风电场电气工程第4章64页PPT文档

合集下载

风电场电气工程 风电场电气部分的构成和主接线方式PPT课件

风电场电气工程  风电场电气部分的构成和主接线方式PPT课件
第5页/共36页
9
8 7 6
§2.2 电气主接线及设计要求
§2.2.1 电气主接线的基本概念
1. 地理接线图
地理接线图就是用来描述
火电厂
某个具体电力系统中发电厂、
风电场
变电所的地理位置,电力线路
变电站
的路径,以及他们相互的联结
它是对该系统的宏观印象, 只表示厂站级的基本组成和连接关系,无法表示电气设
第12页/共36页
§ 2.2.2 电气主接线的设计原则
二、灵活性 发电厂主接线应该满足在调度、检修及扩建时的灵活性: 调度时,应可以灵活地投入和切除发电机、变压器和线 路,灵活调配电源和负荷,满足系统在事故、检修以及 特殊运行方式下的系统调度要求; 检修时,可以方便地停运断路器、母线及其继电保护设 备,进行安全检修不至影响电力系统的运行和对用户的 供电; 扩建时,可以容易地从初期接线过渡到最终接线。
根据桥断路器相对于变压器和线路的安装位置,又分为 内桥接线和外桥接线
第19页/共36页
二、 桥型接线 内桥接线 内桥接线的桥断路器 靠近变压器,对于变压 器的投切需要操作两台 断路器,而对于线路的 操作只需要一台断路器
适用于变压器不经常 切换,而线路较长,故 障概率较高,所造成的
第20页/共36页
第2页/共36页
§2.1.2风电场电气部分的构成
总体而言,风电场的电气部分也是由一次部分和二次 部分共同组成,这一点和常规发电厂站是一样的。
根据在电能生产过程中的整体功能,风电场电气一次 系统可以分为四个主要部分:风电机组、集电系统、升 压站及厂用电系统。
目前,风电场的主流风力发电机本身输出电压为690V, 经 过机组升压变压器将电压升高到部分的构成

《风电场电气部分》课件

《风电场电气部分》课件

风电场分类
01
02
03
陆上风电场
指在陆地上的风电场,一 般规模较大,风能资源丰 富。
海上风电场
指在海洋上的风电场,一 般规模较大,风能资源丰 富,但建设难度较大。
山地风电场
指在山地区域内的风电场 ,一般规模较小,风能资 源丰富,但建设难度较大 。
风电场发展历程
起步阶段
20世纪80年代初,我国开 始探索风电场建设,主要 集中在沿海地区。
升压站的运行管理对于保障风 电场的电力输出和电网稳定性 具有重要意义。
03
风电场电气系统运行
风力发电机组运行原理
风能转换
风力发电机组利用风能驱动涡轮 旋转,通过变速齿轮箱将动力传 递到发电机,从而将机械能转换
为电能。
发电原理
发电机通过电磁感应原理将机械能 转换为电能,产生的三相交流电通 过整流和逆变转换为直流电,供给 风电场的负荷。
定期检查集电线路的导线、绝缘子和杆塔等 部件,确保其正常运行。
集电线路检修
对集电线路进行全面的检查和维修,解决潜 在问题。
集电线路加固
对于存在安全隐患的集电线路,采取加固措 施,提高其稳定性。
集电线路更换
当集电线路的部件损坏或老化时,及时更换 。
升压站维护与检修
01
升压站维护
定期检查升压站的各设备,确保其 正常运行。
具有重要意义。
在风电场的建设和管理过程中,需要对集电线路进行 定期巡检和维护,以确保其正常运行。
集电线路是风电场中用于汇集和传输电能的线 路。
集电线路的设计需要考虑线路的电压等级、电流 大小、传输距离和环境条件等因素。
升压站
升压站是风电场中用于升高电 压和汇集电能的场所。

