机械优化设计

合集下载

机械优化设计的知识点

机械优化设计的知识点

机械优化设计的知识点机械优化设计是指通过科学的方法和技术手段对机械产品进行结构、性能、工艺等方面的改进和优化,以提高其性能、降低成本、提高可靠性和可维修性等指标,从而满足客户要求和市场竞争的需求。

在机械优化设计过程中,有一些重要的知识点需要我们掌握和运用。

一、需求分析和目标设定机械优化设计的第一步是进行需求分析和目标设定。

在此阶段,我们需要了解用户的需求和期望,明确产品所需的性能指标,例如负载能力、精度要求、速度要求等。

同时,我们还需要考虑市场竞争和成本限制等问题,为优化设计制定明确的目标。

二、材料选择和参数优化在机械优化设计中,材料的选择对产品的性能和成本有着重要影响。

我们需要根据产品的使用环境和要求选择合适的材料,并进行参数优化。

例如,对于需要高强度和轻量化的机械产品,我们可以考虑采用新型材料如碳纤维复合材料;对于需要高耐磨性和耐腐蚀的机械零部件,我们可以选择使用合适的表面涂层技术。

三、结构优化和拓扑优化结构优化和拓扑优化是机械优化设计中常用的方法。

结构优化是指通过调整机械产品的结构参数,如尺寸、形状、布局等,以满足性能和强度等要求。

而拓扑优化则是通过数学模型和计算方法,对机械结构进行优化,以获得最佳的设计方案。

这些优化方法可以显著提高机械产品的性能和效率。

四、仿真和验证在机械优化设计过程中,仿真和验证是非常重要的环节。

通过使用计算机辅助工程(CAE)软件和虚拟模拟技术,我们可以对机械产品的性能进行预测和评估,发现潜在的问题并进行改进。

同时,我们还需要进行实物验证和测试,以确保产品设计的可靠性和稳定性。

五、成本控制和可维修性设计在机械优化设计中,成本控制是一个重要的考量因素。

我们需要在保证产品性能的前提下,尽量降低成本。

对于大批量生产的机械产品来说,可维修性设计也是一个重要的要求。

合理的设计结构和选用易于维修和更换的零部件,可以降低维护和维修成本,提高产品的可用性。

六、环境友好和可持续发展在现代社会,对环境友好和可持续发展的要求越来越高。

机械优化设计

机械优化设计

机械优化设计一、共轭梯度法描述1、原理:梯度法在迭代点原理极小点的迭代开始阶段,收敛速度较快,当迭代点接近极小点时,步长变得很小,收敛速度变慢,而沿共轭方向搜索具有二次收敛性。

因此,可以将梯度法和共轭方向法结合起来,每一轮搜索的第一步沿负梯度方向搜索,后续各步沿上一步的共轭方向搜索,每一步搜索n 步,即为共轭梯度法,其搜索线路如图所示。

2、搜索方向(1)第一步的搜索方向--------负梯度方向第一步的搜到方向与最速下降法相同,为负梯度方向,即d k=−∇F(x k)=−g k沿负梯度方向,从x k出发找到x k+1。

(2)以后各步的搜索方向--------共轭方向第二步及以后各步的搜索方向为上一步搜索方向的共轭方向,即d k+1=−∇F(x k+1)+β∙d k=−g k+1+β∙d k上式表示,以上一步搜索方向的一部分与当前搜索出发点x(k+1)的负梯度方向的矢量相加,合成新的搜索方向------d k的共轭方二、共轭梯度法的算法①任选初始点x0,给定收敛精度ε和维数n。

②令k←0,求迭代初始点x0的梯度g k;g k=∇F(x k)取第一次搜索的方向d0为初始点的负梯度,即d k=−g k。

③进行一维搜索,求最佳步长αk并求出新点min f(x k+αk d k)→αkx k+1=x k+αk d k④计算x k+1点的梯度g k+1=∇F(x k+1)⑤收敛检查满足条件‖∇F(x k+1)‖<ε则:x∗=x k,计算结束。

