力学实验报告 纯弯曲梁的正应力实验

合集下载

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。

二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。

由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。

在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。

在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。

三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。

2. 将梁固定在纯弯曲实验台上。

3. 在梁的一端加上一定荷载。

4. 通过测力仪测量在梁部位不同位置受到的正应力。

5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。

6. 重复以上操作,直到梁发生破坏。

五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。

实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。

不同的材料具有不同的弯曲特性,不同的性能和抗断性能。

而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。

七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。

实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。

纯弯曲正应力实验报告

纯弯曲正应力实验报告

纯弯曲正应力实验报告纯弯曲正应力实验报告引言:纯弯曲正应力实验是材料力学领域中的一项基础实验,通过对材料在受到纯弯曲力作用下的正应力分布进行测量和分析,可以了解材料的力学性能和变形特征。

本实验旨在通过对不同材料样本的纯弯曲正应力实验,探究材料的强度、韧性和变形能力。

实验目的:1. 了解纯弯曲正应力实验的原理和方法;2. 掌握纯弯曲正应力实验的操作技巧;3. 分析不同材料样本的正应力分布特点;4. 探究材料的强度、韧性和变形能力。

实验原理:纯弯曲正应力实验是通过施加一个纯弯曲力矩于材料上,使其产生弯曲变形。

在材料的中性轴附近,正应力呈线性分布,而在材料的表面,正应力最大。

根据材料的几何尺寸和应力分布,可以计算出材料的弯曲应力。

实验步骤:1. 准备不同材料样本,包括金属、塑料等;2. 将样本固定在弯曲试验机上,并调整试验机的参数,如加载速度、加载方式等;3. 施加纯弯曲力矩,记录下加载过程中的应变和应力数据;4. 根据实验数据,计算出材料的正应力分布和弯曲应力。

实验结果与分析:通过实验得到的数据,我们可以绘制出不同材料样本的正应力分布曲线。

根据曲线的变化特点,我们可以分析材料的强度、韧性和变形能力。

首先,正应力分布曲线的斜率表示了材料的强度。

斜率越大,说明材料的强度越高。

通过比较不同材料样本的斜率,我们可以评估材料的强度差异。

其次,正应力分布曲线的形状和曲线下的面积表示了材料的韧性。

曲线形状越平缓,说明材料的韧性越好。

曲线下的面积越大,表示材料的变形能力越高。

通过比较不同材料样本的曲线形状和曲线下的面积,我们可以评估材料的韧性和变形能力。

最后,我们还可以分析材料在不同加载条件下的正应力分布曲线。

通过比较不同加载速度、加载方式等对正应力分布曲线的影响,可以了解材料在不同应力条件下的变形特性。

结论:通过纯弯曲正应力实验,我们可以了解材料的强度、韧性和变形能力。

不同材料样本的正应力分布曲线可以反映材料的力学性能差异。

纯弯曲梁的正应力实验参考书报告

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺三、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,Iz为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

实验采用半桥单臂、公共补偿、多点测量方法。

加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。

四、实验步骤1.设计好本实验所需的各类数据表格。

2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离yi。

见附表13.拟订加载方案。

先选取适当的初载荷P0(一般取P=10%Pmax左右),估算Pmax (该实验载荷范围Pmax≤4000N),分4~6级加载。

4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。

6. 加载。

均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。

实验至少重复两次。

见附表27. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

附表1 (试件相关数据)附表2 (实验数据)载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 µε 4 εP -33 -66 -99 -133 -166△εP -33 -33 -34 -33平均值 -33.252 εP -16 -33 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.751 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 03 εP 15 32 47 63 79 △εP 17 15 16 16 平均值 16 5 εP 32 65 97 130 163△εP 33 32 33 33平均值 32.75五、实验结果处理1. 实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算各点的实验应力值,因1µε=10-6ε,所以各点实验应力计算:应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mmY 2 -10 高 度 h = 40 mmY 3 0 跨 度 L = 620mm (新700 mm )Y 4 10 载荷距离 a = 150 mmY 5 20 弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4σi 实=E εi 实=E ×△εi ×10-62. 理论值计算载荷增量 △P= 500 N弯距增量 △M=△P ·a/2=37.5 N ·m各点理论值计算:σi 理= △M ·y i3. 绘出实验应力值和理论应力值的分布图分别以横坐标轴表示各测点的应力σi 实和σi 理,以纵坐标轴表示各测点距梁中性层位置y i ,选用合适的比例绘出应力分布图。

