考研数学二公式高数线代(费了好大的劲)技巧归纳讲课讲稿

合集下载

考研高等数学知识点总结数二

考研高等数学知识点总结数二

考研高等数学知识点总结数二嘿!考研的小伙伴们,今天咱们来好好唠唠考研高等数学知识点总结数二这回事儿呀!首先呢,咱们来说说函数、极限和连续这部分。

哎呀呀,函数可是基础中的基础呢!函数的概念、性质,还有各种类型的函数,像幂函数、指数函数、对数函数等等,都得弄得明明白白。

极限这东西,那可是贯穿整个高等数学的灵魂呀!极限的定义、性质、计算方法,都得熟练掌握。

连续的概念也很重要,什么左连续、右连续,还有函数在某点连续的条件,这些都要牢记于心呢!再来说说一元函数微分学。

哇!导数的定义、几何意义、各种求导法则,那可都是重点中的重点。

导数的应用也不少,比如判断函数的单调性、极值和最值,还有曲线的凹凸性和拐点。

这部分的知识点一定要多做练习题,才能真正掌握呀!一元函数积分学也是数二的重要内容。

不定积分和定积分的概念、性质、计算方法,那可得好好琢磨。

积分上限函数、牛顿-莱布尼茨公式,这些都是解题的关键。

还有反常积分,可别小看它,也是容易出错的地方呢!多元函数微分学也不能忽视。

多元函数的概念、偏导数、全微分,这些都是基础。

多元函数的极值和条件极值,也是经常考的知识点。

在这部分,要注意区分一元函数和多元函数的不同之处,千万别搞混了呀!向量代数和空间解析几何这部分相对来说占比不是很大,但也不能掉以轻心。

向量的运算、直线和平面的方程,都要有所了解。

无穷级数这一块,数项级数的收敛性、幂级数的展开和收敛半径,都需要认真复习。

最后呢,要提醒大家,考研高等数学知识点总结数二可不是一蹴而就的事情,需要长期的积累和不断的练习。

哎呀呀,只有多做题、多总结,才能在考场上应对自如呀!加油吧,小伙伴们,相信自己一定能行!。

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。

这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。

下面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:一、基本数学公式:1.平方差公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab+ b^22.二次方程的求根公式:若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a3.数列的通项公式:递推公式:a(n+1)=a(n)+d通项公式:a(n)=a(1)+(n-1)d二、高等数学公式:1.常用三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ2.常用反三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ3.常用指数函数公式:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^(-m)=1/a^m4.常用对数函数公式:log_a(m * n) = log_a(m) + log_a(n)log_a(m^n) = n * log_a(m)log_a(m/n) = log_a(m) - log_a(n)log_a(1) = 05.常用复数公式:i²=-1复数的共轭:若z = a + bi,则z的共轭为a - bi三、线性代数公式:1.行列式的加减法:A±B,=,A,±,B2.行列式的乘法:A*B,=,A,*,B3.矩阵的逆:若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I4.特征值与特征向量:设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量5.向量的内积:a ·b = ,a,,b,cosθ其中,a、b分别为向量,θ为a、b之间的夹角四、概率与统计公式:1.事件的概率公式:对于一个随机事件A,其概率满足0≤P(A)≤12.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)4.全概率公式:P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件5.贝叶斯公式:P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]其中,A1,A2,...,An与前述全概率公式的条件相同。

