八年级一次函数应用PPT课件
合集下载
北师大版八年级数学上册一次函数的应用教学课件(第一课时24张)

(2)两种租书方式每天的收费是多少元?(x<10)
解:(1)设使用会员卡租书金额y1(元)与租书时间x(天)之间的关系式为y1=kx+b. 从图象可知它过(0,20),可得b=20,将(10,50),代入关系式得k=3.∴y1= 3x+20.设使用租书卡租书金额y2(元)与租书时间x(天)之间的关系式为y2=mx. 它经过(10,50),代入得10m=50,m=5.∴y2=5x (2)会员卡方式每天收费(50-20)÷10=3(元),租书卡方式每天收费5元
二 确定一次函数的表达式
例2:已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函 数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得, ∴-5=2k+b,5=b, 解得b=5,k=-5. ∴一次函数的表达式为y=-5x+5.
练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
(1)设出式子中的未知系数;
将已知数据代入 (2)
;
(3) 求出未知系数的值 ;
(4) 写出一次函数表达式 .
1.正比例函数 y=kx 的图象如右图所示,则这个函数的表达式是(B ) A.y=x B.y=-x C.y=-2x
D.y=-12x
2.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B, 则该一次函数的表达式为( ) B
解:由题易得一次函数为 y=x+2,当 y=0 时,x+2=0, x=-2,∴C(-2,0),∴S△AOC=12×2×4=4
11.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用 租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下 图所示:
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式 ;
解:(1)设使用会员卡租书金额y1(元)与租书时间x(天)之间的关系式为y1=kx+b. 从图象可知它过(0,20),可得b=20,将(10,50),代入关系式得k=3.∴y1= 3x+20.设使用租书卡租书金额y2(元)与租书时间x(天)之间的关系式为y2=mx. 它经过(10,50),代入得10m=50,m=5.∴y2=5x (2)会员卡方式每天收费(50-20)÷10=3(元),租书卡方式每天收费5元
二 确定一次函数的表达式
例2:已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函 数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得, ∴-5=2k+b,5=b, 解得b=5,k=-5. ∴一次函数的表达式为y=-5x+5.
练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
(1)设出式子中的未知系数;
将已知数据代入 (2)
;
(3) 求出未知系数的值 ;
(4) 写出一次函数表达式 .
1.正比例函数 y=kx 的图象如右图所示,则这个函数的表达式是(B ) A.y=x B.y=-x C.y=-2x
D.y=-12x
2.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B, 则该一次函数的表达式为( ) B
解:由题易得一次函数为 y=x+2,当 y=0 时,x+2=0, x=-2,∴C(-2,0),∴S△AOC=12×2×4=4
11.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用 租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下 图所示:
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式 ;
北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)

5. 某地长途汽车客运公司规定旅客可随身携带一定质 量的行李,如果超过规定,则需要购买行李票,行李 票费用y元与行李质量的关系如图:
(1)旅客最多可免费携带多少 千克行李?
30千克
⑵超过30千克ห้องสมุดไป่ตู้,每千克需 付多少元?
0。2元
课堂小结
1、确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
新知探究
Ⅱ、在弹性限度内,弹簧的长度y(厘米)是所挂物 体质量x(千克)的一次函数。一根弹簧不挂物体时 长14.5厘米;当所挂物体的质量为3千克时,弹簧 长16厘米。写出y与x之间的关系式,并求当所挂 物体的质量为4千克时弹簧的长度。
解:设一次函数的表达式为:ykxb
x=0时,y=14.5;x=3时,y=16
4.4 一次函数的应用〔1〕
新知探究 Ⅰ、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒)的关系如下图。 (1)写出v与t之间的关系式;
解:正比例函数的表达式为:vkt
当t=2时,v=5
5t2
(2, 5)
k5 2
v 5t 2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
引例、由于持续高温和连日无雨,某水库的蓄水量随时间的增 加而减少。干旱持续时间t(天)与蓄水量v(万米3)的关系如下图, 答复以下问题: (2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少 天后将发出严重干旱警报? (3)按照这个规律,预计持续 多少天水库将干涸?
解〔1〕因为一次函数解析式为y=-20x+1200 蓄水量小于400万米3,即y=400时, -20x+1200=400 得
解:设干旱持续时间t与蓄水量v的关系式为y=kx+b 由图上可知:当x=0时,y=1200;当x=60时,y=0;
八级数学上一次函数图象的应用PPT课件

单的实际问题
②利用函数图像解决简
一农民带了若干千克自产的土豆进城销售,
为了方便,他带了一些零钱备用,按照市场价售
出一些后,又降价销售,售出的土豆千克数x与
他手中持有的钱数y(含备用零钱)的关系如图
所示,根据图象回答下列问题:
⑴农民自带的零钱是多少?