梁的纯弯曲正应力实验

梁的纯弯曲正应力实验
2.温度补偿: 由于温度对电阻值变化影响很 大, 利用电桥特性, 可以采用适 当的方法消除这种影响。
梁的纯弯曲正应力实验
工作片
R1
B
A
R2 温度补偿片 C 固定电阻
相同应变片R1.R2,R1贴 在构件受力处,R2贴在附 近不受力处,环境温度对 R1.R2引起的阻值变化相 同,为DRT,则
R4
R3
D
梁的纯弯曲正应力实验
五、实验数据的记录与计算
梁的纯弯曲正应力实验
六、注意事项
1.加载时要缓慢, 防止冲击。 2.读取应变值时, 应保持载荷稳定。 3.各引线的接线柱必须拧紧, 测量过程中不要触动引线, 以 免引起测量误差。
梁的纯弯曲正应力实验
一、实验目的
1.测定纯弯曲下矩形截面梁横截面上正应力的 分布规律,并与理论值比较;
2.熟悉电测法基本原理和电阻应变仪的使用。 二、实验仪器 1.纯弯曲试验装置;
2.YD-15型静态数字电阻应变仪。
梁的纯弯曲正应力实验
三、试验原理
1. 结构示意图及理论值计算
b hz
y
F/2 a
F/2
DR1 R1
-
DR2 R2
DR3 R3
-
DR4 R4
)
E 4
K
(
1
-
2
3
-
4
)
梁的纯弯曲正应力实验
4.电桥接法及温度补偿 1.电桥接法: 全桥接法(四个电阻均为应变片);
半桥接法(R1、R2为应变片, R3.R4为固定电阻)
两种接法中的应变片型号、阻值尽可能相同 或接近, 固定电阻与应变片阻值也应接近。
F F/2
ma m
FQ +

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。

二、实验原理。

梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。

在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。

根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。

三、实验装置和仪器。

本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。

其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。

五、实验数据处理和分析。

通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。

通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。

六、实验结论。

通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。

因此,本实验取得了预期的实验目的。

七、实验总结。

本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。

希望通过本次实验,能够对大家有所帮助。

八、参考文献。

[1] 《材料力学实验指导书》。

[2] 《材料力学实验讲义》。

以上为梁的纯弯曲正应力实验报告,谢谢阅读。

梁纯弯曲正应力测定实验(最全)word资料

梁纯弯曲正应力测定实验(最全)word资料

梁纯弯曲正应力测定实验(一)实验目的*在承受纯弯曲的钢梁上,测取其横截面上各点的正应力,验证梁的正应力公式和观察应力的分布规律;*熟悉电测初步知识和测量方法。

(二)实验原理*试件、尺寸、设备——见系网页中“教学资源栏目”之“实验指导” *操作步骤、仪器使用(同上) (三)数据处理 *测量过程记录表*注:应力平均值(增量)计算:=E 理论值计算:zM yI σ∆⋅∆=,对应载荷增量∆F 所产生的弯矩:∆M=0.5∆F .a (四)思考题*弯曲正应力的大小与材料的弹性模量E 是否有关?*分析理论值计算与实验值产生的误差原因。

(列出可能的几种) *若在实验中出现与中性层对应的点的数值为“非零”,是什么原因?临床实验室定量测定室内质量控制一术语和定义1偏倚 bias试验结果偏离可接受参考值的系统偏离(带有正负号)。

