初中奥数分式方程应用题
关于分式方程奥数题

4 1
x
0
为整式方程时,方程两边必须同乘(
)
(A) (5x2 5)(x2 1)(1 x)
(B) 5(x2 1)(1 x)
(C) 5(x2 1)(x 1)
(D)5(x 1)(x 1)
10.下列说法中错误的是( )
(A)分式方程的解等于 0,就说明这个分式方程无解
(B)解分式方程的基本思路是把分式方程转化为整式方程
分式方程练习题
一 ;填空题
1.当 x ______时, 1 x 的值等于 1 .
5 x
2
2.当 x ______时, 4 2x 的值与 x 5 的值相等.
4x
x4
3.若 1 与 1 互为相反数,则可得方程___________,解得 x _________. x 1 x 1
x
23 5
32
32
8.解分式方程 1 2x 1 3 ,去分母后所得的方程是( ) 3x x
(A)1 3(2x 1) 3
(B)1 3(2x 1) 3x
(C)1 3(2x 1) 9x
(D)1 6x 3 9x
9..化分式方程
1 5x2
5
3 x2 1
(C)解这个整式方程,得 x 1 (D) 原方程的解为 x 1
12.下列结论中,不正确的是( )
1
PS:双击获取文档,ctrl+A,ctrl+C,然后粘贴到word即可。 未能直接提供word版本,抱歉。
(C)检验是解分式方程必不可少的步骤
(D)能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解.
11.解分式方程
2 x 1
(完整版)分式方程应用题及答案

分式方程应用题及答案1甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一, 这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天2甲安装队为小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 3有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 4轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是_________5南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 ________ .6某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度. 若设原计划每小时修x m ,则根据题意可得方程 ________7、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
初二年级奥数分式方程试题及答案

初二年级奥数分式方程试题及答案1.下列是分式方程的是(D)A.xx+1+x+43B.x4+x-52=0C.34(x-2)=43xD.1x+2+1=02.为加快“最美毕节”环境建设,某园林公司增加了人力实行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的分式方程为(A)A.400x=300x-30B.400x-30=300xC.400x+30=300xD.400x=300x+303.已知x=1是分式方程1x+1=3kx的根,则实数k=16.4.把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘以(D)A.x B.2xC.x+4 D.x(x+4)5.解分式方程2x+1+3x-1=6x2-1分以下几步,其中错误的一步是(D)A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=16.解分式方程1x-1+1=0,准确的结果是(A)A.x=0 B.x=1C.x=2 D.无解7.已知x=3是关于x的方程10x+k-3x=1的一个解,则k=2.8.解下列方程:(1)2xx-2=1-12-x;解:方程两边同乘以(x-2),得2x=x-2+1.解得x=-1.经检验,x=-1是原方程的解.(2)6x-2=xx+3-1;解:方程两边同乘以(x-2)(x+3),得6(x+3)=x(x-2)-(x-2)(x+3).解得x=-43.经检验,x=-43是原方程的解.(3)xx2-4+2x+2=1x-2;解:方程两边都乘以(x+2)(x-2),得x+2(x-2)=x+2.解得x=3.经检验,x=3是原方程的解.(4)23+x3x-1=19x-3.解:方程两边同乘以9x-3,得2(3x-1)+3x=1.解得x=13.检验:当x=13时,9x-3=0.所以x=13不是原方程的解.∴原分式方程无解.9.某机加工车间共有26名工人,现要加工2 100个A零件,1 200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得(A)A.2 10030x=1 20020(26-x)B.2 100x=1 20026-xC.2 10020x=1 20030(26-x)D.2 100x×30=1 20026-x×2010.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值比准确答案小5.依上述情形,所列关系式成立的是(B)A.13x=18x-5B.13x=18x+5C.13x=8x-5D.13x=8x+511.用换元法解方程x2-12x-4xx2-12=3时,设x2-12x=y,则原方程可化为(B)A.y-1y-3=0 B.y-4y-3=0C.y-1y+3=0 D.y-4y+3=012.当x=56时,xx-5-2与x+1x互为相反数.13.若关于x的方程x-1x-5=m10-2x无解,则m=-8.14.解下列方程:(1)3x2-9+xx-3=1;。
初中奥数讲义 分式方程(组)附答案