⑵降价前他每千克土豆
y /元
的售价是多少?
26
⑶降价后他按每千克 20 0.4元将剩余的土豆售完,
(万米3)和干旱时间t(天)的关系如图:
合作探究:还能用其
V/万米3
它方法解答本题吗? (1)设v=kt+1200
(2)将t=10,V=1000代入 V=kt+1200中求的k= -20
V= -20 t+1200
(3)再代入各组 t 或 V 的
值对应的求V 与 t 的值
t/
学以致用
例1 某种摩托车的油箱最多可储
l1
t/分
(3)15分内B能否追上A?
延长l1,l2,可以看出,当t=15时,l1上对应点在l2 上对应点的下方,这表明,15分时B尚未追上A。
s/海里
12
10
l2
8
6
l1
4
2
O
2 4 6 8 10 12 14 16 t/分
(4)如果一直追下去,那么B能否追上A? 如图l1 ,l2相交于点P。 因此,如果一直追下去,那么B一定能追上A。
油10升,加满油后,油箱中的剩余油量y(升)与摩托车
y/行升 驶路程x(千米)之间的关系如根图据解图所:观象示察回:图答象下:列得问题:
10 8
(1).一箱汽油可供(1)摩当托y车=0时行,驶x多=5少00,千因米此?一箱汽油
冀教版数学八年级下册数学21.4 一次函数的应用课件(共24张PPT)

(1)旅客最多可免费携带多少千 克行李? 30千克
(2)超过30千克后,每千克需付 多少元? 0.2元
30
2.某手机的电板剩余电量y毫安是使用天数x的一次函数x和y
关系如图 : 此种手机的电板最大带电量是多少?
y/毫安
1 000毫安
x/天
小结
通过这节课的学习,你有什么收获? 1.知识方面:通过一次函数的图像获取相关的信息; 2.数学思维:①数形结合,函数与方程的思想
车每行驶100千米消耗2升汽油. (3)当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩 托车行驶路程x(千米)之间 的关系变为图1:
( ,6)
图1
( ,2)
图1为加油后的图象 试问: ⑴加油站在多少千米处?
400千米
用了4 升,,因此摩托车每行驶100千米消耗 2 升汽油.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量
y(升)和摩托车行驶路程x(千米)之间 的关系变为图1:
图1
原图
⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?
答:够
理由:由图像上观察的:400千米处设加油站,到700米处油用
21.4 一次函数的应用
1.能根据实际问题中变量之间的关系, 确定一次函数关系式.
2.能将简单的实际问题转化为数学问题 (建立一次函数),从而解决实际问题.
一次函数图像可获得哪些信息?
1. 由一次函数的图像可确定k 和 b 的符号; 2.由一次函数的图像可估计函数的变化趋势; 3.可直接观察出x与y 的对应值; 4.由一次函数的图像与y 轴的交点的坐标可确定b值,
(2)超过30千克后,每千克需付 多少元? 0.2元
30
2.某手机的电板剩余电量y毫安是使用天数x的一次函数x和y
关系如图 : 此种手机的电板最大带电量是多少?
y/毫安
1 000毫安
x/天
小结
通过这节课的学习,你有什么收获? 1.知识方面:通过一次函数的图像获取相关的信息; 2.数学思维:①数形结合,函数与方程的思想
车每行驶100千米消耗2升汽油. (3)当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩 托车行驶路程x(千米)之间 的关系变为图1:
( ,6)
图1
( ,2)
图1为加油后的图象 试问: ⑴加油站在多少千米处?
400千米
用了4 升,,因此摩托车每行驶100千米消耗 2 升汽油.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量
y(升)和摩托车行驶路程x(千米)之间 的关系变为图1:
图1
原图
⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?
答:够
理由:由图像上观察的:400千米处设加油站,到700米处油用
21.4 一次函数的应用
1.能根据实际问题中变量之间的关系, 确定一次函数关系式.
2.能将简单的实际问题转化为数学问题 (建立一次函数),从而解决实际问题.
一次函数图像可获得哪些信息?
1. 由一次函数的图像可确定k 和 b 的符号; 2.由一次函数的图像可估计函数的变化趋势; 3.可直接观察出x与y 的对应值; 4.由一次函数的图像与y 轴的交点的坐标可确定b值,
八年级数学上册 第四章 一次函数 4.4 一次函数的应用课件

(yī ɡè)
确定一次函数的表达式呢?
