的正式的BOM;⒊PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸;⒋对于新器件,即无MRPII编码的器件,需要提供封装资料;以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB 设计。

B. 理解设计要求并制定设计计划1. 仔细审读原理图,理解电路的工作条件。

如模拟电路的工作频率,数字电路的工作速度等与布线要求相关的要素。

电气防爆设计规范

电气防爆设计规范

电气防爆设计规范电气防爆设计规范电气防爆设计规范是指为了保护电气设备和人员安全,防止电气设备发生爆炸或引发火灾,制定的一系列规范和标准。

以下是电气防爆设计规范的一些基本要求和内容。

1. 环境分类:根据使用环境的爆炸危险性,将环境划分为不同的分类。

常见的环境分类有气体、蒸汽、粉尘等,根据不同的环境分类,采取相应的防护措施。

2. 防护等级:根据环境分类和设备工作条件,确定防护等级。

防护等级越高,对电气设备的要求越严格,防护措施也相应增加。

3. 爆炸性区域划分:根据环境分类和气体、蒸汽、粉尘的爆炸性质,划定爆炸性区域。

爆炸性区域是指存在爆炸性气体、蒸汽或粉尘的区域,在这些区域内的电气设备必须符合防爆要求。

4. 防爆要求:电气设备必须符合国家、地方和行业规范的相关要求,如防爆标志、防尘等级、防火等级等。

设备的材质、结构和工艺也要符合相应的标准。

5. 防护措施:根据环境分类和防护等级的要求,采取相应的防护措施。

常见的防护措施有隔爆型、增安型、增安型等。

同时,还要对设备的接地、接线等进行合理设计和施工。

6. 安全用电:电气设备的安全用电是电气防爆设计的重要内容之一。

要保证电气设备的电源安全可靠,并设置适当的过载保护装置、漏电保护装置等。

设备的供电线路布置要合理,避免线路过长或过窄,减小火灾和爆炸的风险。

7. 防静电措施:静电是引起火灾和爆炸的常见原因之一。

要根据环境的静电风险,采取相应的防静电措施,如接地、增加金属导电层等,降低静电的积累和释放。

8. 安全教育和培训:为了确保人员的安全,必须对使用电气设备的人员进行安全教育和培训。

人员必须了解电气设备的防爆要求和使用注意事项,并能正确操作和维护设备。

电气防爆设计规范的制定和执行对保障电气设备和人员的安全至关重要。

只有通过严格执行规范的要求,才能减少电气设备发生爆炸或引发火灾的可能性,保护电气设备和人员的安全。

华为TD防雷接地方案说明

华为TD防雷接地方案说明

1 直击雷防护 (2)2 室外覆盖站点防雷接地方案 (2)2.1 方案1 (BBP530室内,RRU室外,-48V供电) (2)2.2 方案2 (BBP530室外,RRU室外,220V供电) (2)3 室内覆盖站点防雷接地方案 (3)3.1 方案1 (BBP530室内,RRU室内,-48V供电) (3)3.2 方案2 (BBP530室内,RRU室内,220V供电) (4)4 GPS防雷接地方案 (5)4.1 室外部分GPS馈线 (5)4.2 室内部分GPS馈线 (6)部分设备防雷接地具体说明:: (8)5 部分设备防雷接地具体说明5.1 直流屏蔽电源线的接地 (8)5.2 天馈线的接地 (10)1 直击雷防护天线、GPS 天线和支架、馈线、GPS 馈线、RRU 、机房内各种设备(包括BBU 、DCDU 、DDF 等)应在避雷针45度角的保护范围之内。