初中奥数讲义分式方程(组)附答案初中奥数讲义-分式方程(组)附答案分数阶方程本讲我们将介绍分式方程(组)的解法及其应用.【知识拓展】分母中含有未知量的方程称为分数阶方程。
解分数阶方程的基本思想是将它们转化为积分方程。
通常有两种方法:一种是去除分母;第二种是替代。
解分数阶方程时必须检验根解分式方程组时整体代换的思想体现得很充分.常见的思路有:取倒数法方程迭加法,换元法等.解决分数阶方程应用问题的关键是找到等价关系并列出方程。
如果方程包含以字母表示的已知数,则需要根据问题的变换条件实现变换。
在不求解的情况下设置未知数是常见的技能之一例题求解一、分数阶方程(组)解的例子1。
拆分项目并重新组织以解分数方程[示例1]以解方程x?5x?2x?3x?4.x?7x?4x?5x?6解析直接去分母太繁琐,左右两边分别通分仍有很复杂的分子.考虑将每一项分拆:如11x?52,这样可降低计算难度.经检验x?为原方程的解.?1?2x?7x?7注本题中用到两个技巧:一是将分式拆成整式加另一个分式;二是交换了项,避免通分后分子出现x.这样大大降低了运算量.本讲趣题引路中的问题也属于这种思路.2.用元素交换法求解分数阶方程[例2]1x?11x?82?1x?2x?82?1x?13x?82?0.如果在解析时考虑去除分母,则计算量过大;分裂是不够的,但每个分母都是一个二次三项式。
试试替代法。
解为x+2x-8=y,原始方程可转化为2111 0岁?9xyy?15x解关于y的分数方程,得到y=9x或y=-5x。
因此,当y=9x,x+2x-8=9x时,解得到X1=8,X2=-1。
当y=-5x,x+2x-8=-5x时,解得到X3=-8,X4=1。
经检验,上述四种解均为原方程的解注当分式方程的结构较复杂且有相同或相近部分时,可通过换元将之简化.3.形如x?形如x?11?a?结构的分式方程的解法xa22111? A.分数阶方程的解是:X1?a、 x2?。
奥数数的方程练习题

奥数数的方程练习题一、一元一次方程1. 解方程:3x 7 = 112. 解方程:5 2x = 3x + 13. 解方程:4(x 2) = 3(x + 5)4. 解方程:7 (2x + 3) = 4 x5. 解方程:2(3x 1) 5(x + 2) = 8二、一元二次方程1. 解方程:x^2 5x + 6 = 02. 解方程:2x^2 4x 6 = 03. 解方程:x^2 3x = 04. 解方程:4x^2 + 8x + 4 = 05. 解方程:x^2 4 = 0三、二元一次方程组1. 解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]2. 解方程组:\[3x 2y = 7 \\ 5x + y = 9\end{cases}\]3. 解方程组:\[\begin{cases} 4x + 5y = 14 \\ 2x 3y = 5\end{cases}\]4. 解方程组:\[\begin{cases} x + 2y = 6 \\ 3x y = 4\end{cases}\]5. 解方程组:\[\begin{cases} 2x + 3y = 11 \\ 5x 2y = 13\]四、不等式与不等式组1. 解不等式:3x 5 > 22. 解不等式:2(x 3) < 4 x3. 解不等式:5 2x ≥ 3x + 14. 解不等式组:\[\begin{cases}2x 3 > 1 \\x + 4 < 7\end{cases}\]5. 解不等式组:\[\begin{cases}3x + 2y ≥ 6 \\x y < 2\end{cases}\]五、应用题1. 某数的2倍与3的差是7,求这个数。
2. 甲、乙两人年龄之和为35岁,甲的年龄是乙的2倍,求甲、乙的年龄。
3. 一辆汽车从甲地出发,以60km/h的速度行驶,另一辆汽车从乙地出发,以80km/h的速度行驶,两车相向而行,2小时后相遇,求甲、乙两地之间的距离。
初二奥数辅导分式方程的解法