两个
(liǎnɡ ɡè)
第六页,共三十五页。
合作(hézuò)交流探究新知
例
在弹性限度内,弹簧的长度 y(厘米)是所挂
物体质量(zhìliàng) x(千克)的一次函数。一根弹簧不挂物体
时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘
米。请写出 y 与x之间的关系式,并求当所挂物体的质量
成本);当销售量 小于4t 时,该公司亏损(收入
小于成本);
y/元
由此你能得到(dédào)
什么结论?
6000
l1 l2
5000
4000
3000
2000
1000
O 12345678 第十七页,共三十五页。
x/吨
合作交流探究新知
利用图象比较(bǐjiào)函数值的方法:
(1)先找交点(jiāodiǎn)坐标,交点(jiāodiǎn)处y1=y2;
y
(2)当x=30时,y=_____1_;8
(3)当y=30时,x=_____4_。2
4•
3•
2•
1•
• ••••
0 1 23 45
x
第二十八页,共三十五页。
反馈练习 巩固新知 (liànxí)
3. 已知直线l与直线y=-2x平行(píngxíng),且与y轴交
于点(0,2),求直线l的解析式。
解:设直线(zhíxiàn)l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2
又直线过点(0,2), ∴2=-2×0+b, ∴b=2 ∴原直线为y=-2x+2
第二十九页,共三十五页。
反馈练习巩固新知
确定一次函数的表达式呢?
两个
(liǎnɡ ɡè)
第六页,共三十五页。
合作(hézuò)交流探究新知
例
在弹性限度内,弹簧的长度 y(厘米)是所挂
物体质量(zhìliàng) x(千克)的一次函数。一根弹簧不挂物体
时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘
米。请写出 y 与x之间的关系式,并求当所挂物体的质量
成本);当销售量 小于4t 时,该公司亏损(收入
小于成本);
y/元
由此你能得到(dédào)
什么结论?
6000
l1 l2
5000
4000
3000
2000
1000
O 12345678 第十七页,共三十五页。
x/吨
合作交流探究新知
利用图象比较(bǐjiào)函数值的方法:
(1)先找交点(jiāodiǎn)坐标,交点(jiāodiǎn)处y1=y2;
y
(2)当x=30时,y=_____1_;8
(3)当y=30时,x=_____4_。2
4•
3•
2•
1•
• ••••
0 1 23 45
x
第二十八页,共三十五页。
反馈练习 巩固新知 (liànxí)
3. 已知直线l与直线y=-2x平行(píngxíng),且与y轴交
于点(0,2),求直线l的解析式。
解:设直线(zhíxiàn)l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2
又直线过点(0,2), ∴2=-2×0+b, ∴b=2 ∴原直线为y=-2x+2
第二十九页,共三十五页。
反馈练习巩固新知
北师大版八年级数学上册一次函数一次函数的应用优质PPT

北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
根据图象回答下列问题: (1)哪条线表示B到海岸的距离与追赶时间之间的关系? 当t=0时,B距海岸 0 n mile,即s=0,故 l1表示B到海岸的 距离与追赶时间之间的关系。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)15min内B能否追上A? 延长 l1,l2,可以看出,当t=15时,l1 上的对应点 在 l2 上对应点的下方,这表明,15min时B尚未追上 A。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(2)A,B哪个速度快? t从0增加到10时,l2 的纵坐标增加了2,而 l1 的纵 坐标增加了5,即10min内,A行驶了2 n mile,B 行驶了5n mile,所以B的速度快。
元,销售成本= 元,销售成本=
元;
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)当销售量等于 时,销售收入等于销售成本;
(4)当销售量 时,该公司盈利(收入大于成本);
当销售量 时,该公司亏损(收入小于成本);
(5)l1对应的函数表达式是 式是 .
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
思考:
(1)水库干旱前的蓄水量是多少?
(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?
初二数学《一次函数》课件

进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。
一次函数的应用(第1课时)北师大数学八年级上册PPT课件

你能归纳出待定系数法求函数解析式的基本步骤吗?
探究新知
归纳总结
求一次函数解析式的步骤: (1)设:设一次函数的一般形式 y=kx+b(k≠0)
(2)列:把图象上的点 x1, y1 ,x2 , y2 代入一次
函数的解析式,组成几个__一__次_____方程; (3)解:解几个一次方程得k,b; (4)还原:把k,b的值代入一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(2,0)与(0,6)分别代入y=kx+b,得:
0 2k b 6 b
解得:bk
3 6
这个一次函数的解析式为y=-3x+6.