否则,继续下一步。

⑥判断k+1是否等于n,若k+1=n,则令x0←x k+1,转步骤②;若k+1<n,则继续下一步。

⑦计算β=‖g k+1‖2‖g k‖2⑧确定下一步搜索方向d k+1=−g k+1+β∙d k 令: k←k+1,返回步骤③。

三、共轭梯度法程序图由以上计算过程可画出共轭梯度法的程序图,便于以后编写MATLAB程序或C语言四、 共轭梯度例题例:求下列目标函数f (x )=x 12+2x 22−4x 1−2x 1x 2的极小值及在极小值处的极小点。

机械优化设计

机械优化设计
1.设计变量的选择 2.目标函数的确定 3.约束条件的确定
三、数学模型的尺度变换
1.目标函数的尺度变换 2.设计变量的尺度变换 3.约束函数的规格化
三、数学模型的尺度变换
图8-1 目标函数尺度变换前后性态(等值线)的变化 a)变换前函数的等值线 b)变换后函数的等值线
第二节 机床主轴结构优化设计
第三节 圆柱齿轮减速器的优化设计
图8-4 二级减速的最大尺寸
二、二级圆柱齿轮减速器的优化设计
1.接触承载能力 2.设计变量的确定 3.目标函数的确定 4.约束条件的建立
三、2K-H(NGW)型行星齿轮减速器的优化设计
1.目标函数和设计变量的确定 2.约束条件的建立
三、2K-H(NGW)型行星齿轮减速器的优化设计
一、数学模型的建立
二、计算实例 三、进一步的考虑
图8-2 机床主轴变形简图
第三节 圆柱齿轮减速器的优化设计
(1)边界约束 如最小模数,不根切的最小齿数,螺旋角,变位系
数,齿宽系数的上、下界等的限制。 (2)性能约束 如接触强度、弯曲强度、总速比误差、过渡曲线不 发生干涉、重合度、齿顶厚等的限制。 一、单级圆柱齿轮减速器的优化设计 二、二级圆柱齿轮减速器的优化设计 三、2K-H(NGW)型行星齿轮减速器的优化设计
第七节 月生产计划的最优安排
一、常用优化方法程序的使用说明
1. 随机方向法RANDIR.for
2.复合形法(COMPLE· for)
(1)子程序名 (2)程序使用方法示例
二、 常用优化方法程序考核题
1.一维搜索方法程序考核题 2.无约束优化方法程序考核题 3.约束优化方法程序考核题
三、计算机实习建议
第一节 应 用 技 巧

机械优化设计

机械优化设计

机械优化设计1.机械优化设计基本思路1。

1优化问题概述在保证基本机械性能的基础上,借助计算机,应用一些精度较高的力学/ 数学规划方法进行分析计算,让某项机械设计在规定的各种设计限制条件下,优选设计参数,使某项或几项设计指标(外观、形状、结构、重量、成本、承载能力、动力特性等)获得最优值。

机械优化设计的过程:(l)分析设计变量,提出目标函数,确定约束条件,建立优化设计的数学模型;(2)选择适当的优化方法,编写优化程序;(3)准备必须的初始数据并上机计算,对计算机求得的结果进行必要的分析.优化方法的选择取决于数学模型的特点,如优化设计问题规模的大小、目标函数和约束函数的性态以及计算精度等,在选择各种可用的优化方法时,需要考虑的问题是优化方法本身的适应性和计算机执行该程序时所花费的时间和费用。

