matlab第二章习题答案

合集下载

MATLAB程序设计与应用第二版课后题答案2(最新整理)

MATLAB程序设计与应用第二版课后题答案2(最新整理)

-0.6863 0.5621 0.4615
-0.0937 -0.6976 0.7103
D=
-0.0166
0
0
0 1.4801
0
0
0 2.5365
第四章
1.a=input('请输入一个 4 位数:');
while (a<1000|a>9999)
a=input('输入错误,请重新输入一个4位数:');
end
9
function f=factor(n,m); y=0; for k=1:n
y=y+k^m; end
10.(1)S=108 (2)x=4 12 20
y=2 4 6
1. (1) x=-10:0.1:10; y=100./(1+x.^2); plot(x,y)
第五章
(2) x=-10:0.1:10; y=1/(2*pi)*exp(-x.^2/2); plot(x,y)
第二章 3.设矩阵 A 为 A=[24 23 9 21 6;65 74 24 11 21;34 5 98 75 21;8 42 42 53 121;43 21 45 64 21]; (1) B=A(2:5,1:2:5)
B=
65 24 21 34 98 21 8 42 121 43 45 21 (2)A(7)=[] A= 24 65 34 8 43 23 5 42 21 9 24 98 42 45 21 11 75 53 64 6 21 21 121 21 (3)A+30 (4)size(A);ndims(A) (5)题目有误 (6)reshape(x,3,4) (7)abs(x) (8)char(x) 4. L1 = 000010000 L2 =

MATLAB原理及应用实验报告第二章答案

MATLAB原理及应用实验报告第二章答案

实验二数组(矩阵)及其运算《MATLAB原理及应用》实验报告1 •课后练习122-1 3 •1、建立/二25-1和B二31-541034-11⑴求矩阵A和B的乘积,矩阵A左除B,以及矩阵A的2次方⑵求数组A和B的乘积,数组A左除B ,及数组A的2次方程序如下:>)A二[1 2 1; 2 5 -1; 4 10 3];»B=[2 —1 3 ;3 1 -5 ; 4 — 1 1];}) C1=A*B;>} C2=A\B;>> C3=A~2;/ ? DI = A •卡B:)> D2 = A. \B;>> D3=A「2;)> Cl运行后显示:C1 =12 0 -615 4-2050 3 -35>> C2C2 =9o S000 4. 0 0 0 0 一了. 5 000 19, 3333 8. 6 6 6 7 -15, 666744, 5 000 19o 00 0 0 -3 5.500 0» C3C3 =9 2 2 28 19 -63 6 88 3» D1D1 二2-2 36 5 51 6 -1 0 3} > D2D2 =0. 5000 -2. 0000 0. 3 3330. 6667 5 o 0000 Oo 2 0 0 01。

0 0 00 - 10o 0 0 00 3. 0 00 0} > D3D3 =1 4 14 25 116 1 0 0 916 3213-1一45 10118 79A =9 6812-424 1514 1 -5152.建立矩阵< 1)用两种方法索引出A矩阵第3行第2列的元素.并将其值改为自己的学号加20(2>索引出A矩阵第2行至第4行.第二列至第5列的所有元素程序如下:〉> A二[16 3 2 1 3 —1 —4; 5 10 11 8 7 9; 9 6 8 1 2 -4 2 :415 14 1 -5 15]A =16 3 2 13 1 -45 10 1 1 8 7 99 6 8 12 —4 24 15 1 4 1 -5 15> > A (3, 2)an s =6>} A(7)ans =6» A(3, 2) = 21A 二1 6 32 13 -1 -45 1 0 11 8 7 g9 2 18 1 2 -4 24 15 1 4 1 -5 15(2) >> B=A(2:4, 2: 5)B =1 011 8 12 1 8 12 -41 5 1 4 1 一53、使用两神方法建立范围为[1°20]的向呈,使得向量中的元素相邻元袤的间隔是2 <1>改变第二个元素的值,并将其赋给一个新的变量〈学号加20〉,并求两个向量的点积(2)从第二个元素开始提取三个元素,并与向量[123]做叉积程序如下:» a=l 0 :2:20 %求 (1) ID 12 16IS20 i nspace(10. 20< 6) 14 IS20b (2) =21 21 20 >> dotb 〉 a ns 1 5 28 b=(3 : 5) %求(2) [12 3] >> cro & s(b,c )4、复数可二彳+及计程序如下:» zl =3+4* i: z2= 1 +2*i: z3=2* e xp z=zl z2/z30o 3349 4 5。