巩固练习
变式训练
已知一次函数的图象过点(3,5)与(0,-4),求这个 一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(3,5)与(0,-4)分别代入,得:
5 3k b 4 b
解得
k 3 b 4
,
所以这个一次函数的解析式为 y=3x-4.
探究新知 素养考点 2 已知一点利用待定系数法求一次函数的解析式
例2 若一次函数的图象经过点 A(2,0)且与直线y=-x+3平行,
求其解析式.
解:设这个一次函数的解析式为y=kx+b.
因为一次函数图象与直线y= -x+3平行,所以k= -1.
解:(1)设v=kt, 因为(2,5)在图象上, 所以5=2k, k=2.5,即v=2.5t.
(2) v=7.5 米/秒
(2,5)
(2,5)
t/秒
探究新知
例 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当 所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之 间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.
探究新知
归纳总结
求一次函数解析式的步骤: (1)设:设一次函数的一般形式 y=kx+b(k≠0)
(2)列:把图象上的点 x1, y1 ,x2 , y2 代入一次
函数的解析式,组成几个__一__次_____方程; (3)解:解几个一次方程得k,b; (4)还原:把k,b的值代入一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(2,0)与(0,6)分别代入y=kx+b,得:
0 2k b 6 b
解得:bk
3 6
这个一次函数的解析式为y=-3x+6.
巩固练习
变式训练
已知一次函数的图象过点(3,5)与(0,-4),求这个 一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(3,5)与(0,-4)分别代入,得:
5 3k b 4 b
解得
k 3 b 4
,
所以这个一次函数的解析式为 y=3x-4.
探究新知 素养考点 2 已知一点利用待定系数法求一次函数的解析式
例2 若一次函数的图象经过点 A(2,0)且与直线y=-x+3平行,
求其解析式.
解:设这个一次函数的解析式为y=kx+b.
因为一次函数图象与直线y= -x+3平行,所以k= -1.
解:(1)设v=kt, 因为(2,5)在图象上, 所以5=2k, k=2.5,即v=2.5t.
(2) v=7.5 米/秒
(2,5)
(2,5)
t/秒
探究新知
例 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当 所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之 间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)k<0,b<0 (6)k<0,b=0
求一次函数y=kx+b(k、b是常数,k≠0)时,需
要由两个点来确定;求正比例函数y=kx(k≠0)
时,只需一个点即可.
5
小试身手
1.已知函数 y(m 2)X m 25m 5m 4, 当m为_1_或__4_时,
它是一次函数.
2.(1)对于函数y=5x+6,y的值随x值的减小而_减__小___. (2)对于函数y 1 2 x , y的值随x值的减__小__而增大.
一条直线
性质
直线y=kx+b (k≠0)的 位置与k、b 符号之间的 关系. 一次函数表 达式的确定
2020/12/9
k>0时,y随x的增大(或减小)而增大(或减小); k<0时,y随x的增大(或减小)而减小(或增大). (1)k>0,b>0; (2)k>0,b<0;
(3)k>0,b=0 (4)k<0,b>0;
23
3. 一次函数y=kx-k的图像大致是( B ).
y
y
y
y
ox
A
2020/12/9
ox
ox
B
C
ox
D
6
4、某函数具有下列两条性质(1)它的图像是经 过原点(0,0)的一条直线;(2)y的值随x值的 增大而增大.请你举出一个满足上述条件的函数 (用关系式表示)
5.一弹簧,不挂重物时,长6cm,挂上重物后,重 物每增加1kg,弹簧就伸长0.25cm,但所挂重物不 能超过10kg,则弹簧总长y(cm)与重物质量x(kg) 之间的函数关系式为_y_=_0_._2_5_x_+_6__,此时自变量的取 值范围是_0_≤_x≤__10_.
3. 一次函数y=x+1的图像大致是( D ).
4.一次函数y=-x+1的图像通过第__一_、__二_、__四_, 象限,且y随x的增大而__减__小___.
5.直线经过A(0,2)和B(2,0)两点, 请你求出这个条直线的表达式. y = – x + 2
概念 图像
一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫x的 一次函数.当b=0时,一次函数y=kx(k≠0)也叫 正比例函数.
2020/12/9
7
挑战自我
1__._函_数_,与yy轴 32交x点 4B的的图坐(像0标,4与)为x_轴_交__点_,A△的A坐OB标的为面12积(-6为,0) __. 2.在一次蜡烛燃烧实验中,
甲、乙两根蜡烛燃烧时剩
余部分的高度y(cm)与 燃烧时间 x(h)之间的
关系如图所示. 请根据图像捕捉有效信息:
2020/12/9
1
一次函数(一)
2020/12/9
2
课前小热身
1.下列函数中,是一次函数的是_y_=_x+_1__y_=_-3_x.
y=8x2 ,y=x+1 , y=
8 x
, y=
1 x +1
,y=-3x.