.一般认为,对于目标函数和约束函数均为显函数且设计变量个数不太多的问题,可选用罚函数法;对于只含有线性约束的非线性规划问题,可选用梯度投影法;对于函数易于求导的问题,可选用可行方向法;对于难以求导的问题则应选用直接法,如复合形法.1.2传统优化算法概述根据对约束条件处理的方式不同,可将传统的约束优化方法分为直接法和间接法两大类.直接法通常适用于只含不等式约束的优化问题,它是在可行域内直接搜索可行的最优点的优化方法,如复合形法、随机方向法、可行方向法和广义简约梯度法。

间接法是目前在机械优化设计中应用较为广泛的一种优化方法,其基本思路是将约束优化问题转化成一个或一系列无约束优化问题,再进行无约束优化计算,从而间接地搜索到原约束问题的最优解。

如惩罚函数法和增广拉格朗日乘子法。

1.2。

1直接法复合形法是一种求解约束优化问题的重要的直接解法,其基本思想是在n 维设计空间内构造以k 个可行点为顶点的超多面体,即复合形.对各个顶点所对应的目标函数值进行比较,将目标函数值最大的顶点,即最坏点去掉,然后按照一定的法则求出目标函数值有所下降的可行的新点,并以此点代替最坏点,构成新的复合形.如此重复,直至复合形缩小到一定的精度,即可停止迭代,获得最优解.随机方向法是一种原理很简单的直接解法,其基本思想是在可行域内任意选一初始点,然后利用随机数的概率特性产生若干个随机方向,并从中选出一个使目标函数值下降最快的随机方向作为搜索方向进行搜索.约束变尺度法是一种最先进的非线性规划计算方法,它将二次规划、线性近似、拉格朗日乘子、罚函数、变尺度以及不确定搜索这些方法有效地结合在一起,其基本思想是首先对优化问题产生拉格朗日函数,然后利用该函数在每个迭代点构造一个带有不等式约束条件的二次规划子问题,由于该子问题不易求解析解,所以只能借助于数值方法求解其极值,以每次迭代的二次规划子问题的极值解作为此次迭代的搜索方向,同时采用不精确一维搜索确定搜索步长因子,产生新的迭代点,经过一系列迭代后,最终逼近原问题的最优解。

机械优化设计方法

机械优化设计方法

机械优化设计方法
机械优化设计方法是指通过改变机械结构、优化参数以及采用新的优化算法等手段,使机械产品在设计阶段达到更高的性能和更低的成本。

常用的机械优化设计方法包括:
1. 数值优化方法:通过数学模型和计算机仿真技术,结合优化算法优化机械结构和参数。

常见的数值优化方法包括遗传算法、模拟退火算法、微粒群算法等。

2. 设计自动化方法:借助计算机辅助设计软件和优化算法,实现对机械结构的自动化设计和优化,从而提高设计效率和准确性。

3. 敏感性分析方法:通过对机械结构或参数进行敏感性分析,找出对系统性能影响最大的因素,然后对其进行优化,以达到整体性能的最优化。

4. 多目标优化方法:由于机械设计往往存在多个冲突的优化目标,如性能、重量、成本等,多目标优化方法可以帮助工程师在多个目标之间进行权衡和优化,得到一组最优解,以满足不同的需求。

