基于FPGA的数字频率计设计毕业论文

合集下载

基于fpga控制的数字频率计设计(含程序、仿真图)大学毕设论文

基于fpga控制的数字频率计设计(含程序、仿真图)大学毕设论文

目录1 引言 (1)1.1 课题背景 (1)1.2 课题意义 (2)1.3 国内外现状及发展趋势 (2)1.4 系统开发环境及技术分析 (3)1.4.1 FPGA开发简介 (3)1.4.2 VHDL特点及设计方法 (5)2 需求分析 (7)2.1 系统基本要求 (7)2.2 系统结构 (7)3 系统设计 (8)3.1 总体方案比较 (8)3.2 程序流程图 (10)3.3 系统模块设计 (11)3.3.1 整形电路 (11)3.3.2 计数器 (12)3.3.3分频器 (14)3.3.4锁存器 (16)3.3.5控制器 (19)3.3.6 显示器 (22)4 系统仿真及测试 (23)结论 (29)致谢 (30)参考文献 (31)附录1 (32)附录2 (35)1 引言1.1 课题背景进入信息时代以来,微电子技术和计算机技术飞速发展, 各种电子测量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化, 特别是DSP技术诞生以后,电子测量技术更是迈进了一个全新的时代[1]。

近年来,DSP逐渐成为各种电子器件的基础器件,逐渐成为21世纪最具发展潜力的朝阳行业,甚至被誉为信息化数字化时代革命旗手。

在电子技术领域内,频率是一个最基本的参数,频率与其它许多电参量的测量方案、测量结果都有十分密切的关系。

如时间,速度等都涉及到或本身可转化为频率的测量。

因此,频率的测量就显得更为重要。

而且,目前在电子测量中,频率的测量精确度是最高的.现在市场上有各种多功能,高精度,高频率的数字频率计,但价格不菲。

而在实际工程中,不是对所有信号的频率测量都要求达到非常高的精度。

因此,本文提出了一种能满足一般测量精度要求,但成本低廉的数字频率计的设计方案。

在电子工程中、资源勘探、仪器仪表等相关应用中,频率计是工程技术人员必不可少的测量工具。

数字频率计是计算机,通信设备,音频视频等科研生产领域不可缺少的车辆仪器,采用VHDL语言编程设计实现的数字频率计,除被测信号的整形部分,键输入部分和数码显示部分以外其余全在一片FPGA芯片上实现,整个设计过程变得十分透明,快捷和方便,特别是对于各层次电路系统的工作时序的了解显得尤为准确而且具有灵活的现场可更改性。

计算机毕业论文_基于FPGA的等精度频率计的设计与实现

计算机毕业论文_基于FPGA的等精度频率计的设计与实现

目录前言...............................................................1 第一章 FPGA及Verilog HDL..........................................2 1.1 FPGA简介.....................................................2 1.2 Verilog HDL 概述.............................................2 第二章数字频率计的设计原理........................................3 2.1 设计要求.....................................................3 2.2 频率测量.....................................................3 2.3.系统的硬件框架设计..............................................4 2.4系统设计与方案论证............................................5 第三章数字频率计的设计............................................8 3.1系统设计顶层电路原理图........................................8 3.2频率计的VHDL设计.............................................9 第四章软件的测试...............................................15 4.1测试的环境——MAX+plusII.....................................15 4.2调试和器件编程...............................................15 4.3频率测试.....................................................16基于FPGA的等精度频率计的设计与实现摘要:本文详细介绍了一种基于FPGA的高精度频率计。

FPGA频率计设计毕业设计(论文)

FPGA频率计设计毕业设计(论文)

