信息论与编码试题集
信息论与编码试题集

信息论与编码试题集题目一:1. 请解释以下术语的含义:a) 信源熵b) 信源编码c) 香农定理d) 奈奎斯特准则e) 奇偶校验码2. 在一个二进制对称信道中,如果发送方发送的比特为0,接收方接收到的比特也为0的概率为0.9,发送方发送的比特为1,接收方接收到的比特也为1的概率为0.8。
请计算该信道的信道容量。
题目二:1. 在一个具有4个等概率输出符号的信源中,计算该信源的熵。
2. 一个典型的英文字母出现的概率如下:P(A) = 0.4, P(B) = 0.3, P(C) = 0.2, P(D) = 0.1。
请计算该信源的平均码长以及编码效率。
题目三:1. 请解释Huffman编码的原理及步骤。
2. 使用Huffman编码对以下信源的输出编码:A: 0.3,B: 0.2,C: 0.15,D: 0.1,E: 0.1,F: 0.05,G: 0.05,H: 0.05。
计算编码的平均码长和编码效率。
题目四:1. 请解释线性分组码和卷积码的区别。
2. 针对一个二进制码串11001011,使用以下生成矩阵计算该码串的卷积码:G = [1 1 0 1; 1 0 1 0]。
给出计算过程和最终编码结果。
题目五:1. 请解释码激励方法。
2. 针对一个码激励线性分组码,当收到的码字为101010时,给出该码字的输入和输出码字。
题目六:1. 请解释BCH编码的原理及应用场景。
2. 对一个BCH(n, k)码,当n=15,k=11时,请给出该BCH码的生成矩阵。
题目七:1. 请解释LDPC码以及LDPC码的译码方法。
2. 对于一个n=7,k=4的LDPC码,给出该LDPC码的校验矩阵。
题目八:1. 请比较分组密码与流密码的特点和应用场景。
2. 使用RC4流密码算法对明文"HELLO"进行加密,已知初始密钥为"KEY",给出加密后的密文。
题目九:1. 请解释区块密码与流密码的工作原理和区别。
信息论与编码期末考试题

信息论与编码期末考试题信息论与编码期末考试题(一)一、判断题.1.当随机变量和相互独立时,条件熵等于信源熵.()2.由于构成同一空间的基底不是唯一的,所以不同的基底或生成矩阵有可能生成同一码集.()3.一般情况下,用变长编码得到的平均码长比定长编码大得多.()4.只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信.()5.各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件.()6.连续信源和离散信源的熵都具有非负性.()7.信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小.8.汉明码是一种线性分组码.()9.率失真函数的最小值是.()10.必然事件和不可能事件的自信息量都是.()二、填空题1、码的检、纠错能力取决于.2、信源编码的目的是;信道编码的目的是.3、把信息组原封不动地搬到码字前位的码就叫做.4、香农信息论中的三大极限定理是、、.5、设信道的输入与输出随机序列分别为和,则成立的条件..6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是.7、某二元信源,其失真矩阵,则该信源的= .三、计算题.1、某信源发送端有2种符号,;接收端有3种符号,转移概率矩阵为.(1)计算接收端的平均不确定度;(2)计算由于噪声产生的不确定度;(3)计算信道容量以及最佳入口分布.2、一阶马尔可夫信源的状态转移图如右图所示,信源的符号集为.(1)求信源平稳后的概率分布;(2)求此信源的熵;(3)近似地认为此信源为无记忆时,符号的概率分布为平稳分布.求近似信源的熵并与进行比较.3、设码符号为,信源空间为试构造一种三元紧致码.4、设二元线性分组码的生成矩阵为.(1)给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;(2)若接收矢量,试计算出其对应的伴随式并按照最小距离译码准则试着对其译码.(二)一、填空题1、信源编码的主要目的是,信道编码的主要目的是2、信源的剩余度主要来自两个方面,一是,二是3、三进制信源的最小熵为,最大熵为4、无失真信源编码的平均码长最小理论极限制为5、当时,信源与信道达到匹配。
信息论与编码试题集与答案

1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。
4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。
6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。
输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。
7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。
四、计算题1.已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y解: (0)2/3p x == (1)1/3p x == (0)1/3p y == (1)2/3p y == ()()(1/3,2/3)H X H Y H ===0.918 bit/symbol(),(1/3,1/3,1/3)H X Y H ==1.585 bit/symbol ();()()(,)I X Y H X H Y H X Y =+-=0.251 bit/symbol2.某系统(7,4)码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:231013210210c m m m c m m m c m m m=++⎧⎪=++⎨⎪=++⎩ 01X Y011/31/301/3(1)求对应的生成矩阵和校验矩阵; (2)计算该码的最小距离;(3)列出可纠差错图案和对应的伴随式; (4)若接收码字R =1110011,求发码。
信息论与编码试题集与答案(新)