5. 拓扑优化方法:通过拓扑学原理和优化算法,对机械结构进行优化设计,使得结构材料得到更合理的分布,从而达到降低重量、提高刚度和强度的目的。

总的来说,机械优化设计方法旨在通过优化机械结构和参数,以达到更好的性能、更低的成本和更高的可靠性。

采用合适的优化方法可以有效提高设计效率和准确性,推动机械产品的不断创新和提升。

机械优化设计方法

机械优化设计方法
2 1 2 2 1 2 2
2 F B 2 h2 得到m(h) y h
第一章 优化设计概述
第一节 人字架的优化设计
解析法:
dm 2 F d B 2 h 2 2 F B2 求导 ( ) (1 2 ) 0 dh y dh h y h 解得h* B 152 cm 76cm 2 2F 代入D表达式D* 6.43cm T y 4 FB
l
θ
第一章 优化设计概述
第三节 优化设计问题的数学模型
优化问题的几何解释: 无约束优化问题:目标函数的极小点就是等值面的中心; 等式约束优化问题:设计变量x的设计点必须在 所表示的面或线上,为起作用约束。 不等式约束优化问题:可行点 g ( x) 0
h( x) 0
优化设计问题的数学模型的三要素:设计变量、目 标函数和约束条件。
第一章 优化设计概述
第三节 优化设计问题的数学模型
设计变量:
在设计过程中进行选择并最终必须确定的各项独立参数, 称为设计变量。
设计变量向量:
x [ x1x2
xn ]T
设计常量:参数中凡是可以根据设计要求事先给定的,称为设计常量 。 设计变量:需要在设计过程中优选的参数,称为设计变量。 连续设计变量:有界连续变化的量。 离散设计变量:表示为离散量。
钢管壁厚T=0.25cm,
钢管材料的弹性模量E=2.1×105Mpa, 材料密度ρ=7.8×103kg/m3,
许用压应力σy= 420MPa。
求在钢管压应力σ不超过许用压应力σy 和失稳临界应力σe的条件下, 人字架的高h和钢管平均直径D,使钢管总质量m为最小。
第一章 优化设计概述
第一节 人字架的优化设计
绪论

机械优化设计方法-

机械优化设计方法-
其极小点在目标函数等值面的中心。
约束优化: 在可行域内对设计变量求目标函数 的极小点。 其极小点在可行域内或在可行域边界上。
第四节优化设计问题的基本解法
求解优化问题的方法:
解析法
数学模型复杂时不便求解
数值法
可以处理复杂函数及没有数学表达式 的优化设计问题
图1-11 寻求极值点的搜索过程
A TDh
钢管的临界应力 e
Fe A
2E T 2 D2
8 B2 h2
强度约束条件 x y 可以写成 1 F B2 h2 2 TDh y
稳定约束条件 x e 可以写成
1
F B2 h2 2 2E T 2 D2
TDh

,
,...
x1
x2
xn
沿d方向的方向向量
cos1
d
cos
2
...
cos
n

f d
x0
f
x 0 T
d
f x 0 T
cosf ,d
图2-5 梯度方向与等值面的关系
第二节 多元函数的泰勒展开
若目标函数f(x)处处存在一阶导数, 则极值点 的必要条件一阶偏导数等于零, 即
第二章 优化设计的数学基础
机械设计问题一般是非线性规划问题。
实质上是多元非线性函数的极小化问题, 因此, 机械优化设计是建立在多元函数的极值理论 基础上的。
机械优化设计问题分为:
无约束优化 无条件极值问题
约束优化
条件极值问题
第一节 多元函数的方向导数与梯度
一、方向导数
从多元函数的微分学得知,对于一个连续可
f x* 0
满足此条件仅表明该点为驻点, 不能肯定为极值 点, 即使为极值点, 也不能判断为极大点还是极 小点, 还得给出极值点的充分条件

机械优化设计经典实例

机械优化设计经典实例

机械优化设计经典实例机械优化设计是指通过对机械结构和工艺的改进,提高机械产品的性能和技术指标的一种设计方法。

机械优化设计可以在保持原产品功能和形式不变的前提下,提高产品的可靠性、工作效率、耐久性和经济性。

本文将介绍几个经典的机械优化设计实例。

第一个实例是汽车发动机的优化设计。

汽车发动机是汽车的核心部件,其性能的提升对汽车整体性能有着重要影响。

一种常见的汽车发动机优化设计方法是通过提高燃烧效率来提高功率和燃油经济性。

例如,通过优化进气和排气系统设计,改善燃烧室结构,提高燃烧效率和燃油的利用率。

此外,采用新材料和制造工艺,减轻发动机重量,提高动力性能和燃油经济性也是重要的优化方向。

第二个实例是飞机机翼的优化设计。

飞机机翼是飞机气动设计中的关键部件,直接影响飞机的飞行性能、起降性能和燃油经济性。

机翼的优化设计中,常采用的方法是通过减小机翼的阻力和提高升力来提高飞机性能。

例如,优化机翼的气动外形,减小阻力和气动失速的风险;采用新材料和结构设计,降低机翼重量,提高飞机的载重能力和燃油经济性;优化翼尖设计,减小湍流损失,提高升力系数。