风电工程电气设计PPT

风电工程电气设计PPT

风电工程电气设计的重要性
提高风电场效率和可靠性
保障人员和设备安全
合理的电气设计能够提高风电场的发 电效率和可靠性,确保风电场能够稳 定、连续地供电。
合理的电气设计能够保障风电场人员 和设备的安全,避免因电气故障或设 计不当引起的安全事故。
降低建设和运营成本
合理的电气设计能够优化风电场的布 局和设备选型,降低建设和运营成本, 提高经济效益。
04
风电工程电气设计中的 常见问题与解决方案
常见问题一:电气系统稳定性问题
总结词
电气系统稳定性问题在风电工程中较为常见,主要表现在电压波动、频率不稳 等方面。
详细描述
由于风电发电的特性,其输出功率受风速影响较大,导致电压和频率波动较大, 对电网的稳定性产生影响。此外,风电并网也会对电网的稳定性产生影响,如 谐波污染、电压波动等。
绿色环保理念
随着全球环境问题的日益严重, 风电工程电气设计越来越注重绿 色环保理念。通过优化设计,降 低风电工程对环境的影响,实现
可持续发展。
环保材料应用
采用环保材料和可再生资源,减 少对传统能源的依赖,降低碳排
放和环境污染。
环保监测与评估
建立环保监测与评估体系,对风 电工程的环保性能进行实时监测 和评估,确保风电工程的绿色环
详细描述
在电气设备选型时,应充分考虑风电机组的特性、电网条件、环境因素等多个方面,选 择性能优良、可靠性高的设备。同时,应注重设备的维护和保养,定期进行检查和维修,
确保设备的正常运行。
解决方案三:完善电气系统安全防护措施
要点一
总结词
要点二
详细描述
加强电气系统安全防护措施,提高其抵御自然灾害的能力 。
智能化监控系统

风力发电ppt较详细PPT课件

风力发电ppt较详细PPT课件

市场推广
通过宣传和教育,提高公 众对风力发电的认识和接 受度,促进市场需求增长。
竞争环境
建立公平的市场竞争机制, 打破行业垄断,吸引更多 企业参与风力发电项目的 投资和建设。
技术瓶颈与解决方案
风能利用率
提高风能利用率,降低风能成本, 是当前面临的主要技术瓶颈之一。 通过研发更高效的风力发电机组 和优化风电场布局,可以提高风
能利用率。
储能技术
发展储能技术,解决风能发电的 间歇性问题。例如,利用电池、 抽水蓄能、压缩空气储能等技术, 实现风电场的有功无功调节和调
峰填谷。
输电技术
加强智能电网建设和特高压输电 技术的研究,提高风电并网和远
距离输送的能力,降低损耗。
环境保护与可持续发展
减少对环境的影响
合理规划风电场的位置和规模,避免对生态环境造成破坏。同时,加强风电设备 的噪声和视觉污染治理,降低对周边居民的影响。
海上风电发展
海上风电资源丰富,未来 将有更多的海上风电项目 建成并投入运营。
风力发电与其他可再生能源的结合
太阳能与风能结合
太阳能和风能在时间和地域上具有互补性,结合使用可提高可再 生能源的利用效率。
风能与水能结合
风能和水能在动力转换上具有协同效应,结合使用可实现能源的更 高效利用。
多种可再生能源的综合利用
风力发电的优势与局限性
优势
风能是一种可再生能源,利用风能发电有助于减少化石燃料的消耗和温室气体 排放;风能分布广泛,可利用风能资源丰富;风力发电技术成熟,经济效益逐 渐提高。
局限性
风能是一种间歇性能源,受天气和季节影响较大;风力发电机组占地面积较大, 对土地资源有一定需求;风力发电在建设、维护和拆除过程中可能对环境产生 一定影响。