一、课程设计原理1、测频原理及误差分析本次课程设计采用直接测频法。

直接测频法就是在确定的闸门时间内,记录被测信号的脉冲个数。

这种方法的计数值也会产生最大为±1个脉冲误差。

进一步分析测量准确度。

设待测信号脉冲周期为T1,频率为F1,当闸门时间为T=1s 时,测量准确度为&=T1/T=1/F1。

由此可知直接测频法的测量准确度与信号的频率有关。

当待测信号频率较高时,测量准确度也较高,反之测量准确度也较低。

2、占空比测量原理占空比:占空比是指高电平在一个周期之内所占的时间比率。

方波的占空比为50%,占空比为0.5,说明正电平所占时间为0.5个周期。

在1S的闸门时间之内,只要我们利用50Mhz的时钟脉冲,对待测信号的高电平时间进行计数,得到一个num值。

最后num*20ns就是所求信号的占空比了。

二、系统的设计1、分频模块分频模块我们采用50Mhz的时钟频率产生待测的信号,和三个控制信号。

此程序要求将50Mhz分出1Mhz的频率,再产生1hz作为控制信号的标准输入时钟。

该模块产生的3个控制信号,分别为EN,LOAD,CLR。

CLR信号用于在每次测量开始时,对计数器进行复位,以清除上次测量的结果,该复位信号高电平有效。

EN为计数允许信号,在EN信号的上升沿时刻计数模块开始对输入信号的频率进行测量,在此1S时间里被测信号的脉冲数进行计数,即为信号的频率。

然后将值锁存,并送到数码管显示出来。

设置锁存器的好处是使显示的数据稳定,不会由于周期性的清零信号而不断闪烁。

在每一次测量开始时,都必须重新对计数器清0。

另外,也设计出另外一个进程process,产生同样地三个控制信号给占空比测量时提供使能,锁存和清零的能力。

部分程序如下:process(clk)beginif clk'event and clk = '1' thentemp1<=temp1+1;end if;end process;freq<=temp1(16); --381Hz=50Mhz/2^172、计数模块计数模块分为2个子模块。

基于fpga的频率计设计与实现本科毕设论文

基于fpga的频率计设计与实现本科毕设论文

唐山学院毕业设计设计题目:基于FPGA的数字频率计设计与实现系别:信息工程系班级:10应用电子技术(1)班*名:******师:***2013年6月10 日基于FPGA的数字频率计设计与实现摘要在电子设计领域,随着计算机技术、大规模集成电路技术、EDA(Electronics Design Automation)技术的发展和可编程逻辑器件的广泛应用,传统的自下而上的数字电路设计方法、工具、器件已远远落后于当今技术的发展。

基于EDA技术和硬件描述语言的自上而下的设计技术正在承担起越来越多的数字系统设计任务。

本课题的数字频率计设计,采用自上向下的设计方法。

本文首先综述了EDA 技术的概况,接着介绍硬件描述语言VHDL,可编程器件FPGA及频率测量的一般原理;然后介绍数字频率计的系统设计,频率计各系统模块的VHDL语言实现,最后利用QUARTUS Ⅱ集成开发环境进行编辑、综合、波形仿真,并下载到CPLD器件中,经实际电路测试,仿真和实验结果表明,此频率计具有较高的实用性和可靠性。

