规则形体(球体、水平柱体、垂直台阶)重力异常的正演计算
球体重力异常正演程序报告

球体重力异常正演程序报告球体重力异常正演是地球物理学中的一种重要方法,用于研究地下物质分布和地球内部结构。
本报告将重点介绍球体重力异常正演程序的原理、步骤和应用。
一、原理球体重力异常正演是基于牛顿引力定律和球体模型的数学计算方法。
根据牛顿引力定律,在球体表面上的任意一点,重力加速度可以表示为:g = G * (M / r^2)其中,g为重力加速度,G为引力常数,M为球体的质量,r为球心到该点的距离。
根据球体模型,球体的质量可以表示为:M = (4/3) * π * ρ * R^3其中,ρ为球体的密度,R为球体的半径。
将质量公式代入重力加速度公式,可得到球体表面上的重力加速度公式:g = (4/3) * G * π * ρ * R / r^2二、步骤球体重力异常正演程序的步骤如下:1. 确定观测点的位置和高度,以及球体模型的半径和密度。
2. 计算球体表面上的重力加速度,根据上述公式进行计算。
3. 根据观测点与球心的距离,计算球体表面上的重力加速度的投影值。
4. 重复步骤3,直到计算出所有观测点的重力加速度投影值。
5. 计算观测点的球体重力异常值,即观测点的重力加速度减去球体表面上的重力加速度投影值。
三、应用球体重力异常正演程序在地球物理勘探中有广泛的应用,主要包括以下几个方面:1. 地质勘探:通过球体重力异常正演,可以对地下的岩石密度分布进行推测,从而帮助地质勘探人员确定地质构造和找到潜在的矿产资源。
2. 油气勘探:油气藏通常与地下的密度异常有关,通过球体重力异常正演,可以对潜在的油气藏进行初步判断,指导油气勘探的方向和深度。
3. 地壳构造研究:地球内部的构造和演化与地下岩石的密度分布密切相关,通过球体重力异常正演,可以揭示地壳的变形和演化过程,为地壳构造研究提供重要的参考依据。
4. 火山和地震研究:火山和地震活动通常与地下的岩浆和断层有关,球体重力异常正演可以帮助科学家们理解火山和地震的发生机制,预测可能的灾害风险。
重力异常推断解释的方法

第三节 几种规则形状地质体正反问题的解法
五、无限水平板
(一)、正演公式
(二)、正演公式的两个实际应用
五、无限水平板
(二)、正演公式的两个实际应用
1、求正问题方面的应用 2、求反问题方面的应用
(二)、正演公式的两个实际应用 1、求正问题方面的应用
1) 、内容
2)、图例分析
3) 、实例分析
(二)、正演公式的两个实际应用 1、求正问题方面的应用 1) 、 内容 利用无限水平板重力异常公式能计算已知 闭合度的构造或其它已知顶底高差的任意 地质体可能产生的重力异常的最大值。
5、地质体形状和物性的简化
形状的简化:
把大致规则的地质体认为是规则的地质体, 把复杂的地质体视作若干简单形体的迭加。
物性的简化:
把密度大致均匀的地质体认作密度完全均匀 的地质体。
第四章 重力异常推断解释的方法
第一节 重力异常推断解释的一般方法
第二节 解正问题的基本公式 第三节 几种规则形状地质体正反问题的解法
一、均匀球体 1、 Δg正问题讨论
g max GM
D
2
x1/ n D
3
n 1
2
当M不变,D增大 A倍, Δgmax 减少1/A2倍, X1/n增大A倍。即 Δg 曲线变得越来越平缓。
一、均匀球体 1、 Δg正问题讨论
Δg球在剖面图和平面图上的表现形式:
第三节 几种规则形状地质体正反问题的解法 一、均匀球体 1、解正问题的基本公式 2、 Δg正问题讨论 3、Δg反问题讨论
2、均匀球体Δg反问题讨论 求解反问题是以相应的正问题为基础的 求球心埋深
x1
2
x1/ n D
3
n 1
重力异常正演资料