Matlab习题答案

Matlab习题答案
(1) (3− 5i)(4 + 2i) (2) sin (2 − 8i)
参考答案: (1) >> (3-5*i)*(4+2*i) ans =
22.0000 -14.0000i
(2) >> sin(2-8*i) ans =
1.3553e+003 +6.2026e+002i
5.判断下面语句的运算结果。 (1) 4 < 20 (2) 4 <= 20 (3) 4 == 20 (4) 4 ~= 20 (5) 'b'<'B' 参考答案: (1) >> 4<20 ans =
y_nearest(i)=interp1(x,y,scalar_x(i),'nearest'); y_linear(i) =interp1(x,y,scalar_x(i),'linear'); y_spline(i) =interp1(x,y,scalar_x(i),'spline'); y_cubic(i) =interp1(x,y,scalar_x(i),'cubic'); end subplot(2,2,1),plot(x,y,'*'),hold on,plot(scalar_x,y_nearest),title('method=nearest'); subplot(2,2,2),plot(x,y,'*'),hold on,plot(scalar_x,y_linear),title('method=linear'); subplot(2,2,3),plot(x,y,'*'),hold on,plot(scalar_x,y_spline),title('method=spline'); subplot(2,2,4),plot(x,y,'*'),hold on,plot(scalar_x,y_cubic),title('method=cubic'); 得到结果为:

数字图像处理及应用(MATLAB)第2章习题答案

数字图像处理及应用(MATLAB)第2章习题答案

7.平均值说明f (x ,y )的平均值等于其傅里叶变换F (u ,v )在频率原点的值F (0,0)。

2-3证明离散傅里叶变换的频率位移和空间位移性质。

证明:)(2101),(1),(NvyM ux j M x N y e y x f MN v u F +--=-=∑∑=π),(),(1),(100)(21010)(2)(21010000v v u u F dxdy ey x f MNe ey x f MN y Nv v x M u u j M x N y N yv M x u j Nvy M ux j M x N y --==-+---=-=++--=-=∑∑∑∑πππ因为()()v u F y x f ,,⇔ 所以 ),(),(00)(200v v u u F e y x f N y v M x u j --⇔+π2-4小波变换是如何定义的?小波分析的主要优点是什么?小波之所以小,是因为它有衰减性,即是局部非零的;而称为波,则是因为它有波动性,即其取值呈正负相间的振荡形式,将)(2R L 空间的任意函数f (t )在小波基下展开,称其为函数f (t )的连续小波变换。

小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号的要求从而可聚焦到信号的任意细节,解决了Fourier 变换的困难问题。