关键字:EDA FPGA 数字频率计VHDL语言Design and Implementation ofDigital Frequency Meter Based on FPGAAbstractIn the field of electronic design, with the development of computer technology, LSI technology, EDA (Electronics Design Automation)technology and wide application of programmable logic devices, the traditional bottom-up digital circuit design methods, tools, devices have far behind today's technology. The top-down design techniques based on EDA technology and hardware description language are taking on more and more digital system design task.The topic digital frequency meter design uses top-down design approach. First, this paper summarizes the overview of EDA technology, then it describes the hardware description language which is called VHDL, FPGA programmable device and the general principles of frequency measurement; then it introduces the system design of digital frequency meter, and the realization of frequency meter each system module VHDL. Finally using QUARTUSⅡ integrated development environment edits, synthesizes, and simulates, and download to the CPLD devices, by using the actual circuit testing, simulation and experimental results show that this frequency meter is high availability and reliability.Keywords:EDA; FPGA;digital frequency meter;VHDL language目录1 引言 (1)2 硬件描述语言(HDL) (2)2.1VHDL语言简介 (2)2.2 利用VHDL语言开发的优缺点 (3)3 电子设计自动化(EDA)发展概述 (4)3.1 EDA的简介 (4)3.2 EDA的发展史 (4)3.3基于EDA的FPGA/CPLD开发 (5)3.3.1 FPGA/CPLD的简介 (6)3.3.2 用FPGA/CPLD进行开发的优缺点 (7)4 频率计的测量及方案选择 (9)4.1 数字频率计工作原理概述 (9)4.2 测频原理及误差分析 (10)4.2.1常用测频方案 (10)4.2.2 等精度测频原理 (10)4.2.3误差分析 (11)5 数字频率计的系统设计与功能仿真 (13)5.1 系统的总体设计 (13)5.2 频率计模块 (14)5.2.1 测频控制模块 (14)5.2.2 锁存器模块 (15)5.2.3 十进制计数器模块 (16)5.3 显示模块 (17)5.3.1显示模块设计 (17)5.3.2译码器模块 (18)5.3.3四位二进制数与十六位二进制数转换的源程序 (19)5.3.4十六位二进制数与四位二进制数转换的源程序 (19)5.3.5四位二进制数与段码转换的源程序 (21)6 整形电路设计 (22)6.1 555定时器的工作原理 (22)6.2 施密特触发器 (23)6.2.1 电路结构 (23)6.2.2 工作原理 (23)6.3波形的整形 (24)7 软件测试及硬件下载 (25)7.1 QuartusII软件简介 (25)7.2 QuartusII的设计流程 (25)7.3 QuartusII软件的使用方法 (26)7.3.1 创建底层模块 (26)7.3.2 构建顶层模块 (30)7.4 下载及硬件实现 (32)8 结论 (34)谢辞 (35)参考文献 (36)附录Ⅰ频率计顶层文件 (38)附录Ⅱ源程序 (39)1引言21世纪人类将全面进入信息化社会,对微电子信息技术和微电子VLSI基础技术将不断提出更高的发展要求,微电子技术仍将继续是21世纪若干年代中最为重要的和最有活力的高科技领域之一。

基于FPGA的等精度频率计的设计毕业设计论文

基于FPGA的等精度频率计的设计毕业设计论文

毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。

论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。

论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。

本人完全了解大学有关保存,使用毕业论文的规定。

同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。

本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。

如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。

本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。

本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。

毕业设计 基于fpga的等精度数字频率计的设计

毕业设计 基于fpga的等精度数字频率计的设计

本科生毕业论文题目:基于fpga的等精度数字频率计的设计摘要在电子工程,资源勘探,仪器仪表等相关应用中,频率计是工程技术人员必不可少的测量工具。

频率测量也是电子测量技术中最基本最常见的测量之一。

不少物理量的测量,如转速、振动频率等的测量都涉及到或可以转化为频率的测量。

基于传统测频原理的频率计的测量精度会随被测信号频率的下降而降低。

本文介绍了一种基于FPGA的等精度数字频率计,它不但具有较高的测量精度,而且在整个测量区域能保持恒定的测量精度。

文章首先介绍了硬件描述语言(HDL)的发展,以VHDL为核心,说明了利用VHDL语言进行设计的步骤。

然后介绍FPGA器件的基本结构和开发流程,接着阐述等精度数字频率计的工作原理以及利用VHDL语言实现数字频率计的具体做法,重点是利用BCD码减法实现的BCD码除法器的设计,最后还利用modelsim软件对其进行了仿真,具体分析验证了此设计的正确性。

关键词:FPGA VHDL 等精度BCD码除法AbstractCymometer is a necessary measure tool for technical engineers in electronic engineering , resource exploration and apparatus using . frequency mesure is one of the most essential and the most common mesure of electronic mesure technology . many physical quantities’ mesure , such as rotate speed , vibration frequency’s mesure , is related with or can be transformed into frequency mesure.The precision of cymometer based on traditional frequency-testing theory will decrese when the measured frequency becomes lower. this article introduces a cymometer of same-precision based on FPGA. The cymometer not only has high precision, but also its precision doesn’t decrese when the measured frequency becomes lower.This article first introduces the development of HDL , focusing on VHDL , present the step of design of VHDL . then it introduces the basic structure and the develop flow of FPGA device . in the end , it introduces the theory of cymometer and the specific implement of cymometer based on VHDL , emphasizing the theory of implementing BCD division. the function simulation and logic synthesis also come out, showing the correction of the design .Keywords: FPGA VHDL same-precision BCD division目录第一章前言............................................................................................................... 错误!未定义书签。

基于FPGA数字频率计的设计(毕设1)

基于FPGA数字频率计的设计(毕设1)