单位长度, dm d
• 若水平圆柱体有限长, 则
密度均匀的水平圆柱体
l
g G
d
l [( x)2 ( y)2]3/2
(x
2Gh0l
h0 )(x2 l2
h02 )3/2
密度均匀的水平圆柱体
• 当 l 时,
g 2Gh0
密度均匀的球体Vg VFra bibliotekzG
v
( z)d dd [( x)2 ( y)2 ( z)2 ]3/2
密度均匀的球体
密度均匀的球体
Vg
GM
[x2
h0 y2
h02 ]3/2
密度均匀的球体
Vg
GMh0 ( x2 h02 )3/2
球体重力异常图
球体重力异常图
利用已知异常计算球体参数
重力异常正演
正问题与反问题
正问题也称为正演计算(Forward Calculation) 已知地质体的形状、产状和剩余密度等,通过理 论计算来求得异常的分布和规律。
正问题与反问题
• 反问题也称为反演(Inversion) • 已知异常的分布特征和变化规律,求场源的赋存
状态(如产状、形状和剩余密度等)
正问题与反问题
正演计算是解反问题的基础,解反 问题(反演)是目的
正问题与反问题
简单规则几何形体的异常
• 为了简化,假设地质形体孤立存在,密度均匀, 地面水平,所取剖面为中心剖面。
• 规则形体:球体、水平圆柱体、垂直台阶、脉状 体……
密度均匀的球体(点质量)
• 自然界中,一些近于等轴状的地质体, 如矿巢、矿囊、岩株、穹窿构造等, 都可以近似当作球体来计算它们的重 力异常,特别当地质体的水平尺寸小 于它的埋藏深度时,效果更好。
磁性体磁场正演

§3、规则形体的磁场
薄板状体
薄板状体可看作是厚板的特殊 情况。在磁法中“厚”与“薄”也 是一个相对概念。在一定限度 内当板状体的b<<h 时,称其 为薄板,反之为厚板。 厚板与薄板的剖面曲线形态类 似。薄板的磁场表达式可从厚 板的磁场表达式简化导出。 厚板状体可以看作薄板状体组 合而成,薄板的异常窄,幅值 小,而厚板异常宽,幅值大。
H ax
μ 0 M s • sin α rB ln = 2π rA
μ 0 M s • sin α Za = (Δϕ ) 2π
§3、规则形体的磁场
倾斜磁化板状体磁场
斜磁化指板的侧面与磁化强 度Ms斜交的情况,γ≠0 斜交磁化厚板的顶面、底面 和侧面都要出现磁荷。 斜交磁化无限延伸厚板磁场 Za图形随磁化倾角:
x = 0, Z a⊥ = Z a max H a⊥ = 0 μ0 2ms = 4π R 2
规则形体的磁场
四、水平圆柱体
通常将自然界中延深和宽度都比较小,沿走向很长 的磁性体看作水平圆柱体。 一.水平圆柱体的磁场表达式: 若为垂直磁化,即is=90°,或I=90°时:
μ0 ms ( R 2 − x 2 ) Z a⊥ = 2π ( x 2 + R 2 ) 2
磁性体磁场正演
规则形体的磁场
球体的重力异常:Δg = GM
h (x + h )
2 2 3 2
规则形体的磁场
球体的重力异常:Δg = GM
h (x + h )
2 2 3 2
磁异常垂直分量 Z a
qm h : Z a = 4π 2 2 3 2 (x + h )
规则形体的磁场
一、单极的磁场(顺轴磁化、无限延深柱体)
重力异常正反演问题

整个水平圆柱体在P点产生的重力异常为无 穷多个柱体在该点产生的重力异常之和,即:
g G h0
2 h0 dy G 2 2 2 2 3/ 2 2 ( x y h0 ) x h0
2、水平圆柱体
规 则 形 体 的 正 、 反 演 问 题
讨论:
3、垂直台阶
2πG△σ△h
由图可见:无论台阶产 状如何,异常的形态相 似,仅原点处的异常值 不同。 当台阶直立时:
P(x,0)
πG△σ△h
o
△σ
●
x
△g(0)= πG△σ△h
△h
当台阶面向台阶外侧倾 斜时:
△g(0) > πG△σ△h
当台阶面向台阶内侧倾 斜时:
△g(0) < πG△σ△h
二、不规则三度体的正演问题
(4-3)
如果还有其他的物性层界面存在,则可仿照以上公式(4-3)进行迭加,以 求多重界面的Δ g。将Δ g 进行傅立叶变换,便得空间域的Δ g(x,y,0),即完成 正演计算。
双密度界面
(五)变密度多界面快速反演方法
1.反演问题的基本原理
现假设已知重力场为△g(r0,z0) ,其频谱记为 F[△g],又假设已知密度函数ρ (r)的一个值为 ρ
重力异常的正反演
• 1. 重力异常的正演问题、反演问题; • 2. 均匀密度球体、水平圆柱体、台阶的重 力异常正演方法,异常特征,反演方法; • 3. 密度界面的剩余密度的确定方法; • 4. 单一密度界面异常的特征及反演解释方 法(近似解法、矩阵法); • 5. 解复杂密度体正演问题的基本思想; • 6. 最优化选择法的基本思想;
用解析公式计算出每个小长方
重力正演、反演