风电场电气部分ppt课件

风电场电气部分ppt课件
,降低投资成本。
可维护性原则
简化系统结构,提高设 备可维护性,方便后期
运营和维护。
主要电气设备选型依据
风电机组特性
根据风电机组的功率、电压等级、控 制方式等特性,选择匹配的电气设备 。
电网接入要求
遵循电网公司的接入标准和要求,选 用符合规定的电气设备和材料。
环境条件
考虑风电场所在地的气候条件、海拔 高度、污秽等级等环境因素,选择适 应性强的电气设备。
方案二
分布式电气系统设计方案。采用分布式的变压器 、开关柜等设备,实现风电场的分布式供电和控 制。该方案具有运行灵活、可靠性高等优点,但 投资成本相对较高。
方案比较与选择
根据风电场的实际情况和需求,综合考虑技术、 经济、环境等多方面因素,对以上三种方案进行 比较和选择。最终确定符合风电场实际情况和需 求的最佳电气系统设计方案。
针对可能发生的火灾事故,制定相应 的应急预案,并定期进行演练,提高
员工的应急处置能力。
消防设施建设
按照规范要求配置消防设施,如灭火 器、消防栓、烟雾探测器等,确保火 灾发生时能够及时扑救。
消防安全培训与宣传
加强员工的消防安全培训和宣传,提 高员工的消防安全意识和自防自救能 力。
2023 WORK SUMMARY
接地系统建设
建立完善的接地系统,确保接地电阻符合规范要 求,提高设备的防雷接地能力。
定期检查与维护
定期对防雷接地设备进行检查和维护,确保其性 能良好,有效预防雷击事故。
消防安全管理规定执行
消防安全责任制
明确各级人员的消防安全职责,建立消 防安全责任制,确保各项消防安全措施
得到有效执行。
应急预案制定与演练
原因分析
故障原因可能涉及设备老化、设计缺 陷、运行环境恶劣、人为操作失误等 。

风力发电基础知识模板PPT课件

风力发电基础知识模板PPT课件

风力机的主要技术指标参数
① 风轮直径,通常风力机的功率越大,直径越大; ② 叶片数目,高速发电用风力机为2—4片,低速风力机大干4片; ③ 叶片材料,现代常采用高强度低密度的复合材料; ④ 风能利用系数,一般为0.15—0.5之间;
第13页/共73页
⑤ 启动风速,一般为3—5m/s; ⑥ 停机风速,通常为15—35m/s; ⑦ 输出功率,现代风力机一般为几百
第10页/共73页
1-2 风力发电设备
一、组成:风力发电机组包括两大部分;
➢ 一部分是风力机,由它将风能转换为机械能; ➢ 另一部分是发电机,由它将机械能转换为电能。
二、分类: 1)根据它收集风能的结构形式及在空间的布置,可分为水平轴式或垂直轴式。 2)从塔架位置上,分为上风式和下风式;
第11页/共73页
直至MW级以上的风力发电机组按一定的阵列布局方式成群安装而组成的风力发电 机群体.称为风力发电场,简称风电场。 • 风力发电场属于大规模利用风能的方式,其发出的电能全部经变电设备送往大电网。
第27页/共73页
二、风力发电场的风力发电机组排布
• 作用:合理地选择机组的排列方式,以减少机组之间的相互影响,风电场内 风力发电机组的排列应以风电场内可获得最大的发电量来考虑。
• 转子转速固定,风能利用率低,其转 速由齿轮箱传动比和发电机极对数决 定; • 转子电流产生的旋转磁场的转速高于 同步速运行; • 发电机定子直接与电网连接,启动时 产生很大启动电流,其配置启动装置。 • 从系统吸收大量无功,需配置无功补 偿装置。 • 结构简单,控制方便。
二、并网运行方式
作用:采用风力发电机与电网连接, 由电网输送电能的方式,是克服风的 随机性而带来的蓄能问题的最稳妥易 行的运行方式,同时可达到节约矿物 燃料的目的。

风电场电气部分的构成和主接线方式课件


优化电气部分的设计和运行可以降低 风电场的运营成本,包括维护成本和 能源消耗。
提高风电场发电量
合理的电气部分设计和配置可以有效 提高风电场的发电量,从而提高经济 效益。
风电场电气部分的主要构成
01
发电机组:包括风力发 电机和发电机,将风能 转化为电能。
02
变压器:用于升高或降 低电压,以满足输电和 配电的需求。
电缆
电缆是风电场中用于传输电能 的重要元件。
根据不同的电压等级和传输容 量,电缆的截面和结构也不同