摘要近年来,随着科学技术的迅猛发展,人们生活水平以及物质水平的逐步提高,对电子产品的要求也越来越高,各行各业的竞争也逐渐激烈。

其中FPGA技术也取得了很大的成就!FPGA是现场可编程门阵列的简称,FPGA 的应用领域最初为通信领域,但目前,随着信息产业和微电子技术的发展,可编程逻辑嵌入式系统设计技术已经成为信息产业最热门的技术之一,应用范围遍及航空航天、医疗、通讯、网络通讯、安防、广播、汽车电子、工业、消费类市场、测量测试等多个热门领域。

并随着工艺的进步和技术的发展,向更多、更广泛的应用领域扩展。

越来越多的设计也开始以ASIC转向FPGA,FPGA正以各种电子产品的形式进入了我们日常生活的各个角落。

在学习一门技术之前我们往往从它的编程语言开始,如同学习单片机一样,我们从C语言开始入门,当掌握了C语言之后,开发单片机应用程序也就不是什么难事了。

学习FPGA也是如此,FPGA的编程语言有两种:VHDL 和Verilog。

作为在校大学生,我们现在学习了VHDL语言,通过两年的学习,我们掌握了VHDL各方面的技术要点,已能熟练运用到编程中去,其运用起来也很方便,能灵活实现各种电路功能。

此外还锻炼了我们良好的逻辑思维,因此在做FPGA数字频率的设计必须对VHDL语言有良好的掌握。

本文针对FPGA数字频率计的功能要求,从硬、软件两个方面对其阐述,重点对其软、硬件进行开发设计。

关键词:集成电路编辑语言特定功能目录摘要 (I)目录............................................................................................................................ I I 第一章绪论.. (4)1.1研究课题的背景 (4)1.2相关开发技术 (4)第二章对FPGA数字频率计的制作规划 (8)2.1问题引入 (8)2.2设计目的 (8)2.3设计要求 (8)2.4所需仪器仪表 (8)2.5设计内容、方法与步骤 (8)第三章 FPGA数字频率计的设计分析 (11)2.1设计要求 (11)2.2模块及模块的功能 (11)第四章 FPGA多周期同步测频原理 (18)4.1多周期同步测频法原理 (18)4.2设计实现 (19)4.3FPGA程序设计 (20)4.1DSP程序设计 (21)第五章基于FPGA的同步测周期高精度数字频率计的设计 (22)5.1同步测周期频率计的原理 (22)5.2数字频率计的VHDL实现 (22)5.3频率计的仿真验证 (23)第六章总结 (24)致谢 (25)参考文献 (26)第一章绪论1.1 研究课题的背景在许多领域中广泛应用的嵌入式计算系统(简称为嵌入式系统),是在更大的电子器件中嵌入的重复完成特定功能的计算系统,它经常不被器件的使用者所识别,但在各种常用的电子器件中能够找到这些嵌入式系统。

学位论文—基于fpga的数字频率计的设计论文

学位论文—基于fpga的数字频率计的设计论文

基于FPGA 的数字频率计的设计2004级电子信息工程专业 何亚军 指导教师 曾技摘要 随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,在电子工程、资源勘探等相关应用上,频率计是工程技术人员必不可少的测量工具。

因此,测频原理及方法的研究正受到越来越多的关注。

目前许多高精度的数字频率计都采用单片机加上外部的高速计数器来实现。

但难以提高计数器的工作频率,而且测量的精度不高。

因此采用可编程逻辑器件(FPGA)来实现数字频率计。

应用VHDL 进行自顶向下的设计,即使用VHDL 模型在所有综合级别上对硬件设计进行说明、建模和仿真测试。

通过逻辑综合后,把适配生成的配置文件,通过编程器向FPGA\CPLD 进行下载。

最后进行硬件调试与验证。

本设计的系统除了脉冲整形、显示部分的电路不在可编程电路之中,其余的电路都集成在可编程逻辑器件中。

本设计具有测频范围宽、精度高、可靠性高等优点。

符合现代EDA 设计的要求。

关键词 频率,可编程逻辑器件,电子设计自动化,硬件描述语言1 绪论在电子技术领域内,频率与电压一样,也是一个基本参数。

随着现代科技的发展,时间及频率计量的意义已日益明显。

例如,在卫星发射、导弹跟踪、飞机导航、潜艇定位、大地测量、天文观测、邮电通信、广播电视、交通运输、科学研究、生产及生活等各个方面,都需要对时间及频率的计量,也都离不开对时间及频率的计量。

