六年级下册数学教案《鸽巢问题例1例2 》 (人教新课标 2014秋)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级下册数学教案《鸽巢问题例1例2》(人教新课标2014秋)

《鸽巢问题(一)》教学设计一、教学目标(一)知识与技能通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
二、教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”至“少”的意义,理解“至少数=商+1 或商”。
三、教学准备多媒体课件。
四、教学过程(一)游戏引入出示一副扑克牌。
教师:你们认识他是谁吗?对,他是我国非常出色的魔术师刘谦。
你们是不是很崇拜他啊?其实老师也会玩魔术,你们想不想见证一下?老师这里一副扑克牌,里面有哪几种花色呢?现在老师把大小王拿出来,还剩52 张。
下面请5 位同学上来,每人随意抽一张,不要让别人看到。
(学生上台抽牌)现在老师断定:至少有2 张牌是同花色的。
同学们相信吗?见证奇迹的时刻到了,请亮牌。
亮牌,统计。
师:是不是至少有两张牌是同花色的呢?是不是很神奇?掌声送给老师。
你们想不想知道为什么呢?其实,这个小魔术里隐藏着一个数学原理。
今天我们就来一起研究这个数学原理:鸽巢问题。
(板书课题)(二)探索新知(一).教学例1。
(1)列举法:教师:请看例一:把4 支铅笔放到3个笔筒里,有哪些放法?总有一个笔筒至少放几支铅笔?请同学们小组合作,用桌上的学具按照温馨提示动手分一分。
先请一位同学读一下温馨提示。
1、所有的比必须放进笔筒里,不考虑笔筒的顺序,只考虑笔筒内比的支数。
2、怎样放才能做到不重复、不遗漏?3、用杯子代替笔筒,小组合作,组长负责记录结果。
4、合作完成,请坐好示意。
师:你的读的真响亮。
同学们都明确要求了吗?活动开始。
教师:哪个小组汇报一下结果?预设:(1,1,2)(2,2,0)(3,1,0)(4,0,0)师板书学生汇报情况。
《鸽巢问题(例1、例2)》(共27张ppt)-人教版六年级数学下册

今天你有什么收获呢?
谢 谢!
分一分:
0
3 3
0
2 3
1
活动二:把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝笔, 这是为什么?
要求:①小组合作摆学具;②把每一种情 况用数的分解式记录下来。
活动二:把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝笔, 这是为什么?
活动二:把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝笔, 这是为什么?
一定有
“至少”是什么意思?
最少,不能少于2本或不能少于3枝。
把4枝笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔. 把5枝笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
把6枝笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
把10枝笔放进9个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
把100 枝笔放进99个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
待分物体 抽屉
我的发 现
只要待分物体的数量比抽屉的数量多1,总有一个抽屉 里至少放进2个物体。Fra bibliotek算一算:
任意13人中,总有至少几个人 的属相相同,想一想,为什么?
平均分
13÷12=1……1
1+1=2
因为假设13个人中有12个人的 生肖各不同,还剩1个人,这个 人不管生肖是什么,总有一种 生肖至少有2个人是一样的。
四种花色
抽牌
鸽巢问题
学习目标:
一、了解鸽巢问题的特点, 理解鸽巢问题的含义; 二、会用不同的方法证明 鸽巢问题的结论; 三、能用鸽巢问题解决实 际问题。
二、探究新知
人教版六年级下册《鸽巢问题》(抽屉原理)教学设计

人教版六年级下册《鸽巢问题》(抽屉原理)教学设计【教学内容】人教版六年级下册第68--69页《数学广角---鸽巢问题》例1、例2。
【教材分析】《鸽巢问题》也被称为“抽屉原理”或“鸽巢原理”,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷提出来的,因此,也被称为狄利克雷原理。
第一个例题教学,是抽屉原理的最简单情况,只要铅笔数比笔筒数多1,总有1个笔筒至少放进2支笔。
掌握用枚举法和假设法两种思考问题的方法。
通过前一个例题的两个层次的探究,让学生理解“平均分”的方法保证在最不利的情况保证“至少”的情况。
第二个例题教学,是抽屉原理更为一般的形式,只要物体数比抽屉数多,带有明确的目的——在进一步理解“尽量平均分”的基础上,让学生更准确地把握有余数的除法算式表示思维的过程。
【学情分析】“抽屉原理”是一类较为抽象和艰涩的数学问题,对于六年级的学生来说,即使已具有一定的抽象思维能力,仍然还具有一定的挑战性。
在开始探索阶段,可以采用枚举法,只需口头表达推理的过程。
紧接着以直观方式出示假设法,先平均分,为什么平均分能保证至少的情况呢?在这里理解起来有点困难,这里要充分发挥合作学习的作用,引导学生尝试有逻辑地去推理,逐步把握其模式。
【教学目标】1.知识与技能:初步了解“鸽巢原理”的含义和特点,会用“鸽巢原理”解决简单的实际问题。
2.过程与方法:经历鸽巢原理的探究过程,通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
使学生经历将具体问题“数学化”的过程,培养学生的“建模”思想。
3.情感、态度和价值观:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
【教学重点】理解鸽巢原理,掌握先“平均分”,再调整的方法。
【教学难点】理解“总有”“至少”的意义,理解“至少数=商数+1”。
理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】多媒体课件扑克牌活动记录表每组都有相应数量的笔筒、铅笔。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
人教版六年级下册《鸽巢问题》教学设计含反思