在风电场中,电缆通常被敷设 在电缆沟或电缆桥架内,需要 做好防火、防水、防腐蚀等措 施。
电缆的性能和可靠性对风电场 的稳定运行至关重要,需要定 期进行维护和检修。
控制系统
控制系统是风电场中用于监控、 控制和保护整个风电场的重要系
接入系统设计
根据风电场的规划容量和电网结构, 选择合适的主接线方式和接入系统方 案,确保风电场能够安全、稳定地并 入电网。
主接线方式在风电场建设中的应用
设备选型与采购
根据主接线方式和风电场的特点,选择合适的电气设备、电缆、开关柜等,并 按照设备清单进行采购,确保风电场建设的顺利进行。
施工设计与施工组织
风电场电气部分的构成和主 接线方式课件
contents
目录
• 风电场电气部分概述 • 风电场电气部分的构成 • 主接线方式介绍 • 主接线方式在风电场的应用 • 风电场电气部分的发展趋势
01
风电场电气部分概述
风电场电气部分的重要性
确保风电电气部分是整个风电场的核心 ,其稳定运行对于保障风电场的发电 效率和可靠性至关重要。
电缆和其他输配电设备将电能传输到电网 或用户,实现电能的配送和销售。

风电场培训讲义PPT(共 67张)

• 3、风电场应综合考虑各种发电出力水平和接入系统各种运行工 况下的稳态、 暂态、 动态过程, 配置足够的动态无功补偿容 量,且动态调节的响应时间不大于 30ms。 风电场应确保场 内无功补偿装置的动态部分自动调节, 确保电容器、 电抗器支 路在紧急情况下能被快速正确投切。
• 4、风电机组低电压穿越能力缺失是当前风电大规模脱网故障频 发的主要原因。为防止类似故障再次发生, 各单位要督促网内 风力发电企业对风电机组低电压穿越性能进行改造、 调试, 并 通过国家有关部门授权的有资质的检测机构按《风电机组并网检 测管理暂行办法》(国能新能〔2010〕433 号) 要求进行的检 测验证。
• 5、张家口地区负荷峰谷差较大,宜采取逆调压原则,因此合 理的电压控制包括两个方面:一方面是在负荷高峰时保持电压 在电压曲线的上限运行,保持中枢点的电压在最大负荷时比线 路额定电压高5%;另一方面在负荷低谷时(后夜),电压下 降至线路的额定电压,严防母线电压过高(向系统反送无功) 。另外,在系统检修或发生N-1故障时,根据调度指令,维持 各站母线电压在电压曲线上限运行。
• 风电场值班人员名单应上报所属调度机构备案,人员变更后应及时重新 上报。上述人员严重违反调度纪律或发生误操作事故时,区调有权取消 其上岗资格。
• 风电场必须安排值班人员24小时昼夜值班。
三、调度范围的划分(见下图)
四、无功电压管理
• 1、无功电压的调整原则:《电力系统电压和无功电力技 术导则》及《电力系统电压质量和无功电力管理规定》中 规定,无功补偿应按照分层分区和就地平衡的原则。
运行值班员应密切监视电力设备及线路的负荷情况,负荷电流不得超 过最小载流元件的最大允许负荷电流,否则报告值班调度员采取措施。
调度规程
无论是区调调度或区调管理的电气设备发生事故及异常时,均应及时向 区调值班调度员汇报。

《风电场电气系统》课件


04
风电场电气系统维护与优化
风电场电气系统维护
维护原则
定期检查、预防性维护、及时响 应。
维护内容
对电气系统中的发电机、变压器、 断路器、隔离开关等设备进行常规 检查、清洁、紧固等维护工作。
维护周期
根据设备类型和运行状况,制定合 理的维护周期,确保设备正常运行 。
风电场电气系统优化建议
01
02
பைடு நூலகம்
03
风电场的组成
01
02
03
04
风力发电机组
包括风轮、机舱、塔筒等部分 ,是风电场的核心设备,用于
将风能转化为电能。
升压变电站
用于将风力发电机组发出的低 压电能升压后输送到电网。
输电线路
用于将风电场的电能输送到电 网。
风电场监控系统
用于监控风电场的运行状态和 设备状况,保障风电场的正常
运行。
风电场的运行原理
优化原则
提高效率、降低成本、减 少故障。
优化建议
改进设备布局、优化控制 逻辑、采用先进的电气设 备等。
优化实施
根据实际情况,逐步实施 优化方案,并持续监测优 化效果。
风电场电气系统发展趋势
发展趋势
智能化、自动化、高效化。
技术应用
人工智能、大数据、物联网等技术在风电场电气系统中的应用。
未来展望
随着技术的不断进步,风电场电气系统的运行效率和可靠性将得到 进一步提升,为可再生能源的发展做出更大的贡献。
THANKS
感谢观看
《风电场电气系统》PPT课件
contents
目录
• 风电场概述 • 风电场电气系统 • 风电场电气系统设计 • 风电场电气系统维护与优化