2)当σ>o时,极大值一侧对应着上升盘,极小 值一侧对应着下降盘,在极小值十分清晰且大 干极大值的绝对值时,属正断层类型,反之则 属逆断层类型。
二度铅垂柱体 对于沿水平方向延伸较长而横截面近于矩形的 矿脉,可以当成二度铅垂柱体来研究。在正演 它的异常时,坐标系及有关参数的选取见图,用 (x+α)与(x一α)分别代替铅垂台阶各公式中的 x,并将结果相减,即获得这一形体的重力异 常及各阶导数异常的公式:
当柱体的下底 H→+∞ 时,便可获得底部无限延 伸的铅垂脉的相应公式Δg→∞
( x − a) 2 + h 2 V xz = Gσ ln ( x + a) 2 + h 2 h h 2ah V zz = 2Gσ (tg −1 − tg −1 ) = 2Gσtg −1 2 x−a x+a x + h2 − a2 ⎡ ⎤ x+a x−a 2a ( a 2 + h 2 − x 2 ) V zzz = 2Gσ ⎢ = 2Gσ 2 − 2 2 2 2 ⎥ ( x + a) + h ⎦ ( x + a 2 + h 2 ) 2 − 4a 2 x 2 ⎣ ( x + a) + h
GM GMD = 2 2 nD ( x1 / n + D 2 ) 3 / 2
x 1/n = ± D n 2 / 3 − 1
取n=2,得x1/2=0.766D(X正半轴)和x’1/2=-0.766 D (X负半轴),说明异常半极值点的横坐标为球心 深的0.766倍
4、当D不变,使M加大m倍时,异常也同样加大
[( x + a ) 2 + H 2 ][( x − a ) 2 + h 2 ] V xz = Gσ ln [( x + a ) 2 + h 2 ][( x − a ) 2 + H 2 ] H h H h ) − tg −1 − tg −1 + tg −1 V zz = 2Gσ (tg −1 x+a x+a x−a x−a ⎡ ⎤ x+a x+a x−a x−a − + − V zzz = 2Gσ ⎢ ⎥ 2 2 ( x + a) 2 + H 2 ( x − a) 2 + h 2 ( x − a) 2 + H 2 ⎦ ⎣ ( x + a) + h
重力数据处理解释方法

2. 简单规则形体的异常特征及应用 ●Wzz异常及特征应用
2. 简单规则形体的异常特征及应用 ●Wzz异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用
2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
第三节 正常重力和重力异常
四、重力异常的例子
Rotational Fault
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
异常体分开,压制区域性异常
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
第四节 地质体参数的计算 重力勘探5-正反演

i ) ln
2 i 1 i2
2 i 1
2 i
(i1
i
)
tg
1
i i
tg1
i1 i1
(二)任意形状三度体
1、线元法
➢用一组垂直于y轴的平面
和一组垂直于X轴的平面分 别切割地质体,则任意两 个平面的交线包合在地质 体之内的部分形成一个线 元。
x 时, g Gf h
1
P(x,0)
●x
h2
h 1 △σ △h
2
△σ △h
主剖面异常曲线单调变化,断层正上方梯度最大;平面异常等值 线呈条带状分布,与断层线平行。
在前述三个特征点上,异常值与埋深无关; 异常形态与埋深有关,埋藏越浅,水平梯度越大。
等值线为一系列平行台阶走向的直线,在断面附近等值线最密, 称为“重力梯级带”,且异常向台阶延伸方向单调增大。
第四节 地质体参数的计算
正演与反演
正问题也称正演,是指给定地质异常体的形状、产状 和剩余密度分布,通过计算得出重力异常的大小、特 征和变化规律等。
反问题也称反演,是指根据重力异常的数值大小、变 化规律等场的特征,结合已知的地质资料和地质体的 物性参数,求解地质体的形状和空间位置等。
正问题从给定地球物理模型,通过数值计算或物理模拟,得 出相应地球物理场的过程,目的是认识和掌握地球物理场的 特征与场源之间的对应关系;
当α=90°(垂直断层)时,重力异常极大值 与极小值绝对值相等,曲线以原点O为中心对 称
当α<90°(正断层)时,下降盘一侧异常极 小值明显
当α>90°(逆断层)时,上升盘一侧异常极 大值明显