2 室外覆盖室外覆盖站点站点站点防雷接地方案防雷接地方案2.1 方案1 (BBP530室内,RRU 室外,-48V 供电) 接地对象 接地要求接地线径 BBU530 通过挂耳与机柜搭接 DCDU-03B 通过接地线接到机柜接地点上6 mm 2 机柜/机框/机架 通过接地线接到机房保护地,不超过30米 25 mm 2 E1/FE 线 室内无需额外接地RRU 电源线1 电源线RRU 侧将屏蔽层通过压线环压接在RRU 壳体2 电源线进馈窗前1米处将屏蔽层通过接地夹接室外地排3 电源线DCDU 侧不接地,只需将屏蔽层缠上绝缘胶带接地夹自带10 mm 2地线RRU 壳体1 RRU 不上塔,通过接地线接到塔体或地排,接地线不超过30米2 RRU 上塔,接地线不超过5米25 mm 2RRU 天馈跳线1 天馈跳线长度大于7米时,将屏蔽层在天线所在抱杆底部或铁塔底部馈线拐弯处用接地夹接地接地夹自带10 mm 2地线 GPS室外部分:1 楼顶站:GPS 下方无需加装GPS 防雷器,馈线在室外全程绝缘2 上塔:上塔的情况,GPS 下方需加装GPS 防雷器,GPS 馈线通过接地夹在GPS 防雷器下方1米处接地室内部分:GPS 防雷器安装在馈窗内1米处走线架上,通过接地线接到室外地排接地夹自带10 mm 2地线; 避雷器接地线采用6 mm 2OCB 外壳 通过接地线接地25 mm 22.2 方案2 (BBP530室外,RRU 室外,220V 供电) 接地对象接地要求 接地线径BBU530 通过挂耳与机柜搭接APM30/BBC 柜APM30和BBC 通过接地线等电位连接,然后由离接地点最近的机柜接到室外地排,接地线长不超过30米25 mm 2E1/FE 线 1 E1线无需额外接地2 FE 线将屏蔽层通过接地夹接地接地夹自带10 mm 2地线 RRU 电源线 1 电源线RRU 侧将屏蔽层通过压线环压接在RRU 壳体 2 电源线APM30侧将屏蔽层通过APM30内的接地夹连接到APM30内的接地点上接地夹自带 6 mm 2地线RRU 壳体 1 RRU 不上塔,通过接地线接到塔体或地排,接地线不超过30米2 RRU 上塔,接地线不超过5米25 mm 2RRU 天馈跳线 1 天馈跳线长度大于7米时,将屏蔽层在天线所在抱杆底部或铁塔底部馈线拐弯处用接地夹接地接地夹自带10 mm 2地线 GPS 室外部分:1 楼顶站:GPS 下方无需加装GPS 防雷器,馈线在室外全程绝缘2 上塔:上塔的情况,GPS 下方需加装GPS 防雷器,GPS 馈线通过接地夹在GPS 防雷器下方1米处接地室内部分:GPS 防雷器安装在APM30机柜内支架上,通过接地线接地接地夹自带10 mm 2地线; 避雷器接地线采用6mm 2OCB 外壳 通过接地线接地25 mm 23 室内覆盖覆盖站点站点站点防雷接地方案防雷接地方案3.1 方案1 (BBP530室内,RRU 室内,-48V 供电) 接地对象 接地要求接地线径 BBU 通过挂耳与机柜搭接 DCDU 通过接地线接到机柜接地点上6 mm 2 机柜/机框/机架 通过接地线接到机房保护地,不超过30米 25 mm 2 E1/FE 线室内无需额外接地RRU 电源线 1 电源线RRU 侧将屏蔽层通过压线环压接在RRU 壳体 2 电源线DCDU 侧不接地,只需将屏蔽层缠上绝缘胶带RRU 壳体 1 RRU 通过接地线接到室内地排25 mm 2 GPS室外部分:1 楼顶站:GPS 下方无需加装GPS 防雷器,馈线在室外全程绝缘2 上塔:上塔的情况,GPS 下方需加装GPS 防雷器,GPS 馈线通过接地夹在GPS 防雷器下方1米处接地室内部分:GPS 防雷器安装在馈窗内1米处走线架上,通过接地线接到室外地排接地夹自带10 mm 2地线; 避雷器接地线采用6 mm 2OCB 外壳 通过接地线接地25 mm 23.2 方案2 (BBP530室内,RRU 室内,220V 供电) 接地对象 接地要求接地线径 BBU 通过挂耳与机柜搭接 EPS4815 通过挂耳与机柜搭接机柜/机框/机架 通过接地线接到机房保护地,不超过30米 25 mm 2 E1/FE 线 室内无需额外接地RRU 电源线1 电源线RRU 侧将交流输入的PE 线通过OT 端子压接在维护腔内部压线环左侧的接地点上RRU 壳体 1 RRU 通过接地线接到室内地排25 mm 2 GPS室外部分:1 楼顶站:GPS 下方无需加装GPS 防雷器,馈线在室外全程绝缘2 上塔:上塔的情况,GPS 下方需加装GPS 防雷器,GPS 馈线通过接地夹在GPS 防雷器下方1米处接地室内部分:GPS 防雷器安装在馈窗内1米处走线架上,通过接地线接到室外地排接地夹自带10 mm 2地线; 避雷器接地线采用6 mm 2OCB 外壳 通过接地线接地25 mm 24 GPS防雷接地方案4.1 室外部分GPS馈线图5:GPS馈线在室外不接地塔站的情况下,GPS天线室外不上塔顶的时候,华为采用GPS室外馈线全程不接地的方案。