风力发电场电气设计PPT

110kV变电站控制、保护、测量和信号 计算机监控系统 :变电站计算机监控系统负责对变电站线路、主变压器 和公用设备等的集中监控。 元件保护 :设主变压器保护、35kV线路保护、站用变保护、高压动态无 功补偿保护。 系统继电保护 :设110kV线路保护及自动重合闸、故障录波、继电保护 试验 。
-24-
主要电气设备选型
风电场升压站主要电气设备选择 主变压器:采用三相有载调压双绕组变压器;
SZ10-50000/110 。
220kV设备:采用GIS设备,额定电流2000A,开断电流 为31.5kA,关合电流为80kA 。
35kV设备:采用铠装式金属封闭开关柜,额定电流 2000/1250/630A,开断电流为31.5kA ,峰值耐受电流为80kA。
直驱型风力发电系统
-9-
风力发电机组简介
风力发电机组相关部件 ➢风力发电机的主要部件有:风机叶片、发电机、齿轮箱、控制器、 变流器、偏航系统。 ➢其他部件有液压刹车系统、散热器、连轴器、轴承等。 ➢塔架和结构件包括轮毂、主轴、机舱底坐、法兰盘等。 ➢国内为风机厂配套大部件的生产厂数量猛增 ,国产化比例超90%。
风力发电机组简介
双馈变速恒频型风力发电机组
双馈变速恒频型风力发电机组的 风轮叶片桨距角可以调节,同时采用 双馈型发电机,发电机可以变速,并 输出恒频恒压电能。在低于额定风速 时,它通过改变转速和叶片桨距角使 风力发电机组在最佳尖速比下运行, 输出最大的功率,而在高风速时通过 改变叶片桨距角使风力发电机组功率 输出稳定在额定功率。
无功补偿设备:采用SVG设备, 容量为±12Mvar。
站用电: 1台315/400kVA站用变压器。
-25-
主要电气设备选型
两种型式配电装置对比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能对风电一次设备的选择进行初步分析和简单计算。
风电场电气工程
I wF(w0) R
第4章 风电场一次设备的选
§4.1 导体的发热和电动力 择
§4.1.1 导体长期发热和载流量
当电流流过导体时,由于有电阻存在将造成能量损耗,同时由 于涡流和磁滞损耗,在导体附近的磁场中也将有一部分能量损 耗,这些能量的损耗将转换为热能,使导体的温度升高。
§4.2电气设备选择的一般条件 择
电气主接线是由导体和电气设备连接而构成的电路。
选择适合本地使用的导体和电气设备,不仅需要考虑电 气设备的电气参数(正常和故障),还需综合考虑电气设 备所处的环境因素,此外也要注意电气设备运行可能给环 境带来的影响。
风电场电气工程
I wF(w0) R
§4.2.1 电气设备选择的一般条件
短路电流的最大数值出现在短路后最初的半个周期(常按 t=0.01s分析),此时的短路电流的最大峰值被称为最大冲击 电流 ish
三相导体中B相(中间相)的电动力最大,大小为
FBmax 1.73107 Lais2h
风电场电如气果工程考虑共振应该是多大?
I wF(w0) R
第4章 风电场一次设备的选
第4章 风电场一次设备的选择择
关注的问题
电气设备选择的技术条件和校验方法是什么?
变压器的容量、台数和型式应怎样进行选择?
开关设备的型式和参数怎样选择?CT和PT怎样选择?
载流导体选择和校验应如何计算?
教学目标
了解风电场一次电气设备选择的一般条件和技术条件,
了解热稳定校验、动稳定校验和环境校验方法,
理解和掌握电气设备的型式、参数与其在风电场中运行 环境的关系
I wF(w0) R
第4章 风电场一次设备的选 择
§4.1.1 导体长期发热和载流量
由于导体正常运行时,电流运行于额定电流,发热量不是很 大,可以持续运行而不超过导体的最高允许温度,因此称导 体正常运行时的发热过程为长期发热。特点?
考虑到导体本身的发热和散热过程,电流和温度的关系如下:
应力求技术进和经济合理。