第三个实例是电机的优化设计。

电机是广泛应用于各种机械设备和电子产品中的核心动力装置。

电机的性能优化设计可以通过提高效率、减小体积、降低噪音等方面来实现。

例如,采用优化电磁设计和轴承设计,减小电机的损耗和噪音,提高效率;通过采用新材料和工艺,减小电机的尺寸和重量,实现体积紧凑和轻量化设计。

总之,机械优化设计在提高机械产品性能和技术指标方面有着重要应用。

通过针对不同机械产品的特点和需求,优化设计可以提高机械产品的可靠性、工作效率、耐久性和经济性。

这些经典实例为我们提供了有效的设计思路和方法,帮助我们在实际设计中充分发挥机械优化设计的优势和潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一维搜索方法
摘要:在机械优化设计过程中将求解一维目标函数的极值点的数值迭代方法称之为一维搜索方法,在本质上可归结为单变量的函数的极小化问题。

虽然优化设计中的大部分问题是多维问题,但是一维优化方法是优化方法中最基本的方法,在数值迭代过程中都要进行一维搜索,因此,一维搜索方法在优化设计的研究中占据着无可替代的地位。

概括起来,可以将一维搜索方法分为两大类:一类是试探法,另一类是插值法。

关键字:优化设计一维搜索方法试探法插值法
引言
一维搜索方法是各种优化方法中最简单又最基本的方法,不仅用来解决一维目标函数的求优问题,也可以将多维优化问题转化为若干次一维优化问题来处理,同时多维优化问题每次迭代计算过程中,每前进一步都要应用一维寻优方法确定其最优步长。

一维搜索方法可分为两大类,一类称作试探法,有黄金分割法(0.618法)、裴波纳契(Fibonacci)法等;另一类称作插值法或函数逼近法,属于插值法一维搜索的有二次插值法、三次插值法等。

一维搜索的试探方法
在实际的计算当中,最常用的一维试探方法黄金分割法,即0.618法。

黄金分割法适用于[a ,b]区间上的任何单谷函数求极小值问题,因此,这种方法的适应面相当广。

黄金分割法是建立在区间消去法原理基础上的试探方法,即在搜索区间[a ,b]内适当插入两点α1,α2,并计算其函数值。

α1,α2将区间分成三部分。

利用单谷函数的性质,通过函数值大小的比较删去其中一段,是搜索区间得以缩短。

然后再在保留下来的区间上做同样的处理,如此迭代下去是搜索区间无限缩小,从而得到极小点的数值近似值。

黄金分割法要求插入点α1,α2的位置相对区间[a ,b]两端点具有对称性,即
α1=b-λ(b-a)
α2=a+λ(b-a)
其中,λ为待定常数。

黄金分割法的搜索过程如下:
1)给出初始搜索区间[a ,b]及收敛精度,将λ赋以0.618;
2)按坐标点计算上公式计算α1和α2,并计算其对应的函数值;
3)根据区间消去法原理缩短搜索区间。

为了能用原来的坐标点计算公式,进行区间名称的代换,并在保留区间中计算一个新的试验点及其函数值。

4)检查区间是否缩短到足够小和函数值收敛到足够近,如果条件不满足则返回到步骤 2);
5)如果条件满足,则取最后两试验点的平均值作为极小点的数值近似解。

例对函数f(α)=α²+2α,当给定搜索区间-3≤α≤5时,使用黄金分割法求极小点。

解:显然,此时的α=-3,b=5。

首先插入两点α1和α2,由以上公式得
α1= b-λ(b-a)=5-0.618(5+3)=0.056
α2=a+λ(b-a)=-3+0.618(5+3)=1.944
再计算相应插入点的函数值,得
y1= f(α1)=0.115, y2= f(α2)=7.667
因为y2 >y1,所以消去区间[α2,b],则新的搜索区间[a ,b]的端点a=-3不变,而端点b=α2=1.944。