华为静电防护(ESD)培训教材

华为静电防护(ESD)培训教材

人可以活动
材料的电特性
静电耗散材料
体电阻≥1x104 <1x1011Ω 电子在材料的表面可以自由移动,但移动 的速率由于电阻而受到控制 如果被接地,电荷将被缓慢的释放掉
防静电材料的选择
问题:为什么要选择静电耗散材料 作为防静电材料?
常见的防静电使用工具(防静电工具包)
常见的防静电材料
基本概念
静电敏感度(ESDS—Electrostatic Discharge Sensitivity) 静电敏感器件(ESSD—Electrostatic Sensitive Devices) EPA:ESD Protect Area (ESD防护区域) ECA:ESD Control Area (ESD控制区域)
常见的防静电材料
防静电 海绵
黑色防静电 EPE
防静电 气泡袋
常见的防静电材料
该纸箱里面有涂炭层 起静电屏蔽的作用
一般纸箱为绝缘材料
常见的防静电材料
注意:外层泡膜袋没有
防静电作用,而是易产 生静电材料!
易产生静电
防静电标识
底色:黄色
底色:黄色 Arial Narrow粗体,42磅 Arial Narrow 粗体,46磅
在10000伏时,你能 看见
静电的特点
高电位:可达数万至数十万伏,操作时常达数百至数 千伏(人通常对3KV以下静电不易感觉到)。


低电量:静电流多为微安级(尖端瞬间放电例外)。
作用时间短:微秒级。 受环境影响大:特别是湿度,湿度上升则静电积累减 少,静电压下降。
静电的危害
通信产品故障 软件故障30%多 硬件故障中器件失效30%多、外应力(环 境温湿、灰尘腐蚀、雷电、机械应力、包装 等)导致产品故障约30%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DKBA 华为技术有限公司企业技术规范DKBA1268-2003.08代替DKBA3613-2001.11防护电路设计规范2003-11-10发布2003-11-10实施华为技术有限公司发布目次前言 (6)1范围和简介 (7)1.1范围 (7)1.2简介 (7)1.3关键词 (7)2规范性引用文件 (7)3术语和定义 (8)4防雷电路中的元器件 (8)4.1气体放电管 (8)4.2压敏电阻 (9)4.3电压钳位型瞬态抑制二极管(TVS) (10)4.4电压开关型瞬态抑制二极管(TSS) (11)4.5正温度系数热敏电阻(PTC) (11)4.6保险管、熔断器、空气开关 (12)4.7电感、电阻、导线 (13)4.8变压器、光耦、继电器 (14)5端口防护概述 (15)5.1电源防雷器的安装 (16)5.1.1串联式防雷器 (16)5.1.2并联式防雷器 (16)5.2信号防雷器的接地 (18)5.3天馈防雷器的接地 (19)5.4防雷器正确安装的例子 (19)6电源口防雷电路设计 (20)6.1交流电源口防雷电路设计 (20)6.1.1交流电源口防雷电路 (20)6.1.2交流电源口防雷电路变型 (22)6.2直流电源口防雷电路设计 (23)6.2.1直流电源口防雷电路 (23)6.2.2直流电源口防雷电路变型 (24)7信号口防雷电路设计 (25)7.1E1口防雷电路 (26)7.1.1室外走线E1口防雷电路 (26)7.1.2室内走线E1口防雷电路 (27)7.2网口防雷电路 (31)7.2.1室外走线网口防雷电路 (31)7.2.2室内走线网口防雷电路 (32)7.3E3/T3口防雷电路 (36)7.4串行通信口防雷电路 (36)7.4.1RS232口防雷电路 (36)7.4.2RS422&RS485口防雷电路 (37)7.4.3V.35接口防雷电路 (39)7.5用户口防雷电路 (39)7.5.1模拟用户口(Z口)防雷电路 (40)7.5.2数字用户口(U接口)防雷电路 (41)7.5.3ADSL口防雷电路 (43)7.5.4VDSL口防雷电路 (44)7.5.5G.SHDSL口防雷电路 (45)7.6并柜口防雷电路 (46)7.7其他信号端口的防护 (47)8天馈口防雷电路设计 (47)8.1不带馈电的天馈口防雷电路设计 (47)8.2带馈电的天馈口防雷电路设计 (48)9PCB设计 (50)10附录A:雷电参数简介 (51)10.1雷暴日 (51)10.2雷电流波形 (51)10.3雷电流陡度 (52)10.4雷电波频谱分析 (52)11附录B:常见测试波形允许容差 (52)11.1 1.2/50us冲击电压波 (52)11.28/20us冲击电流波 (52)11.310/700us冲击电压波 (53)11.4 1.2/50us(8/20us)混合波 (53)12附录C:冲击电流实验方法 (54)13附录D:低压配电系统简介 (55)13.1TN配电系统 (55)13.2TT配电系统 (57)13.3IT配电系统 (58)13.4与配电系统有关的接地故障 (59)14参考文献 (60)前言本规范的其他系列规范:无与对应的国际标准或其他文件的一致性程度:无规范代替或作废的全部或部分其他文件:本规范代替原规范DKBA3613-2001.11《防护电路设计规范》与其他规范或文件的关系:本规范是DKBA3613-2001.11《防护电路设计规范》的升级与规范前一版本相比的升级更改的内容:对前一版的内容进行了优化,并全面增加了多种信号端口的防护电路。