因此,测频原理及方法的研究正受到越来越多的关注。

目前多用电子计数器测频,它具有测量精度高、速度快、自动化程度高、操作简便、直接显示数字等特点,尤其是与微处理器相结合,实现了程控化和智能化,构成智能化计数器。

目前,电子计数器几乎取代了模拟式测量仪器。

而电子计数器测频法又有两种实现方法:直接计数测频法和等精度测频法。

直接计数测频法只是简单地记下单位时间内周期信号的重复次数,其计数值会有1±个计数误差。

此方法的测量精度主要取决于基准时间和计数器的计数误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉轻工大学毕业设计外文参考文献译文本2013届原文出处:from Vin Skahill.VHDL for Programmable Logic page 76-88毕业设计题目:基于FPGA的数字频率计设计院(系):电气与电子工程学院专业名称:电子信息科学与技术学生姓名:学生学号:指导教师:Introduction of digital frequency meterDigital Frequency is an indispensable instrument of communications equipment, audio and video, and other areas of scientific research and production . In addition to the plastic part of the measured signal, and digital key for a part of the show, all the digital frequency using Verilog HDL designed and implemented achieve in an FPGA chip. The entire system is very lean, flexible and have a modification of the scene.1 、And other precision measuring frequency PrincipleFrequency measurement methods can be divided into two kinds:(1) direct measurement method, that is, at a certain time measurement gate measured pulse signal number.(2) indirect measurements, such as the cycle frequency measurement, VF conversion law. Frequency Measurement indirect measurement method applies only to low-frequency signals.Based on the principles of traditional frequency measurement of the frequency of measurement accuracy will be measured with the decline in signal frequency decreases in the more practical limitations, such as the accuracy and frequency of measurement not only has high accuracy, but also in the whole frequency region to maintain constant test accuracy. The main method of measurement frequency measurement Preferences gated signal GATE issued by the MCU, GATE time width on the frequency measurement accuracy of less impact, in the larger context of choice, as long as the FPGA in 32 of 100 in the counter b M Signals are not overflow line, in accordance with the theoretical calculation GATE time can be greater than the width Tc 42.94 s, but due to the single-chip microcomputer data processing capacity constraints, the actual width of less time, generally in the range of between 0.1 s choice, that is, high-frequency, shorter gate;, low gate longer. This time gate width Tc based on the size of the measured frequency automatically adjust frequency measurement in order to achieve the automatic conversion range, and expanded the range of frequency measurement; realization of the entire scope of measurement accuracy, reduce the low-frequency measurement error.The design of the main methods of measuring the frequency measurement and control block diagram as shown in Figure 1. Figure 1 Preferences gated signal GA TE issued by the MCU, GA TE time width of less frequency measurement accuracy, in the larger context of choice, as long as the FPGA in 32 of 100 in the counter b Msignal Overflow will do, according to theoretical calculations GA TE time width T c can be greater than 42194 s, but due to the single-chip microcomputer data processing capacity constraints, the actual width of less time, generally 10 to 011 s in the inter-choice, that is, high - band, the gate time shorter, low gate longer. This time gate width based on the measured T c automatically adjust the size of frequency measurement frequency range to achieve the automatic conversion, and expanded the range of frequency measurement; realization of the entire scope of measurement accuracy, reduce the low-frequency measurement error.2、Frequency of achievingFrequency Measurement accuracy of such method. Can be simplified as shown in the diagram. Map CNT1 and CNT2 two controllable counter, standard frequency (f) signal from the CN F1 clock input cI K input, the signal measured after the plastic (f) CNT2 clock input cI K input. Each counter in the CEN input as enable end, used to control the counter count. When the gate signal is HIGH Preferences (Preferences start time). Signal measured by the rising edge of the D flip-flop input, launched at the same time with two counts of juice; Similarly, when preferences for low gate signal (the end of Preferences time), the rising edge of the measured signals through D Trigger output end of the counter to stop counting.3、And the median frequency of relevant indicatorsMedian: At the same time the figures show that up to the median. The usual eight-count frequency of only several hundred yuan can buy. For high precision measurements, nine just beginning, the middle is 11, 13 can be relatively high.Overflow of:-the ability to promote itself to overflow the equivalent of the total. Some of the frequency with overflow function, which is the highest overflow does not display only shows that the bit behind, in order to achieve the purpose of the median. Here is the estimated value of individual indicators.Speed: namely, the number of per second. With the high number of measurement particularly slow but also lose its significance. Counting of the usual eight frequency measurement 10 MHz signals, one second gate will be 10000000 Hz, which is actually seven (equivalent to the median number of common admission after the value), to obtain eight needed 10 seconds gate ; to obtain nine needed 100 seconds gate, followed by analogy, shows that even the permission of 11 need 10,000 second measurement time. But in any case, or seven per second. Therefore, to fast must be a few high speed.Distinction: it is like a minimum voltage meter can tell how much voltage indicators are similar, the smaller the better, unit ps (picoseconds). 