2-5 在图像缩放中,采用最近邻域法进行放大时,如果放大倍数太大,可能会出现马赛克效应,这个问题有没有办法解决,或者有所改善。

可以利用线性插值法,当求出的分数地址与像素点不一致时,求出周围四个像素点的距离比,根据该比率, 由四个邻域的像素灰度值进行线性插值。

2-6 复合变换的矩阵等于基本变换的矩阵按顺序依次相乘得到的组合矩阵。

即,T=T N T N-1…T 1。

问矩阵顺序的改变能否影响变换的结果。

矩阵顺序的改变不会影响变换的结果。

matlab 部分答案

matlab 部分答案

⎡ 3sin x ⎤ 11.设 y = cos x ⎢0.5 + ⎥ ,把 x = 0 ~ 2π 间分为 125 点,画出以 x 为横坐标, y 为纵坐标 (1 + x 2 ) ⎦ ⎣
的曲线。 MATLAB:x=0:2*pi/125:2*pi; y=cos(x*(0.5+3*sin(x)/(1+x.*x))); plot(x, y) 12.设 x = z sin 3z , y = z cos 3 z ,要求画出在 z = −45 ~ 45 区间内画出 x, y, z 三维曲线。 MATLAB: z=-45:0.02:45; x=z.*sin(3*z); y=z.*cos(3*z);
2.在某处测得海洋不同深度处水温如下:
深度(M) 水温 446 7.04 714 4.28 950 3.40 1422 2.54
利用分段线性插值函数,求在深度 500 米、1000 米、1500 米处的水温。 3. 已知四点 P1(1,0) ,P2(0,1),P1(-1,0),P4(0,-1),利用样条插值函数画一通过这四点的 圆。
ww w
.k
hd a
w. c
方法二:建立函数文件myfun.m
om
MATLAB:方法一:>> y=quad('exp(-x)+x.^2',0,1)
⎧12 y 2 f ( x, y ) = ⎨ ⎩ 0
求 E ( X ) 、 E (Y ) 、 E ( XY ) 。
0 ≤ y ≤ x ≤1 其它
18.生成一个 4 × 4 的随机矩阵,并对其进行三角分解和正交分解。
10.设有对称实矩阵
⎡2 4 9 ⎤ ⎥ a=⎢ ⎢4 2 4 ⎥ ⎢ ⎣9 4 18⎥ ⎦

matlab教程第二章课堂练习及答案

matlab教程第二章课堂练习及答案

Matlab教程第二章符号计算课堂练习1 创建符号变量有几种方法?MATLAB提供了两种创建符号变量和表达式的函数:sym和syms。

sym用于创建一个符号变量或表达式,用法如x=sym(‘x’) 及f=sym(‘x+y+z’),syms用于创建多个符号变量,用法如syms x y z。

f=sym(‘x+y+z’)相当于syms x y zf= x+y+z2 下面三种表示方法有什么不同的含义?(1)f=3*x^2+5*x+2(2)f='3*x^2+5*x+2'(3)x=sym('x')f=3*x^2+5*x+2(1)f=3*x^2+5*x+2表示在给定x时,将3*x^2+5*x+2的数值运算结果赋值给变量f,如果没有给定x则指示错误信息。

(2)f='3*x^2+5*x+2'表示将字符串'3*x^2+5*x+2'赋值给字符变量f,没有任何计算含义,因此也不对字符串中的内容做任何分析。

(3)x=sym('x')f=3*x^2+5*x+2表示x是一个符号变量,因此算式f=3*x^2+5*x+2就具有了符号函数的意义,f也自然成为符号变量了。

3 用符号函数法求解方程a t2+b*t+c=0。

>> r=solve('a*t^2+b*t+c=0','t')[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))] [ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]4 用符号计算验证三角等式:sin(ϕ1)cos(ϕ2)-cos(ϕ1)sin(ϕ2) =sin(ϕ1-ϕ2) >> syms phi1 phi2;>> y=simple(sin(phi1)*cos(phi2)-cos(phi1)*sin(phi2)) y =sin(phi1-phi2)5 求矩阵⎥⎦⎤⎢⎣⎡=22211211a a a a A 的行列式值、逆和特征根。