本规范由EMC研究部提出。

本规范主要起草和解释部门:EMC研究部本规范主要起草专家:EMC研究部:张静(34763)本规范主要评审专家:整机工程部:熊膺(8712)、罗新会(9398)、王庆海(31211)、孟繁涛(15133),张静松(5073)、唐栓礼(9469)本规范批准部门:整机工程部本规范所替代的历次修订情况和修订专家为:防护电路设计规范1范围和简介1.1范围本规范规定了防护电路的设计原则。

本规范适用于公司通信产品各端口的防护电路设计。

1.2简介通信产品在应用的过程中,由于雷击等原因形成的过电压和过电流会对设备端口造成损害,因此应当设计相应的防护电路,各个端口根据其产品族类、网络地位、目标市场、应用环境、信号类型以及实现成本等多种因素的不同所对应的防护电路也不同,本规范在电源口、信号口和天馈口的防护电路设计上给出了指导。

1.3关键词防护、气体放电管、压敏电阻、TVS管、TSS管、退耦、接地2规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规范。

3 术语和定义防雷器:一些标准中又称为电涌保护器(Surge Protective Devices,SPD),是可安装在设备端口用于对各种雷电电流、操作过电压等进行保护的器件。

它至少含有一个非线性元件。

防雷器的残压:雷电放电电流流过防雷器时,其端子间呈现的电压。

被保护端口自身的抗过电压水平必须高于防雷器的输出残压并有一定的裕量,防雷器才能真正起到保护设备的作用。

1.2/50us冲击电压:雷击时户内走线线缆上产生的感应过电压的模拟波形,用于设备端口过电压耐受水平测试,主要测试范围:通信设备的电源端口和建筑物内走线的信号线测试。