0.柑应的编码器转移概率矩阵[/<vA)]-; 7・已知用户A 的RSA 公开密钥(匕八)=(3,55),“ = 5凶=11,贝I]0(”)=40 ,他的秘密密钥(仆)=(27・55)。
若用户B 向用户A 发送加=2的加密消息,则该加密后的消息为& 二、判断题 1.可以用克劳夫特不等式作为唯一可译码存在的判据。
(«〉2. 线性码一定包含全零码。
(«)3•算术编码是一种无失頁•的分组信源编码,苴基本思想是将一企精度数值作为序列的 编码,是以另外一种形式实现的最佳统讣匹配编码。
(X)4. 某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息虽。
(X)5. 离散平稳有记忆信源符号序列的平均符号爛随着序列长度L 的增大而增大。
(X 〉6. 限平均功率最大:W 定理指出对于相关矩阵一定的随机矢MX.当它是正态分布时具有最大墻。
(V)7.循环码的码集中的任何一个码字的循环移位仍是码字。
(5/ )&信道容量是信道中能够传输的最小信息量。
(X)9. 香农信源编码方法在进行编码时不需要预先计算每个码字的长度。
10. 在已知收码R 的条件下找出可能性最大的发码Cj 作为译码估计值,法叫做最佳译码。
(«) 三、计算题某系统(7, 4)码£ =(5©5 q Cj c, c, Co) = (g nt, “ 叭 c,系为:為=竹 + /Mj +' C, = /«3 ++ /ZljC 0= W, +Z», + 加0 求对应的生成矩阵和校验矩阵: 计算该码的最小距离: 列出可纠差错图案和对应的伴随式: 若接收码字/?=! 110011,求发码。
1・在无失真的信源中,信源输出由 H(X)来度量:在有失竟的信源中,信源输出由_ R(D)来度量• 2•要使通信系统做到传输信息有效、可靠和保密,必须首先信源编码, 然后—加密—编码,再_ 信道 编码.最后送入信逍。
信息论与编码试题集与答案

一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有比特、奈特和哈特。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是∞。
15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。
17、离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。
18、离散平稳有记忆信源的极限熵,。
19、对于n元m阶马尔可夫信源,其状态空间共有 nm 个不同的状态。
计算机科学技术:信息论与编码真题

计算机科学技术:信息论与编码真题1、判断题(江南博哥)狭义的信道编码既是指:信道的检、纠错编码。
答案:对2、填空题信源的消息通过信道传输后的误差或失真越大道传输消息所需的信息率()。
答案:也越小3、填空题互信息I(X;Y)与信息熵H(Y)的关系为:I(X;Y)()(大于、小于或者等于)H(Y)。
答案:小于4、判断题互信息量I(X;Y)表示收到Y后仍对信源X的不确定度。
答案:对5、填空题线性分组码是同时具有()的纠错码。
答案:分组特性和线性特性6、填空题连续信源或模拟信号的信源编码的理论基础是()。
答案:限失真信源编码定理7、填空题设有一个离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R()C(大于、小于或者等于),则存在一种编码,当输入序列长度n 足够大,使译码错误概率任意小。
答案:小于8、名词解释香农信息答案:信息是事物运动状态或存在方式的不确定性的描述。
9、名词解释码距答案:两个等长码字之间对应码元不相同的数目,称为码距10、单选一珍珠养殖场收获240颗外观及重量完全相同的特大珍珠,但不幸被人用外观相同但重量仅有微小差异的假珠换掉1颗。
一人随手取出3颗,经测量恰好找出了假珠,不巧假珠又滑落进去,那人找了许久却未找到,但另一人说他用天平最多6次能找出,结果确是如此,这一事件给出的信息量()。
A.0bitB.log6bitC.6bitD.log240bit答案:A11、填空题平均失真度的下限取0的条件是失真矩阵的()。
答案:每一行至少有一个零元素12、判断题信源编码是提高通信有效性为目的的编码。
答案:对13、判断题最大信息传输速率,即:选择某一信源的概率分布(p(xi)),使信道所能传送的信息率的最大值。
答案:错14、填空题一般情况下,信源编码可以分为()、()和()。
答案:离散信源编码;连续信源编码;相关信源编码15、判断题游程序列的熵(“0”游程序列的熵与“1”游程序列的熵的和)大于等于原二元序列的熵。
信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码试题集与答案(新)