考研数学二公式高数线代(费了好大的劲)技巧归纳

考研数学二公式高数线代(费了好大的劲)技巧归纳

高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

考研数学2

考研数学2

考研数学2当你准备迈向考研数学二这一关键考试时,对知识点的全面掌握和深入理解是成功的关键。

本文档将帮助你系统地复习和准备这门考试。

考研数学二通常涵盖了高等数学、线性代数和概率统计等内容。

以下是对这些主要内容的概括和重点提示。

### 高等数学高等数学作为考研数学二的基础,内容涵盖广泛,其中微积分是核心。

重点包括但不限于:1. **极限与连续**:掌握函数极限、无穷小量、无穷大量、函数连续性的概念和性质。

2. **导数与微分**:熟悉各种函数的求导法则、高阶导数、隐函数求导以及微分的应用。

3. **定积分**:理解定积分的概念与性质、定积分的计算方法和应用(面积、体积等)。

### 线性代数线性代数在考研数学二中也占有一定比重。

主要内容包括:1. **向量与矩阵**:了解向量的运算、向量组的线性相关性、矩阵的性质、矩阵的运算法则。

2. **矩阵的初等变换**:熟悉矩阵的初等变换法则、矩阵的秩以及矩阵的逆与转置。

3. **特征值与特征向量**:理解特征值与特征向量的定义、求解方法及其在矩阵对角化中的应用。

### 概率统计概率统计是考研数学二中的另一重要组成部分,包括:1. **基本概率**:掌握概率的基本概念、概率的运算法则、条件概率和贝叶斯定理。

2. **随机变量与概率分布**:了解随机变量、概率密度函数和分布函数的概念,包括常见的离散型和连续型分布。

3. **大数定律和中心极限定理**:理解大数定律和中心极限定理的含义和应用,掌握在概率统计中的实际运用。

在备考过程中,不仅要重点复习这些知识点,还要注重练习和应用。

解题技巧和策略的熟练掌握同样重要。

解析真题、练习题和模拟考试是提高解题能力的有效途径。

综上所述,考研数学二的备考需系统、全面,要注重基础知识的牢固掌握,同时灵活运用所学知识解决问题。

只有通过持续的努力和有效的复习,才能更好地应对考试挑战,取得理想的成绩。

加油!。

考研数学二公式高数线代(整理)技巧归纳(精选.)

考研数学二公式高数线代(整理)技巧归纳(精选.)

高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

考研数学数二满分经验及归纳分享.doc

考研数学数二满分经验及归纳分享.doc

驻点:导数为0的点,不仅有定义,而且导数必须存在且为0极值点:相对点,相对于附近某一小临域,它是最大〔小〕的值,这里强调这个临域存在,临域不是区间;这样的点有一些性质,若可导则导数必为0,但导数为0不全是极值点(x )但是这不是判断极值点的唯一条件,还要根据定义,这就属于不可导的点了(|x|的0点),所以极值点穿插很多,多重考虑,别忘了必须有定义。

拐点:性质有点类似极值点只是要求不同,它是某一临域左右凸凹性改变,同理既要考虑二阶导数是0还有二阶导不存在的穿插,还要注意最基本,有定义4.可积,原函数,变限积分可积指定积分存在〔注意是定积分不包括广义积分〕,按几何意义,曲线与x轴面积〔这里也可以说是负面积〕存在。

原函数是函数,不是一个值,判定是否存在原函数,对它求导后导函数是该函数。

变限积分定积分下限为常数,上限是自变量,集合两者,把x确定为一个值它就是定积分,某种意义上它可以算是某个原函数,但是这是一般情况,总体来说它还是一个函数。

可积不一定有原函数〔一个值存在怎么断定一个趋近有函数呢,〕,有第一类间断点是没有原函数但是可以有定积分,可积。

有原函数不一定可积〔1/x〕,它们之间关系颇为复杂,求一个定积分我们有能力的就是利用奇偶性或者间接利用原函数〔牛顿,来布尼次公式〕,一马归一马,注意区别。

而可积和变限积分联系挺大的,一般区间可积的话变限积分不仅存在而且连续,不深入讨论。

原函数和变限积分是最易混淆的,两者都是函数,求的过程容易觉得变限积分算是原函数的其中一个,一般函数可以这么以为,不过深入讨论,决不这么简单,对于存在原函数的上述结论正确,可是最大的区别就是有第一类间断点没有原函数,但是变限积分存在且连续,图形上理解就是有间断点,不影响面积存在性而且不影响连续性,这点可以证明。