人教版六年级下册《鸽巢问题》教学设计含反思教学内容:人教版六年级下册第68、69页,例1、例2。
教学目标:1.知识与能力:使学生经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题;通过操作、观察、比较、推理等数学活动,建立数学模型,发现规律;渗透“模型”思想。
2.过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.情感、态度与价值观:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教具、学具准备:课件、扑克牌、每个小组都准备有相应数量的笔筒、铅笔、课堂体验单。
教学过程:(一)游戏导入:1.老师和大家玩一个扑克牌的游戏。
需要5名同学配合,谁愿意?向同学介绍:这是一幅扑克牌,取出大、小王,还剩几张?请你们任意抽1张。
我判断,这5张牌中至少有2张是同花色的。
请亮牌,几张同花色的?(二)动手操作,感知模型1.出示:丁丁说:“把4支铅笔放入3个杯子中,不管怎么放,总有一个杯子里至少有2支铅笔”,他说得对吗?请说明理由。
2.引导学生找出关键词“总有”、“至少”“一个”。
3.引导学生理解“总有”、“至少”的意思。
4. 分小组探究,介绍活动要求:5.全班交流,小组展示交流自己的研究结果。
(1)方法1:摆学具的方法。
(2)方法2:画图法。
(3)方法3:数的分解。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)(4)师:像这样,把所有的摆法都一一列举出来,最后得出结论,这种方法叫枚举法。
(5)引导学生用假设法解决。
(6)引导学生列式:4÷3=1(支)……1(支)至少数1+1=2(支)师:①先在每个杯子里放一支,也就是平均分,这种方法叫假设法。
鸽巢问题(例 1、例 2)