1 4
w1
1 3
w2
2 3
w3
w1
(2)
1 4
1 2
w1 w1
1 3
1 3
w1 w2
w2 w2 w3
1 3
w3
w3
1
w2
→
ww12
0.4 0.3
w3 0.3
H(X|S1) =H(1/4,1/4,1/2)=1.5 比特/符号 H(X|S2)=H(1/3,1/3,1/3)=1.585 比特/符号 H(X|S3)=H(2/3,1/3)= 0.918 比特/符号
1. 在无失真的信源中,信源输出由
H(X) 来度量;在有失真的信源中,信源输出由
R(D) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码,
然后_____加密____编码,再______信道_____编码,最后送入信道。 3. 带限 AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公
m1 m2
m0 m1
c 0 m2 m1 m0
(1)求对应的生成矩阵和校验矩阵; (2)计算该码的最小距离; (3)列出可纠差错图案和对应的伴随式;
(4)若接收码字 R=1110011,求发码。
解:1.
1 0 0 0 1 1 0
G
0 0
1 0
0 1
0 0
0 1
1 1
1 1
0 0 0 1 1 0 1
式是 C W log(1 SNR) ;当归一化信道容量 C/W 趋近于零时,也即信道完全丧失了通
信能力,此时 Eb/N0 为 -1.6 dB,我们将它称作香农限,是一切编码方式所能达到的理论 极限。 4. 保密系统的密钥量越小,密钥熵 H(K)就越 小 ,其密文中含有的关于明文的信息量 I(M; C)就越 大 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。
4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。
5. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。
输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。
二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。
( )2. 线性码一定包含全零码。
( )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。
(×)4. 某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息量。
(×)5. 离散平稳有记忆信源符号序列的平均符号熵随着序列长度L 的增大而增大。
(×)6. 限平均功率最大熵定理指出对于相关矩阵一定的随机矢量X ,当它是正态分布时具 有最大熵。
( )7. 循环码的码集中的任何一个码字的循环移位仍是码字。
()8. 信道容量是信道中能够传输的最小信息量。
(×) 9. 香农信源编码方法在进行编码时不需要预先计算每个码字的长度。
(×) 10. 在已知收码R 的条件下找出可能性最大的发码i C 作为译码估计值,这种译码方 法叫做最佳译码。
( )三、计算题某系统(7,4)码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:231013210210c m m m c m m m c m m m=++⎧⎪=++⎨⎪=++⎩ (1)求对应的生成矩阵和校验矩阵;(2)计算该码的最小距离;(3)列出可纠差错图案和对应的伴随式; (4)若接收码字R =1110011,求发码。
解:1. 1000110010001100101110001101G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦101110011100100111001H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2. d min =33.4. RH T=[001] 接收出错E =0000001 R+E=C = 1110010 (发码)四、计算题已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y解: (0)2/3p x == (1)1/3p x ==(0)1/3p y == (1)2/3p y ==()()(1/3,2/3)H X H Y H === bit/symbol (),(1/3,1/3,1/3)H X Y H == bit/symbol ();()()(,)I X Y H X H Y H X Y =+-= bit/symbol01X Y011/31/301/3六、计算题若有一信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2.08.021x x P X ,每秒钟发出个信源符号。
将此信源的输出符号送入某一个二元信道中进行传输 (假设信道是无噪无损的,容量为1bit/二元符号), 而信道每秒钟只传递2个二元符号。
(1) 试问信源不通过编码(即x 10,x 21在信道中传输) (2) 能否直接与信道连接(3) 若通过适当编码能否在此信道中进行无失真传输 (4) 试构造一种哈夫曼编码(两个符号一起编码),(5) 使该信源可以在此信道中无失真传输。
解:1.不能,此时信源符号通过0,1在信道中传输,二元符号/s>2二元符号/s 2. 从信息率进行比较, *(0.8,0.2)H = < 1*2可以进行无失真传输3.410.640.16*20.2*3i i i K p K ===++=∑ 二元符号/2个信源符号此时 2*=二元符号/s < 2二元符号/s七、计算题两个BSC 信道的级联如右图所示: (1)写出信道转移矩阵; (2)求这个信道的信道容量。