与整个工程的建设标准谐调一致。
同类设备尽量减少品种。
选用的新产品均应具有可靠的试验数据,并经正式鉴定合格。
风电场电气工程
I wF(w0) R
§4.2.2 电气设备选择的技术条件
第4章 风电场一次设备的选 择
§4.2.2.1 按照正常工作状态选择
对电气设备来说,首先要考虑其是否可以承受流过的电流和加 于其上的电压:
风电场电气系统
第4章 风电场一次设备的选择
介绍风电场一次电气设备选择的一般条件和 技术条件,以及热稳定校验、动稳定校验和环境 校验方法,使大家了解和掌握电气设备的型式、 参数与其在风电场中运行环境的关系,并且能对 风电一次设备的选择进行初步分析和简单计算。
I wF(w0) R
第4章 风电场一次设备的选
式中
I wF(w 0)
I为导体载流量;(R与额度电流的关系?) αw为导体的散热系数; F为散热面积; θw为带电运行的导体的温度; θ0为环境温度; R为单位长度的导体电阻
风电场电气工程
I wF(w0) R
§4.1.2 导体短时发热
第4章 风电场一次设备的选 择
短路发生后,导体中流过的电流急剧增加,热量积累也非常 迅速(按照电流的平方产生),但是短路不允许持续很长时 间,继电保护会尽可能快地将其切除,因此这一过程被称为 短时发热。
为保证导体可靠工作,往往要对导体正常工作时的最高允许温 度做出限制:
①对于一般裸导体,最高允许温度一般为70℃;
②对于计及日照的钢芯铝绞线和管形导体,最高允许温度一般 为80℃;
③对于接触面有镀锡的可靠覆盖层,最高允许温度一般为85℃。
对于接触面有镀银的可靠覆盖层,最高允许温度一般为95℃。
风电场电气工程
(1)额定电压(最大工作电压?)
UN >=Uns
即电气设备的额定电压UN要大于设备安装处的电网额定电压Uns
(2)额定电流
IN Imax
即运行中的电气设备额定电流IN不得低于所在回路在各种可能 运行方式下的最大持续工作电流 Imax。(如何计算?)
风电场电气工程
I wF(w0) R
第4章 风电场一次设备的选 择
§4.2.2.2 按照短路状态校验
按照正常条件选出的电气设备必须要校验一下其热稳定和动 稳定能力
(1)设备允许通过的热稳定电流It和时间t,并以此校验其热 稳定性是否满足要求:
第4章 风电场一次设备的选 择
选择适用的电气设备,首先要确定其额定参数,同时,还要考 虑设备安装地点的环境因素,此外,必须考虑电力系统中短路 所造成的巨大短路电流对系统的损害
在选择电气设备时,必须考虑下列各项原则:
应满足正常运行、检修、短路和过电压情况下的要求,并考虑 远景发展。
应按当地环境条件校核。
Qk 0tk Ik2tdtQpQnp
其中Qp为短路电流周期分量所产生的热效应,Qnp为短路电 流非周期分量所产生的热效应。
Qp0tkIp 2tdt1 tk 2(I"210It2 2 k It2 k)
Q n p 2 T a(1 e 2 T a tk)in 2 p 0 T a(1 e 2 T a tk)I" 2 T I" 2
一般采用短路电流热效应来计算短路后的导体发热热积累。
短路电流热效应计算公式如下:
Qk
tk 0
I kt 2 dt
其中,Ikt 为短路电流; tk为短路时间
风电场电气工程
I wF(w0) R
第4章 风电场一次设备的选 择
§4.1.2 导体短时发热
由于短路电流的变化规律十分复杂,很难用简单的解析表达 式来计算,因此工程中常用一种简化的实用计算法来计算 :
当短路电流切除时间超过1秒时,发热主要由周期分量决定, 可忽略非周期分量的影响
风电T场的电取气工值程?
I wF(w0) R
第4章 风电场一次设备的选 择
§4.1.3 导体短路时的电动力
短路的时候电流急剧增大,导体所受的电动力也急剧增大, 很可能造成导体的变形扭曲,导致电气设备的损坏
一般情况下,系统中发生三相故障时的短路电流最大,而且
相关文档
最新文档