教师活动
设计关键问题,促成学生合作、探究新知识的过程:
1.教学例1。
把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有 2 支铅笔。
为什么?
让学生读题,然后小组合作讨论分法。
请学生说一说他们的分法和结论。
引导学生说原因。
2.教学例2。
把7本书放进 3个抽屉,不管怎么放,总合作探究,交流展示的过程:
1.
小组合作,分一分小棒,讨论问题。
交流分法
交流原因:如果每个盒子里放
笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下
不管放在哪个盒子里,一定会出现
有一个盒子里至少有2支铅笔”
小组合作学习。
讨论分法。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。
设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《鸽巢问题(一)》教学设计
一、教学目标
(一)知识与技能
通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法
结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观
在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
二、教学重难点
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商+1或商”。
三、教学准备
多媒体课件。
四、教学过程
(一)游戏引入
出示一副扑克牌。
教师:你们认识他是谁吗?对,他是我国非常出色的魔术师刘谦。
你们是不是很崇拜他啊?其实老师也会玩魔术,你们想不想见证一下?老师这里一副扑克牌,里面有哪几种花色呢?现在老师把大小王拿出来,还剩52张。
下面请5位同学上来,每人随意抽一张,不要让别人看到。
(学生上台抽牌)现在老师断定:至少有2张牌是同花色的。
同学们相信吗?见证奇迹的时刻到了,请亮牌。
亮牌,统计。
师:是不是至少有两张牌是同花色的呢?是不是很神奇?掌声送给老师。
你们想不想知道为什么呢?其实,这个小魔术里隐藏着一个数学原理。
今天我们就来一起研究这个数学原理:鸽巢问题。
(板书课题)
(二)探索新知
(一).教学例1。
(1)列举法:
教师:请看例一:把4支铅笔放到3个笔筒里,有哪些放法?总有一个笔筒至少放几支铅笔?请同学们小组合作,用桌上的学具按照温馨提示动手分一分。
先请一位同学读一下温馨提示。
1、所有的比必须放进笔筒里,不考虑笔筒的顺序,只考虑笔筒内比的支数。
2、怎样放才能做到不重复、不遗漏?
3、用杯子代替笔筒,小组合作,组长负责记录结果。
4、合作完成,请坐好示意。
师:你的读的真响亮。
同学们都明确要求了吗?活动开始。
教师:哪个小组汇报一下结果?
预设:(1,1, 2)(2,2,0)(3,1,0)(4,0,0)
师板书学生汇报情况。
教师:还有不同分法吗?
预设:可能会出现(2,1,1)的情况,要根据温馨提示,强调这是重复的。
师:我们看这个小组在分的过程中把一个笔筒里的笔数按照从小到大有序的分配,这样个以做到不重复不遗漏。
非常棒!掌声送给他们小组。
刚才我们把这四种分法一一列举出来,这种方法叫列举法(板书列举法)
师:“不管怎么放,总有一个笔筒里至少有几支铅笔呢”?
预设:2支
教师:老师有疑问了:“总有”是什么意思?
预设:一定有。
教师:这句话里“至少有2支”是什么意思?
预设:最少有2支,不少于2支,包括2支及2支以上。
教师:我们找找是不是总有一个笔筒里至少有2支铅笔呢?我们一起来看看。
(把列举法中的至少两支的情况用红粉笔标注出来)所以不管怎么放,总有一个笔筒里至少有2支铅笔”。
(2)平均分法:
教师:刚才我们是通过列举法得出这一结论的,如果铅笔数很多的话这种方法还方便吗?能不能找到一种更为直接的方法得到这个结论呢?
生汇报:如果每个笔筒里放1支铅笔,最多放3支,剩下的1支不管放进哪一个笔筒里,总有一个笔筒里至少有2支铅笔。
教师进行总结:他的想法你听明白了吗?再找个同学说一说。
同桌相互说一说。
每个笔筒各
放一支其实是怎样分?也就是首先通过平均分每个笔筒各放一支,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
这就是平均分的方法。
(板书:平均分)你能用一道算式来表示这个过程吗?
生:4÷3=1……1 1+1=2
找生回答并引导学生说出原因列出算式。
教师:如果把4只铅笔放进3个笔筒中,总有一个笔筒至少放进2支笔,把6支铅笔放到5个笔筒里呢?把7支铅笔放到6个笔筒里呢?把100支铅笔放入99个笔筒里呢?……仔细观察,你发现了什么?
(引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。
)教师:上面各个问题,我们都采用了什么方法?引导学生通过观察比较得出“平均分”的方法。
(3)一般情况
教师:刚才我们研究的是铅笔数比笔筒数多1,那么总有一个笔筒至少放进2支笔。
那如果是多2,多3,或是多的更多呢?我们一起来研究第二种情况:5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了几只鸽子?为什么?。
预设:5÷3=1…… 2 1+1=2
教师总结:先通过平均分,每个笼子飞进一只鸽子,为了保证至少数,剩下的只鸽子也要尽可能的平均分,要分别飞进不同的笼子里,所以总有一个鸽笼至少飞进了2只鸽子。
教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?(引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。
总有一种花色,至少有2人选”。
)
(二)教学例2。
(1)课件出示例2。
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进几本书?为什么?
引导学生得出仿照例1“平均分”的方法得出“先平均分每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。
2+1=3”
(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?
教师根据学生的回答板书:7÷3=2……1 2+1=3,不管怎么放,总有一个抽屉里至少放进3本;8÷3=2……2 ,2+1=3不管怎么放,总有一个抽屉里至少放进3本;10÷3=3……1 3+1=4不管怎么放,总有一个抽屉里至少放进4本。
教师:现在我们一起把今天学的这些一些来归纳一下:像铅笔数、鸽子数、书本数这些我们可以统称为物体数,笔筒数、鸽笼数看做抽屉数,(物体数>抽屉数)物体数÷抽屉数=商……余数,仔细观察这些数据,想一想至少数应该等于什么?
引导学生得出“至少数=商数+1”。
思考:当有余数的时候,至少数=商+1,那没有余数的时候呢?
预设:没有余数说明可以平均分,至少数=商
教师总结:至少数=商或商+1(板书)
同学们把我们今天这些知识所用的原理建立了数学模型,说明同学们的总结和概括能力是非常强的,我们把掌声送给自己!
我们今天解决鸽巢问题所运用的原理叫“鸽巢原理”,“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
师:我们对抽屉原理已经建立了数学模型,那利用抽屉原理解决问题的关键在哪里呢?
预设:弄清楚把谁看成物体,把谁看成抽屉。
师:现在我们就利用建立的抽屉原理的模型去解决我们身边的数学问题吧。
(三)巩固练习
1.5个人坐4把椅子,总有一把椅子上至少坐几人。
为什么?
2.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了几只鸽子?为什么?
3、随意找25位同学,他们中至少有几个人的属相相同?为什么?
那现在你能来解释老师开始的魔术,为什么5个人随意抽取一张牌,至少2个人的牌花色相同吗?
(四)课堂小结
教师:通过练习,老师发现同学们对这节课的知识掌握的非常好,你能把今天的收获和大家分享一下吗?
我们学会了简单的鸽巢问题。
可以用列举方法来帮助我们分析,也可以用平均分的方法来解答。
这节课老师和大家在一起学的非常开心,希望同学们可以利用我们今天学的知识,去解决身边的实际问题。
这节课我们就上到这里,下课。