第一次迭代:此时插入点α1=b-λ(b-a)=1.944-0.618(1.944+3)=-1.111,α2=0.056。

相应插入点的函数值y1= f(α1)=-0.987,y2= f(α2)=0.115。

又因为y2 >y1,故消去区间[α2,b],则新的搜索区间为[-3,0.056]。

如此迭代下去。

假定,经过5次迭代后已经满足收敛精度要求,则得α=0.5(a+b)
=0.5(-1.386-0.665)=-1.0225,相应的函数极值f(α)=-1.0007。

2 一维搜索方法的插值方法
在某一确定的区间内寻求函数的极小点位置,虽然没有函数表达式,但能够给出若干点处的函数值。

可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,进而求出函数的极小点,并用它作为原来函数极小点的最小值,这种方法称作插值方法,又叫函数逼近法。

常用的插值多项式为二次多项式,因此,常用的处理的方法有以下两种:一种是牛顿法(切线法),另一种是二次插值法(抛物线法)。

牛顿法的特点是收敛速度快。

但每一点都要进行二阶导数,工作量大;当用数值微分代替二阶导数,由于舍入误差会影响迭代速度;要求初始点离极小点不太远,否则有可能使极小化发散或收敛到非极小点。

二次插值法是用于一元函数在确定的初始区间内搜索极小点的一种方法。

它属于曲线拟合方法的范畴。

在求解一元函数f(x)的极小点时,常常利用一个低次插值多项式p(x)来逼近原目标函数,然后求该多项式的极小点(低次多项
式的极小点比较容易计算),并以此作为目标函数f(x)的近似极小点。

如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。

3 一维搜索的试探方法与插值方法的异同
试探方法和插值方法都是利用区间消去法原理将初始搜索区间不断缩短,从而求得极小点的数值近似解。

二者的不同之处在于试验点位置的确定方法不同。

在试探方法中试验点位置是由某种给定的规律确定的,它不考虑函数值的分布;而在插值法中,试验点位置是按函数值近似分布的极小点确定的。

由于试探法只是对试验点函数值的大小进行比较而函数值本身的特性没有得到充分利用,这样使简单的函数也要进行复杂的计算;插值法则利用函数在已知试验点的值来确定新试验点的位置。

故当函数具有比较好的解析性质时,插值法要比试探法简单的多。

4 总结
一维搜索是一元函数极小化的数值方法,在最优化方法中一维搜索用于寻求在给定方向上的最优步长因子和对应的一维极小点。

一维搜索分两步进行:先确定一个包含极小点的初始区间,再逐步缩小区间直到满足收敛条件,得到近似的一维极小点。

缩小区间的方法是:在已知区间内选取两个插入点并比较它们的函数值,舍去其中不包含极小点的部分。

不同的中间插入点的选取方法构成了不同的一维搜索算法。

按对称原则选点的算法是黄金分割法;以二次插值函数的极小点作为新的插入点的算法是二次插值法。

插值函数的极小点作为新的插入点的算法是二次插值法。

黄金分割法每次缩小区间的比率都是相同的,其收敛准则为区间的总长度不大于给定的精度,因此黄金分割法需要缩小区间的次数较多,计算速度较慢,但计算精度可以无限提高。

二次插值法每次缩小区间的比率都比较大,其收敛准则是中间两个点的距离不大于给定的精度,故二次插值法的计算速度一般较快,但它的计算精度会受到一定的限制。

相关文档
最新文档