2不精密度 imprecision一组重复测定结果的随机离散,其值由统计量定量表示为标准差或变异系数。

3质量控制quality control质量管理的一部分,致力于满足质量要求。

[GB/T 19000-2000,]4 质量控制策略 quality control strategy质控品种类、每种检测频次、放置的位置,以及用于质控数据解释和确定分析批是在控还是失控的规则。

5 随机误差 random error测量结果与在重复性条件下对同一被测量进行无限多次测量所得结果的平均值之差。

6 系统误差 systematic error在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。

7 可报告范围 reportable range在仪器、试剂盒或系统的测定响应之间的关系,显示是有效的期间内试验值范围。

8 标准差 standard deviation观察值或测定结果中不精密度的统计度量。

变异性/离散的度量是总体方差的正平方根。

二质量控制的目的质量控制方法是用来监测检验方法的分析性能,警告检验人员存在的问题。

梁的纯弯曲正应力实验

梁的纯弯曲正应力实验

R4 D E
R3
DR1 DR2 DR3 DR4 E U BD ( ) 4 R1 R2 R3 R4 E K ( 1 - 2 3 - 4 ) 4
梁的纯弯曲正应力实验
4、电桥接法及温度补偿 全桥接法(四个电阻均为应变片); 1.电桥接法: 半桥接法(R1、R2为应变片, R3、R4为固定电阻) 两种接法中的应变片型号、阻值尽可能相同 或接近,固定电阻与应变片阻值也应接近。 2.温度补偿:由于温度对电阻值变化影响很 大,利用电桥特性,可以采用 适当的方法消除这种影响。
化是非常敏感的,任何一点变化都会使输出结
为电量——电阻, 测量应变的精度达到 10-6, 是
一种
量的
标准
量时
线,
施。
图 2 偏心压缩试 样
பைடு நூலகம்
境变
果产
偏心拉(压)实际上是拉(压)与纯弯曲的组合,由于拉(压)和纯 生变化。如果你有实测的经历就会发现,随机干扰因素很多,刚刚预调平衡 的一个测点,当旋钮转过去再转回来时,几秒钟时间又不平衡了,往往需要 弯曲时横截面上只有正应力存在,经过叠加后横截面上只有正应力,且为 多次反复,耐心细致,才能将所有测点调平;有时虽经多次反复却无法调平 线性分布。因此只要能够测出正应力的分布规律,确定中性层位置,就可 只好保留原始误差开始测量。在实测时还会发现,同一个实验装置,同样的 求出外载和作用点位置。根据受力的不同,偏心拉(压)有单向偏心拉( 仪器和接线,不同的实验小组测量结果也不同,甚 压)(图2a)和双向偏心拉(压)(图2b)两种情况,测试时设计的贴片 部位也不同。请学生们自己设计布贴应变片并确定组桥方式。实验可用电 子万能材料试验机加载。
梁的纯弯曲正应力实验
五、实验数据的记录与计算

纯弯梁弯曲的应力分析实验报告精

纯弯梁弯曲的应力分析实验报告精

30yp 应力分布曲线20 10 0 10 -20 -30应力b七、思考题1•为什么要把温度补偿片贴在与构件相同的材料上 ?答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补 偿片贴在与构件相同的材料上,来消除温度带来的应变。

2•影响实验结果的主要因素是什么?答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

一、 实验目的和要求:1)2)用电测法测定纯弯曲梁受弯曲时(或 )截面各点的正应力值,与理论计算值进行比较。

了解电阻应变仪的基本原理和操作方法二、 实验设备CM-1C 型静态电阻应变仪,纯弯曲梁实验装置三、 弯曲梁简图:—0理 亠b 宝J/2 J/2| / [11 I 丄丄. ___ JULlllx|图5-1 已知:、 、、、c h 『6、I : 200GPa(或)截面处粘贴七片电阻片,即 R1、R2、R3、R4、R5、R6、在梁的纯弯曲段内R7。