MATLAB运算基础(第2章)答案

MATLAB运算基础(第2章)答案

实验01讲评、参考答案讲评未交实验报告的同学名单数学:6人(11、12级)信科:12-04, 12-22, 13-47批改情况:问题1:不仔细,式子中出错。

问题2:提交的过程不完整。

问题3:使用语句尾分号(;)不当,提交的过程中不该显示的结果显示。

问题4:截屏窗口没有调整大小。

附参考答案:《MATLAB软件》课内实验王平实验01 MATLAB运算基础(第2章MATLAB数据及其运算)一、实验目的1. 熟悉启动和退出MATLAB 的方法。

2. 熟悉MATLAB 命令窗口的组成。

3. 掌握建立矩阵的方法。

4. 掌握MATLAB 各种表达式的书写规则以及常用函数的使用。

二、实验内容1. 数学表达式计算先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

1.1 计算三角函数122sin 851z e=+(注意:度要转换成弧度,e 2如何给出) 示例:点击Command Window 窗口右上角的,将命令窗口提出来成悬浮窗口,适当调整窗口大小。

命令窗口中的执行过程:1.2 计算自然对数221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦(提示:clc 命令擦除命令窗口,clear 则清除工作空间中的所有变量,使用时注意区别,慎用clear 命令。

应用点乘方) 命令窗口中的执行过程:1.3 求数学表达式的一组值0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。

命令窗口中的执行过程:1.4 求分段函数的一组值2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5提示:用逻辑表达式求分段函数值。

命令窗口中的执行过程:1.5 对工作空间的操作接着显示MATLAB当前工作空间的使用情况并保存全部变量提示:用到命令who, whos, save, clear, load,请参考教材相关内容。

MATLAB运算基础(第2章)答案培训资料

MATLAB运算基础(第2章)答案培训资料

M A T L A B运算基础(第2章)答案实验01讲评、参考答案讲评未交实验报告的同学名单批改情况:问题1:不仔细,式子中出错。

问题2:提交的过程不完整。

问题3:使用语句尾分号(;)不当,提交的过程中不该显示的结果显示。

问题4:截屏窗口没有调整大小。

附参考答案:实验01 MATLAB 运算基础(第2章 MATLAB 数据及其运算)一、实验目的1. 熟悉启动和退出MATLAB 的方法。

2. 熟悉MATLAB 命令窗口的组成。

3. 掌握建立矩阵的方法。

4. 掌握MATLAB 各种表达式的书写规则以及常用函数的使用。

二、实验内容1. 数学表达式计算先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

1.1 计算三角函数122sin 851z e=+(注意:度要转换成弧度,e 2如何给出) 《MATLAB 软件》课内实验王平示例:点击Command Window 窗口右上角的,将命令窗口提出来成悬浮窗口,适当调整窗口大小。

命令窗口中的执行过程:1.2 计算自然对数221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦(提示:clc 命令擦除命令窗口,clear 则清除工作空间中的所有变量,使用时注意区别,慎用clear 命令。

应用点乘方)命令窗口中的执行过程:1.3 求数学表达式的一组值0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。

命令窗口中的执行过程:1.4 求分段函数的一组值2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5 提示:用逻辑表达式求分段函数值。