1000ps = 1ns. Suppose you use the frequency of 1 ns to differentiate between an e-12 error, we need a ns/1e-12 = 1000 seconds. Also assume that you have a frequency resolution of 100 ps, the measurement time can be shortened by 10 times for 100 seconds, or can be in the same 1000 second measured under an e-14 Error.4、Time and Frequency MeasurementCompared to traditional methods of circuit design, EDA technology uses VHDL language to describe circuit system, including circuit structure, behavior, function and interface logic. Verilog HDL description of a multi-level system hardware functions, and support top-down design features. Designers can not understand the hardware structure. Start from the system design, on the top floor of a system block diagram of the structure and design, in a diagram with Ver-ilog HDL acts on the circuit description and simulation and error correction, and then the system level verification, and finally use logic synthesis optimization tool to create specific gate-level logic circuit netlist, download to the specific FPGA device to in order to achieve FPGA design.Time and frequency measurement is an important area of electronic measurement. Frequency and time measurement has been receiving increasing attention, length, voltage, and other parameters can be transformed into a frequency measurement and related technologies to determine. Based on the more traditional method of synchronization cycle, and has proposed a multi-cycle synchronization and quantitative method of measuring delay frequency method.The most simple method of measuring the frequency of direct frequency measurement method. Direct Frequency Measurement is scheduled to enter the gate signal pulse, the adoption of the necessary counting circuit, the number of pulses are filled to calculate the frequency or analyte signal cycle. In the direct frequency measurement on the basis of the development of multi-cycle synchronous measurement method, in the current frequency monitoring system to be more widely used. Multi-cycle synchronization frequency measurement technology actual gate time is not fixed value, but the measured signals in the whole cycle times, and the measured signal synchronization, thereby removing the measured signal count on when the word ± 1 error, measurement accuracy greatly improved, and reached in the entire spectrum of measurement, such as precision measurement.In the time-frequency measurement method, the multi-cycle synchronization is a high precision, but still unresolved ± a word error, mainly because of the actual gate edge and standard frequency synchronization is not filling pulse edge Tx=N0T0-△t2+△t1, if accurately measured short interval Δ t1 and Δ t2, will be able to accurately measure time intervals Tx, eliminating ± a word counting error, so as to further enhance accuracy.To measure a short time interval Δ t1 and Δ t2, commonly used analog interpolation method with the cursor or more combined cycle synchronization, although accuracy is greatly improved, but eventually failed to resolve ± a word error this fundamental issue, but these methods equipment complex and not conducive to the promotion.To obtain high precision, fast response time, simple structure and the frequency and time measurement method is relatively difficult.Judging from the structure as simple as possible at the same time take into account the point of view of accuracy, multi-cycle synchronization and delay based on the quantitative methods in a short period of time interval measurement, achieved within the scope of broadband, such as high-resolution measurement accuracy.Quantified by measuring short time intervals DelayPhotoelectric signal can be in a certain stability in the medium of rapid spread, and in different media have different delay. By signals generated by the delay to quantify, and gave a short period of time interval measurement.The basic principle is that "delay serial, parallel count", and different from the traditional counter serial number, that is, to signal through a series of delay unit, the delay unit on the delay stability, under the control of the computer Delay on the state of high-speed acquisition and data processing, for a short period of time to achieve accurate measurement interval.Delay quantitative thinking