5.一元与二元函数的可微,可导和连续一元函数和二元函数在连续,可微,可导虽然从书上看性质不太一样但这决不违背定理,两个之间有莫大的关系。

解析考研数学线性代数高分解题技巧

解析考研数学线性代数高分解题技巧

解析考研数学线性代数高分解题技巧在考研数学线性代数这个科目中,许多考生认为解题技巧是取得高分的重要因素之一。

本文将分析解析考研数学线性代数高分解题技巧,希望能给考生提供实用的指导。

一、理解基本概念要想在线性代数中取得高分,首先要对基本概念有深入的理解。

线性代数中的基本概念包括矩阵、向量、行列式等。

建议考生在备考过程中,将这些基本概念的定义和性质牢记于心,并多做相关题型的练习,以加深对这些概念的理解和应用。

二、掌握基本定理和性质熟练掌握线性代数中的基本定理和性质是解题的基础。

比如矩阵的秩与零空间的维数的关系、特征值与特征向量的性质等。

考生要牢记这些基本定理和性质,并能够熟练灵活地运用于解题过程中。

三、强化计算能力在线性代数的考试中,计算题是比较常见的一种题型。

因此,考生需要通过大量的计算练习,提高计算的准确性和速度。

对于矩阵的运算和行列式的计算,考生要掌握相应的运算法则和计算技巧,以提高解题的效率。

四、注意题目中的关键信息在解题过程中,考生需要仔细阅读题目,注意题目中的关键信息。

有时候,题目中隐藏着解题的关键。

比如,题目中给定了一个矩阵的特定性质,可以利用该性质进行解题;题目中提到了矩阵的秩和零空间的维数之间的关系,可以通过这一关系推导出相关的结论。

因此,考生需要善于发现题目中的关键信息,并能够巧妙地运用于解题过程中。

五、分析解题方法在解题过程中,考生可以根据题目的不同,选择不同的解题方法。

比如,在求解矩阵的特征值和特征向量时,可以选择特征方程和特征多项式法,也可以选择初等变换法;在计算矩阵的秩时,可以选择高斯消元法或行阶梯形法。

考生需要对各种解题方法有所了解,并能够灵活选择和应用于解题过程中。

总结起来,解析考研数学线性代数高分解题技巧包括理解基本概念,掌握基本定理和性质,强化计算能力,注意题目中的关键信息以及分析解题方法。

通过不断的练习和实践,考生将能够更好地掌握这些解题技巧,提高解题能力,取得更好的成绩。

考研数二知识点总结

考研数二知识点总结

考研数二知识点总结一、线性代数1. 行列式行列式是矩阵的一个重要性质,它可以用于求解线性方程组的解。

行列式的定义是一个数学函数,用来将一个矩阵转换为一个标量。

行列式的计算方法有代数余子式法、拉普拉斯展开法和行列式性质法等。

2. 矩阵矩阵是线性代数中的一个重要概念,它是由数域上的元素组成的矩形阵列。

矩阵有加法、数量乘法和矩阵乘法的运算法则。

矩阵的转置、逆矩阵、行列式以及特征值和特征向量都是矩阵的重要性质。

3. 向量向量是线性代数中的另一个重要概念,它是一个具有方向和大小的量。

向量的基本运算有加法、数量乘法和点积。

向量的线性相关性、线性无关性以及向量的表示都是考研数学中的重要知识点。

4. 矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵运算中的重要概念,它们可以用来描述矩阵的性质和特征。

特征值和特征向量在物理学、工程学和经济学等领域都有重要的应用。

5. 矩阵的相似性矩阵的相似性是指对于两个矩阵A和B,如果存在一个非奇异矩阵P,使得P^-1AP=B成立,则称矩阵A与B相似。

相似矩阵具有相同的特征值,但不一定有相同的特征向量。

6. 线性空间线性空间是线性代数的一个重要概念,它是指一个集合,它满足一些线性运算的性质。

线性空间中的向量可以进行线性组合和线性相关的运算。

7. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它保持了向量空间的线性运算性质。

线性变换可以用矩阵来描述,它在计算机图形学、物理学和工程学中都有重要的应用。

二、概率论1. 概率空间概率空间是概率论的一个重要概念,它由一个样本空间和一个事件的集合组成。

概率空间中的事件有概率分布,它描述了事件发生的可能性大小。

2. 随机变量随机变量是描述随机现象的数学变量,它可以是离散型随机变量或连续型随机变量。

随机变量的分布函数、密度函数以及期望和方差都是概率论中的重要知识点。

3. 事件的独立性事件的独立性是指两个事件的发生不受到另一个事件的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学二公式高数线代(费了好大的劲)技巧归纳高等数学公式一、常用的等价无穷小当x →0时x ~sin x ~tan x ~arcsin x ~arctan x ~ln (1+x ) ~ e x -1a x -1~x ln a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1-cos x ~21x 2增加x -sin x ~61x 3 对应 arcsin x –x ~ 61x 3 tan x –x ~ 31x 3 对应 x - arctan x ~ 31x 3二、利用泰勒公式e x = 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=cos x = 1 – +!22x o (2x ) ln (1+x )=x – +22x o (2x )导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k r m m kF Ap F s F W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zudy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用: 方向导数与梯度:多元函数的极值及其求法:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x重积分及其应用:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++-=++=++==>======⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+==='Dz Dy Dx z y x Dy Dx DDy DxDD Da y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y MM y d y x d y x x MM x dxdy y z x z A y x f z rdrd r r f dxdy y x f 23222232222322222D22)(),()(),()(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σρσρσρσρσρσρσρσρσρθθθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面微分方程的相关概念:即得齐次方程通解。

,代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u xyy x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0),(),(),(ϕϕϕ一阶线性微分方程:)1,0()()(2))((0)(,0)()()(1)()()(≠=+⎰+⎰=≠⎰===+⎰--n y x Q y x P dxdye C dx e x Q y x Q Ce y x Q x Q y x P dxdyn dxx P dxx P dxx P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:全微分方程:通解。

相关文档
最新文档