2.当m = __3__时,函数 y(m3)xm285 是一次函数.
2020/12/9
3
2020/12/9
10
成功
天资
环境
ykxb
2020/12/9
勤奋和方法
11
作业:
请你根据本节课所复习的有关一次 函数的知识,自己设计2至3个题目, 并解答.
2020/12/9
12
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
2020/12/9
8
(1)甲、乙两根蜡烛燃烧前的高度分别是 _3_0_cm__,2_5_c_m_,从点燃到燃尽所用的时间分别是 __2_h__, _2._5_h__;
(2)当x=_1_h _时, 甲、乙两根蜡烛在燃 烧过程中的高度相等.
Hale Waihona Puke 2020/12/99
通过本节课对一次函数相 关知识的复习,请你谈谈 有哪些收获?
日期:
演讲者:蒝味的薇笑巨蟹
求一次函数y=kx+b(k、b是常数,k≠0)时,需
要由两个点来确定;求正比例函数y=kx(k≠0)
时,只需一个点即可.
5
小试身手
1.已知函数 y(m 2)X m 25m 5m 4, 当m为_1_或__4_时,
它是一次函数.
2.(1)对于函数y=5x+6,y的值随x值的减小而_减__小___. (2)对于函数y 1 2 x , y的值随x值的减__小__而增大.
一条直线
性质
直线y=kx+b (k≠0)的 位置与k、b 符号之间的 关系. 一次函数表 达式的确定
2020/12/9
k>0时,y随x的增大(或减小)而增大(或减小); k<0时,y随x的增大(或减小)而减小(或增大). (1)k>0,b>0; (2)k>0,b<0;
(3)k>0,b=0 (4)k<0,b>0;
23
3. 一次函数y=kx-k的图像大致是( B ).
y
y
y
y
ox
A
2020/12/9
ox
ox
B
C
ox
D
6
4、某函数具有下列两条性质(1)它的图像是经 过原点(0,0)的一条直线;(2)y的值随x值的 增大而增大.请你举出一个满足上述条件的函数 (用关系式表示)
5.一弹簧,不挂重物时,长6cm,挂上重物后,重 物每增加1kg,弹簧就伸长0.25cm,但所挂重物不 能超过10kg,则弹簧总长y(cm)与重物质量x(kg) 之间的函数关系式为_y_=_0_._2_5_x_+_6__,此时自变量的取 值范围是_0_≤_x≤__10_.
3. 一次函数y=x+1的图像大致是( D ).
4.一次函数y=-x+1的图像通过第__一_、__二_、__四_, 象限,且y随x的增大而__减__小___.
5.直线经过A(0,2)和B(2,0)两点, 请你求出这个条直线的表达式. y = – x + 2
概念 图像
一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫x的 一次函数.当b=0时,一次函数y=kx(k≠0)也叫 正比例函数.
2020/12/9
7
挑战自我
1__._函_数_,与yy轴 32交x点 4B的的图坐(像0标,4与)为x_轴_交__点_,A△的A坐OB标的为面12积(-6为,0) __. 2.在一次蜡烛燃烧实验中,
甲、乙两根蜡烛燃烧时剩
余部分的高度y(cm)与 燃烧时间 x(h)之间的
关系如图所示. 请根据图像捕捉有效信息:
2020/12/9
1
一次函数(一)
2020/12/9
2
课前小热身
1.下列函数中,是一次函数的是_y_=_x+_1__y_=_-3_x.
y=8x2 ,y=x+1 , y=
8 x
, y=
1 x +1
,y=-3x.
2.当m = __3__时,函数 y(m3)xm285 是一次函数.
2020/12/9
3
2020/12/9
10
成功
天资
环境
ykxb
2020/12/9
勤奋和方法
11
作业:
请你根据本节课所复习的有关一次 函数的知识,自己设计2至3个题目, 并解答.
2020/12/9
12
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
2020/12/9
8
(1)甲、乙两根蜡烛燃烧前的高度分别是 _3_0_cm__,2_5_c_m_,从点燃到燃尽所用的时间分别是 __2_h__, _2._5_h__;
(2)当x=_1_h _时, 甲、乙两根蜡烛在燃 烧过程中的高度相等.
Hale Waihona Puke 2020/12/99
通过本节课对一次函数相 关知识的复习,请你谈谈 有哪些收获?
日期:
演讲者:蒝味的薇笑巨蟹