命令窗口中的执行过程:1.5 对工作空间的操作接着显示MATLAB当前工作空间的使用情况并保存全部变量提示:用到命令who, whos, save, clear, load,请参考教材相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一大题:(1)a = 7/3b = sym(7/3)c = sym(7/3,'d')d = sym('7/3')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =2.3333b =7/3c =2.3333333333333334813630699500209d =7/3v1 =0.0v2 =0.0v3 =0.00000000000000014802973661668756666666667788716(2)a = pi/3b = sym(pi/3)c = sym(pi/3,'d')d = sym('pi/3')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =1.0472b =pi/3c =1.047197551196597631317786181171d =pi/3v1 =0.0v2 =0.0v3 =0.00000000000000011483642827992216762806615818554(3)a = pi*3^(1/3)b = sym(pi*3^(1/3))c = sym(pi*3^(1/3),'d')d = sym('pi*3^(1/3)')v1=vpa(abs(a-d))v2=vpa(abs(b-d))v3=vpa(abs(c-d))a =4.5310b =1275352044764433/281474976710656c =4.5309606547207899041040946030989d =pi*3^(1/3)v1 =0.00000000000000026601114166290944374842393221638 v2 =0.00000000000000026601114166290944374842393221638 v3 =0.0000000000000002660111416629094726767991785515第二大题:(1)c1=3/7+0.1c1 =0.5286双精度(2)c2=sym(3/7+0.1)c2 =37/70符号(3)c3=vpa(sym(3/7+0.1))c3 =0.52857142857142857142857142857143完整显示精度第三大题:(1)findsym(sym('sin(w*t)'),1)ans =w(2)findsym(sym('a*exp(-X)' ) ,1)ans =a(3)findsym(sym('z*exp(j*theta)'),1)ans =z第四大题:A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]')A =[ a11, a12, a13][ a21, a22, a23][ a31, a32, a33]DA=det(A)DA =a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31w=inv(A)w =[ (a22*a33 - a23*a32)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), -(a12*a33 -a13*a32)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), (a12*a23 - a13*a22)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] [ -(a21*a33 - a23*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), (a11*a33 -a13*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), -(a11*a23 - a13*a21)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] [ (a21*a32 - a22*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31), -(a11*a32 -a12*a31)/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 +a13*a21*a32 - a13*a22*a31), (a11*a22 - a12*a21)/(a11*a22*a33 -a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)] IAs=subexpr(w,'d')d =1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)IAs =[ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 -a13*a22)][ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d*(a11*a23 -a13*a21)][ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 -a12*a21)]第六大题:syms ksyms x positives_s=2/(2*k+1)*((x-1)/(x+1))^(2*k+1)s_ss=simple(symsum(s_s,k,0,inf))s_s =(2*((x - 1)/(x + 1))^(2*k + 1))/(2*k + 1)警告: simple will be removed in a future release. Use simplify instead. [> In sym.simple at 41]s_ss =log(x)第八大题:syms x clearsyms xh=exp(-abs(x))*abs(sin(x))si=vpa(int(h,-5*pi,1.7*pi),64)h =abs(sin(x))*exp(-abs(x))si =1.087849417255503701102633764498941389696991336803454392428439159 第九大题:syms x y clearsyms x yr=int(int(x^2+y^2,y,1,x^2),x,1,2)r =1006/105第十大题:syms t x;f=sin(t)/t;y=int(f,t,0,x)y1=subs(y,x,sym('4.5'))ezplot(y,[0,2*pi])y =sinint(x)y1 =syms x clearsyms x ny=sin(x)^nyn=int(y,0,1/2*pi)y31=vpa(subs(yn,n,sym('1/3')))y32=vpa(subs(yn,n,1/3))y =sin(x)^nyn =piecewise([-1 < real(n), beta(1/2, n/2 + 1/2)/2], [real(n) <= -1, int(x^n/(1 - x^2)^(1/2), x, 0, 1)])y31 =1.2935547796148952674767575125656y32 =1.2935547796148952674767575125656第二十题:clearsyms y xy=dsolve('(Dy*y)/5+x/4=0','x')y =2^(1/2)*(C6 - (5*x^2)/8)^(1/2)-2^(1/2)*(C6 - (5*x^2)/8)^(1/2)y1=subs(y,'C6',1)y1 =2^(1/2)*(1 - (5*x^2)/8)^(1/2)-2^(1/2)*(1 - (5*x^2)/8)^(1/2)clfhy1=ezplot(y1(1),[-2,2,-2,2],1)set(hy1,'Color','r')grid onhold onhy2=ezplot(y1(2),[-2,2,-2,2],1)set(hy2,'Color','b')grid onxlabel('Y')ylabel('X')hold offbox onlegend('y(1)','y(2)','Location','Best')hy1 =174.0155hy2 =177.0145。

相关文档
最新文档