R4贴在中性层处,实验时依次测出1、2、3、4、5、6、7点的应变,计算 出应力。

四、测量电桥原理 构件的应变值一般均很小,所以,应变片电阻变化率也很小,需用专门仪器进行 测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其测量电路为惠斯顿电 桥,如图所示。

如图所示,电桥四个桥臂的电阻分别为 R1、R2、R3和R4,在设A 、C 端接电源,B 、D 端为输出端W-1ABL22fn/2A、B和B、C以上为全桥测量的读数,如果是半桥测量,则读数为半桥测量是将应变片R3和R4放入仪器内部,R1和R2测量片接入电桥,接入组成半桥测量。

五、理论和实验计算理论计算、扰I?实验值计算:AO _D二4JiD 门电桥,当构件受力后,设上述应变片感受到的应变分别为[、2、3、4相应的电阻改变量分别为、、和,应变仪的读数为d 4 U 1 2 34KU4 U 1 2KU:3.5bh2M cl 4 (JWZ l/.6bh3> 2.6M c2 1Z、d半所谓上式代表电桥的输出电压与各臂电阻改变量的一般关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2.93
������5
-5.86
3.5 结果分析
实际值 σ 实(MPa) 5.73 2.47 -0.206 -3.21 -5.81
相对误差(%) 2.26% 15.60% — 9.69% 0.85%
通过计算发现,在误差允许的范围内,大部分各数据符合实际要求。通过σ������ − ������������的关系图可以发现,随着与中性轴距离的增大,对应的应力值也增大,二者成 正比关系,符合梁在纯弯曲时横截面上理论分布规律。
σ1 实 = ������ × Δ̅̅̅���̅���1̅ = 5.73 × 106������������
σ2 实 = ������ × Δ̅̅̅���̅���2̅ = 2.47 × 106������������
σ3 实 = ������ × Δ̅̅̅���̅���3̅ = −0.206 × 106������������
六、实验体会
相对于实验一,在进行实验二的时候对于电测法的使用会有一定的了解和熟 悉度,但由于实验是对实验原理依然不是完全理解,所以做实验时还是存在一定 困难,但是所得到的数据和后期的计算结果还是很让人满意的。
5/5
四、实验数据及其处理
1.1 实验试件参数
应变片至中性层距离(mm)
y1
-20
y2
-10
y3
0
y4
10
y5
20
梁的尺寸和有关参数
宽度 b (mm)
20
高度 h (mm)
40
跨度 L(mm)
600
载荷距离 a(mm)
125
弹性模量 E (Gpa)
206
泊松比 μ
0.26
2.2 实验原始数据
荷载 P/N -30 -530 -1030 -1530 -2030 -2530
������2

=
∆������������2 ������������
=
2.93
×
106������������
������3

=
∆������������3 ������������
=
0.00
×
106������������
������4

=
∆������������4 ������������
3.1 各点应力实测值的计算
计算在相同荷载增量 ∆������ 下,产生的应变增量 ������������������ (������ = 1,2,3,4,5) ,并求出平 均值 Δ̅̅̅������̅������ (������ = 1,2,3,4,5)。通过观察试件铭牌,即可得到弹性模量 ������ 。再根据胡克 定律即可得到各点应力实测值。
-2030
1000
-2530 —
平均值 Δεi 实(με)
CH1#1 Δε1 CH2#2 Δε2 CH3#3 Δε3 CH5#4 Δε4 CH4#5 Δε5
(με)
(με)
(με)
(με)
(με)
(με)
(με)
(με)
(με)
(με)





2
1
1
0
0
28
12
-1
-15
-29
30
13
0
-15
-29
28
12
-2
-15
-28
58
25
-2
-30
-57
27
12
-1
-16
-28
85
37
-3
-46
-85
29
13
-1
-15
-28
114
50
-4
-61
-113
27
11
-2
-17
-28
141
61
-6
-78
-141