分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程 求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行 有效的变形•变形时可能会扩大(或缩小)未知数的取值范围,故必须验根.
例1解方程
解令y=X+2x-8,那么原方程为
111,
+_*=a
y+9y y y亠15k
分析与解形式与上例相似.本题中分子与分母只是一次项的符号相反,故
可考虑用合分比定理化简•原方程变形为
(3x2+4x~1)+(3x2-4x -1)(x2++1) +(x2-4x+1)
去分母得
y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0,
y2-4xy-45x2=0,
(y+或y=-5x .
由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以Xi=-1 ,X2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以X3=-8,X4=1.
经检验,它们都是原方程的根.
例2解方程
x2+72x~72
——+_-18 =0・'
X2+4x
解设厂则原方費化为
整理得
\3茎一2
黑十!x+2x2+3x+2
去分母、整理得
x+ 9=0,x=-9 .
经检验知,x=-9是原方程的根.
例4解方程x+ 1 X +6x+ 2x+5
+=+
黑 +2x+ 7x+3x+ 6
七年级奥数20分式及分式的应用

七年级奥数20分式及分式的应用1、如果234x y z ==,则222(4)x y y z -+= ;2、如果2xy x y =+,则3533x xy y x xy y -+-+-= 。
3、若a b c a b c a b c c b a +--+-++==,则()()()a b b c c a abc+++= 。
4、若1,2,3xy yz zx x y y z z x ===+++,则x = ,y = ,z = 。
5、若01282=+-x x ,则分式4322621823815x x x x x x --++-+= 。
6、化简分式:222211113256712920x x x x x x x x +++++++++++= 。
7、已知0a b c ++=,则:)111(32333222c b a cb ac b a +++++++= 。
8、化简:222222a b c b a c c a b a ab ac bc b ab bc ac c ac bc ab------++--+--+--+= 。
9、已知2b ac =,求222333333111()a b c a b c a b c ⋅++++的值。
10、解方程组25121312x y y x yy ⎧+=⎪--⎪⎨⎪+=⎪--⎩11、已知1abc =,2a b c ++=,2223ab c ++=,求111111ab c bc a ca b +++-+-+-的值。
12、解分式方程:596841922119968x x x x x x x x ----+=+----13、已知4360x y z --=,24140x y z +-=且0xyz ≠,求22222223657x y z x y z ++++14、A 、B 两地相距80km,一辆公共汽车从A 地出发开往B 地,2小时后,又从A 地同向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B 地。
分式方程应用题总汇和答案

分式方程应用题总汇及答案1、A、B两地的距离是80公里.一辆公共汽车从A地驶出3小时后.一辆小汽车也从A地出发.它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B 地.求两车的速度。
【提示】设共交车速度为x.小汽车速度为3x.列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发.某自治区决定新修一条公路.甲、乙两工程队承包此项工程。
如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月.剩下的由乙队单独施工.则刚好如期完成。
问原来规定修好这条公路需多长时间?【提示】设时间为x个月.列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原计划在规定时间恰好加工1500个零件.改进了工具和操作方法后.工作效率提高为原来的2倍.因此加工1500个零件时.比原计划提前了五小时.问原计划每小时加工多少个零件?【提示】设原计划每小时加工x个零件.列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校4.5千米的敬老院打扫卫生.甲组学生步行出发半小时后.乙组学生骑自行车开始出发.结果两组学生同时到达敬老院.如果步行的速度是骑自行车的速度的1/3.求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时x千米.则4.5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个相同数量的产品进行质量检测.结果甲厂有48件合格产品.乙厂有45件合格产品.甲厂合格率比乙厂高5%.求抽取检验的产品数量及甲厂的合格率。
【提示】设抽取检验的产品数量为x.则(48/x -45/x)*100%=5%6、某车间加工1200个零件后.采用了新工艺.工效提高50%.这样加工同样多的零件就少用10小时.采用新工艺前后每小时分别加工多少个零件?7、A 、B 两地相距48千米.一艘轮船从A 地顺流航行至B 地.又立即从B 地逆流返回A 地.共用去9小时.已知水流速度为4千米/时.若设该轮船在静水中的速度为x 千米/时.则可列方程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中奥数分式方程应用题
【篇一】
1、甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行速度和骑自行车的速度。
2、甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的,求步行和骑自行车的速度各是多少?
3、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。
问原来规定修好这条公路需多长时间?
4、甲、乙两班学生植树,原计划6天完成任务,他们共同劳动了4天后,乙班另有任务调走,甲班又用6天才种完,求若甲、乙两班单独完成任务后各需多少天?
5、一条船往返于甲乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆流水行驶,已知船在静水中的速度为8km/h,平时逆水航行与顺水航行所用的时间比为2:1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了9h.问甲乙两港相距多远?
【篇二】
1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B 的速度是A的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?
5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。