1.2/50us(8/20us)混合波:是浪涌发生器输出的一种具有特定开路/短路特性的波形。

发生器输出开路时,输出波形是1.2/50us的开路电压波;发生器输出短路时,输出波形是8/20us的短路电流波。

具有这种特性的浪涌发生器主要用于设备端口过电压耐受水平测试,主要测试范围:通信设备的电源端口和建筑物内走线的信号线测试。

10/700us冲击电压:雷击时户外走线线缆上产生的感应雷过电压的模拟波形。

用于设备端口过电压耐受水平测试时用的波形,主要测试范围:建筑物外走线的信号线(如用户线类电缆)的测试。

8/20us冲击电流:雷击时线缆上产生的感应过电流模拟波形,设备的雷击过电流耐受水平测试用标准波形,主要用于通信设备的电源口、信号口、天馈口。

10/350us冲击电流:直击雷电流模拟波形。

目前通信设备端口的防雷测试较少使用。

4 防雷电路中的元器件4.1气体放电管图4-1 气体放电管的原理图符号气体放电管是一种开关型保护器件,工作原理是气体放电。

当两极间电压足够大时,极间间隙将放电击穿,由原来的绝缘状态转化为导电状态,类似短路。

导电状态下两极间维持的电压很低,一般在20~50V,因此可以起到保护后级电路的效果。

气体放电管的主要指标有:响应时间、直流击穿电压、冲击击穿电压、通流容量、绝缘电阻、极间电容、续流遮断时间。

气体放电管的响应时间可以达到数百ns以至数 s,在保护器件中是最慢的。

当线缆上的雷击过电压使防雷器中的气体放电管击穿短路时,初始的击穿电压基本为气体放电管的冲击击穿电压,放电管击穿导通后两极间维持电压下降到20~50V;另一方面,气体放电管的通流量比压敏电阻和TVS管要大,气体放电管与TVS等保护器件合用时应使大部分的过电流通过气体放电管泄放,因此气体放电管一般用于防护电路的最前级,其后级的防护电路由压敏电阻或TVS管组成,这两种器件的响应时间很快,对后级电路的保护效果更好。

气体放电管的绝缘电阻非常高,可以达到千兆欧姆的量级。

极间电容的值非常小,一般在5pF以下,极间漏电流非常小,为nA级。

因此气体放电管并接在线路上对线路基本不会构成什么影响。

气体放电管的续流遮断是设计电路需要重点考虑的一个问题。

如前所述,气体放电管在导电状态下续流维持电压一般在20~50V,在直流电源电路中应用时,如果两线间电压超过15V,不可以在两线间直接应用放电管。

在50Hz交流电源电路中使用时,虽然交流电压有过零点,可以实现气体放电管的续流遮断,但气体放电管类的器件在经过多次导电击穿后,其续流遮断能力将大大降低,长期使用后在交流电路的过零点也不能实现续流的遮断;还存在一种情况就是如果电流和电压相位不一致,也可能导致续流不能遮断。

因此在交流电源电路的相线对保护地线、相线对零线以及相线之间单独使用气体放电管都不合适,当用电设备采用单相供电且无法保证实际应用中相线和中线不存在接反的可能性时,中线对保护地线单独使用气体放电管也是不合适的,此时使用气体放电管需要和压敏电阻串联。

在交流电源电路的相线对中线的保护中基本不使用气体放电管。

防雷电路的设计中,应注重气体放电管的直流击穿电压、冲击击穿电压、通流容量等参数值的选取。

设置在普通交流线路上的放电管,要求它在线路正常运行电压及其允许的波动范围内不能动作,则它的直流放电电压应满足:min(u fdc)≥1.8U P。

式中u fdc直流击穿电压,min(u fdc)表示直流击穿电压的最小值。

U P为线路正常运行电压的峰值。

气体放电管主要可应用在交流电源口相线、中线的对地保护;直流RTN和保护地之间的保护;信号口线对地的保护;天馈口馈线芯线对屏蔽层的保护。

气体放电管的失效模式多数情况下为开路,因电路设计原因或其它因素导致放电管长期处于短路状态而烧坏时,也可引起短路的失效模式。

气体放电管使用寿命相对较短,多次冲击后性能会下降,同时其他放电管在长时间使用会有漏气失效这种自然失效的情况,因此由气体放电管构成的防雷器长时间使用后存在维护及更换的问题。

4.2压敏电阻图4-2 压敏电阻的原理图符号压敏电阻是一种限压型保护器件。

利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。

压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。

压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。

压敏电阻的结电容一般在几百到几千pF的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。

压敏电阻的通流容量较大,但比气体放电管小。

压敏电阻的压敏电压(min(U1mA))、通流容量是电路设计时应重点考虑的。

在直流回路中,应当有:min(U1mA) ≥(1.8~2)U dc,式中U dc为回路中的直流额定工作电压。

在交流回路中,应当有:min(U1mA) ≥(2.2~2.5)U ac,式中U ac为回路中的交流工作电压的有效值。

相关文档
最新文档