27.8
12
-1.4
-15.6
-28.2
五、计算和实验结果分析
3.1 各点应力实测值的计算
σ4 实 = ������ × Δ̅̅̅���̅���4̅ = −3.21 × 106������������
σ5 实 = ������ × Δ̅̅̅���̅���5̅ = −5.81 × 106������������
3/5
·Flanger·
3.2 各点应力理论值的计算
已知荷载增量∆������ = 1000������
������ℎ3 ������������ = 12
������������理
=
∆������������������������ ������������
3.3 横截面上正应力分布规律
分别以各点应力理论值������������理 和各点应力实测值σ������实为坐标轴横坐标,以各点 距离中性轴位置������������为纵坐标,绘制σ������ − ������������关系图。
二、实验装置及工具
1、XL3418T 组合式材料力学多功能实验台 2、静态电阻应变仪
三、实验原理及方法
本实验采用某金属梁实验,中性轴及中性轴两侧各平行轴线贴有两个工作应
变片,共有五个工作片(������1 ������2 ������3 ������4 ������5)分别测量距离中性轴������1 = −20������������、
·Flanger·
北京理工大学珠海学院实验报告
ZHUHAI CAMPAUS OF BEIJING INSTITUTE TECHNOLOGY
班级
学号
姓名
指导老师
实验课题
实验二 纯弯曲梁的正应力实验
实验人员
实验时间
一、实验目的
1、测量梁在纯弯曲时横截面上正应力大小和分布规律 2、验证纯弯曲梁的正应力计算公式 3、熟悉电测法测量相关的应变值
应力σi于应变片至中性层距离yi关系图
25 yi/mm
20
15
10
5
0
-8
-6
-4
-2
0
2
4
6
8
-5
-10
-15
-20
-25
σi/MPa
σi实-yi σi理-yi
4/5
·Flanger·
3.4 整理可得
测点
理论值 σ 理(MPa)
������1
5.86
������2
2.93
������3
0.00
������4
即可计算出弯矩增量∆������ = ∆������������ = 31.25 N · m
2
又有试件的惯性矩∆������ = ∆������������ = 31.25 N · m
2
固有各点的应力理论值为
������1

=
∆������������1 ������������
=
5.86
×
106������������
σ������实 = ������ × Δ̅̅̅������̅������ (������ = 1,2,3,4,5)
3.2 各点应力理论值的计算
已知支座到集中力作用点的距离 ������
1/5
·Flanger·
计算各点的弯矩增量
以及试件的惯性矩
∆������������ ∆������ = 2
即可计算各点应力的理论值
已知各点的平均应变值为
弹性模量������ = 2.06 × 1011������������ 故可算的各点的应力实测值为
∆̅̅̅���̅���1̅ = 27.8 × 10−6 ∆̅̅̅���̅���2̅ = 12.0 × 10−6 ∆̅̅̅���̅���3̅ = −1.4 × 10−6 ∆̅̅̅���̅���4̅ = −15.6 × 10−6 ∆̅̅̅���̅���5̅ = −28.2 × 10−6
CH1
CH2
CH3
CH4
CH5
2
1
1
0
0
30
13
0
-29
-15
58
25
-2
-57
-30
85
37
-3
-85
-46
114
50
-4
-113
-61
141
61
-6
-141
-78
2/5
3.3 实验处理数据
·Flanger·
P
ΔP
(N)
(N)
— -30
1000
-530
1000
-1030
1000-153010 Nhomakorabea0������2 = −10������������、������3 = 0������������、������4 = 10������������、������5 = 20������������的的应变值。将五个工作 片按照 1/4 桥法接入应变仪中,记录相关数据,完成实验。
实验从初荷载 ������0 开始分级加载,每次增在相同荷载 ∆������ ,记录不同荷载示数 ������������ (������ = 1,2,3, … , ������) 所对应的应变值 ������������ (������ = 1,2,3, … , ������),直到加载至最大限定外 载荷 ������������������������������������ 。实验应至少重复两次操作。
=
−2.93
×
106������������
������5
相关文档
最新文档