depend on the realization of the delay stability delay unit, the unit depends on the resolution of the delay time delay element.Delay device as a unit can be passive conduit, or other active devices gate circuit. Among them, Traverse shorter delay time (nearly the speed of light transmission delay), the gate delay time longer. Taking into account delays can be predictive ability final choice of the CPLD devices, the realization of the short time interval measurement.Will be the beginning of a short time interval signal sent delay in thetransmission chain, when the advent of the end of signal, this signal delay in the delay in the chain latch state, read through the CPU, the judge signal a delay unit on the few short-term time interval can be the size of the unit decided to delay resolution of the unit delay time.Generally speaking, in order to measure both short interval, the use of two modules delay and latches, but in reality, given the time software gate large enough to allow completion from the number of CPU operation, which can be measured in the time int erval taken before the end of a short period of time at Δ t1 corresponding delay the number of units through the control signals must be used only a delay and latches units, it saves CPLD internal resources. Synchronization and multi-cycle latency to quantify the method of combining The formula is:T=n0t0+n1t1-n2t1On, n0 for the filling pulse of value; t0 for filling pulse cycle, that is 100 ns; n1 for a short period of time at Δ t1 corresponding delay the number of modules; n2 for a short period of time at Δ t2 corresponding delay unit Number; t1 quantify delay devices for the delay delay unit volume (4.3 ns). In this way, using multi-cycle synchronization and realized the gate and measured signal synchronization; Delay of using quantitative measurement of the original measured not by the two short intervals, to accurately measure the size of the actual gate, it raised frequency measurement accuracy.The frequency synthesizer output frequency signal can only be transferred to the minimum 10 Hz, XDU-17 as a standard of measurement can be calculated prototype frequency measurement accuracy.For example, the measured signal is measured at 15.000010 MHz MHz signal to 5.00001002, from the calculation can be seen above, the resolution of the prototype has reached ns order of magnitude below from the perspective of theoretical analysis to illustrate this point.It has been anal yzed,multi-cycle synchronization frequency measurement, the measurement uncertainty:When the input f0 10 MHz, 1 s gate time, the uncertainty of measurement of ±1×10-7/s. When the measurement and quantification of delay circuit with short intervals combined, the uncertainty of measurement can be derived from the following.In the use of cycle synchronization, multi-analyte Tx for the cycle value of T0time base for the introduction of the cycle.Tx= NT0+△t1-△t2Delay circuit and quantitative combined:Tx= NT0+(N1-N2)td±δTxHere, δTx not for the accuracy of the measurement.On the decline of the share: δTx≤±2tdFrom the details of the measuring accuracy of this method depends on the td, and its direct impact on the stability and size of the uncertainty of measurement. Therefore, the application of methods, counters can be achieved within the entire frequency range, such as the accuracy of measurement, and measurement accuracy is significantly improved, measuring improvement in resolution to 4.3 ns, and the elimination of the word ± a theoretical error, the accuracy is increased by 20 times.CONCLUSION This paper presents a new method of measuring frequency. Based on the frequency of this method of digital integrated circuit in a CPLD, greatly reduced the volume of the entire apparatus, improved reliability, and a high-resolution measurements.5 、Frequency of VHDL DesignALTERA use of the FPGA chip EPF10K10 companies, the use of VHDL programming language design accuracy of frequency, given the core course. ISPEXPER simulation, design verification is successful, to achieve the desired results. Compared to the traditional frequency of FPGA simplify the circuit board design. Increased system design and the realization of reliability, frequency measurement range of up to 100 MHz and achieve a digital system hardware and software, which is digital logic design the new trend.The design uses the AL TERA EPF10K FPGA chip, the chip pin the delay of 5 ns, frequency of 200 MHz,the standardization of application VHDL hardware description language has a very rich data types, the structure of the model of a complex digital system logic design and computer simulation, and gradually improve after the automatic generation integrated to meet the requirements of the circuit structure of the digital logic can be realized, then can be downloaded to programmable logic devices, to complete design tasks.数字频率计的介绍数字频率计是通信设备、音、视频等科研生产领域不可缺少的测量仪器。

相关文档
最新文档