解: (1)22122211(1)2(1)112(1)(1)P PP εεεεεεεεεεεεεεεε--⎡⎤-+-⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥----+⎣⎦⎣⎦⎣⎦x 1x 1x 1x 2x 2x 1x 2x 2 0.640.160.16 10111001010.64 0.20.1601010.360101εεεε1ε-1ε-1ε-1ε-(2)22log 2((1))C H εε=--+信息理论与编码试卷A答案中南大学考试试卷200 -- 2010 学年 上学期期末考试试题 时间100分钟信息论基础 课程 32 学时 学分 考试形式: 闭 卷专业年级: 通信07级 总分100分,占总评成绩70%注:此页不作答题纸,请将答案写在答题纸上一、填空题 (每空2分,共20分) 1.设X的取值受限于有限区间[a,b ],则X 服从 均匀 分布时,其熵达到最大;如X 的均值为μ,方差受限为2σ,则X 服从 高斯 分布时,其熵达到最大。
2.信息论不等式:对于任意实数0>z ,有1ln -≤z z ,当且仅当1=z 时等式成立。
3.设信源为X={0,1},P (0)=1/8,则信源的熵为 )8/7(log 8/78log 8/122+比特/符号,如信源发出由m 个“0”和(100-m )个“1”构成的序列,序列的自信息量为)8/7(log )100(8log 22m m -+比特/符号。
4.离散对称信道输入等概率时,输出为 等概 分布。
5.根据码字所含的码元的个数,编码可分为 定长 编码和 变长 编码。
6.设DMS 为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡03.007.010.018.025.037.0.654321u u u u u u P U U ,用二元符号表}1,0{21===x x X 对其进行定长编码,若所编的码为{000,001,010,011,100,101},则编码器输出码元的一维概率=)(1x P , =)(2x P 。
二、简答题(30分)1.什么是损失熵、噪声熵什么是无损信道和确定信道如输入输出为s r ⨯,则它们的分别信道容量为多少 答:将H (X|Y )称为信道},,{|Y P X X Y 的疑义度或损失熵,损失熵为零的信道就是无损信道,信道容量为logr 。
将H (Y|X )称为信道},,{|Y P X X Y 的噪声熵,噪声熵为零的信道就是确定信道,信道容量为logs 。
2.信源编码的和信道编码的目的是什么 答:信源编码的作用:(1)符号变换:使信源的输出符号与信道的输入符号相匹配;(2)冗余度压缩:是编码之后的新信源概率均匀化,信息含量效率等于或接近于100%。
信道编码的作用:降低平均差错率。
3.什么是香农容量公式为保证足够大的信道容量,可采用哪两种方法 答:香农信道容量公式:)1(log )(02BN P B P C SS +=,B 为白噪声的频带限制,0N 为常数,输入X (t )的平均功率受限于S P 。
由此,为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
4.什么是限失真信源编码答:有失真信源编码的中心任务:在允许的失真范围内把编码的信息率压缩到最小。
三、综合题(20+15+15)1. 设随机变量}1,0{},{21==x x X 和}1,0{},{21==y y Y 的联合概率空间为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡8/18/38/38/1),(),(),(),(22122111y x y x y x y x P XY XY定义一个新的随机变量Y X Z ⨯=(普通乘积)(1) 计算熵H (X ),H (Y ),H (Z ),H (XZ ),H (YZ ),以及H (XYZ ); (2) 计算条件熵 H (X|Y ),H (Y|X ),H (X|Z ),H (Z|X ),H (Y|Z ),H (Z|Y ),H (X|YZ ),H (Y|XZ )以及H (Z|XY );(3) 计算平均互信息量I (X ;Y ),I (X :Z ),I (Y :Z ),I (X ;Y|Z ),I (Y ;Z|X )以及I (X :,Z|Y )。
解:(1)12log 2/12log 2/1)(12log 2/12log 2/1)(2222=+==+=Y H X H8/1008/308/308/1111110101100011010001000XYZ8/18/710Z8log 8/1)7/8(log 8/7)(22+=Z H 8/18/302/111100100XZ8log 8/1)3/8(log 8/32log 2/1)(222++=XZ H 8/18/302/111100100YZ8log 8/1)3/8(log 8/32log 2/1)(222++=YZ H(2)))3/4(log 4/34log 4/1(2/1))3/4(log 4/34log 4/1(2/1)|(2222+++=Y X H ))3/4(log 4/34log 4/1(2/1))3/4(log 4/34log 4/1(2/1)|(2222+++=X Y H)1log 10log 0(8/1))3/7(log 7/3)4/7(log 7/4(8/7)|(2222+++=Z X H )4log 4/1)3/4(log 4/3(2/1)0log 01log 1(2/1)|(2222+++=X Z H)1log 10log 0(8/1))3/7(log 7/3)4/7(log 7/4(8/7)|(2222+++=Z Y H )4log 4/1)3/4(log 4/3(2/1)0log 01log 1(2/1)|(2222+++=Y Z H)0log 01log 1(8/1)0log 01log 1(8/3))3/4(log 4/34log 4/1(2/1)|(222222+++++=YZ X H)0log 01log 1(8/1)0log 01log 1(8/3))3/4(log 4/34log 4/1(2/1)|(222222+++++=XZ Y H 0)|(=XY Z H(3))|()();(Y X H X H Y X I -=)|()();(Z X H X H Z X I -= )|()();(Z Y H Y H Z Y I -=)|()|()|;(YZ X H Z X H Z Y X I -= )|()|()|;(ZY X H Y X H Y Z X I -=2. 设二元对称信道的输入概率分布分别为]4/14/3[][=X P ,转移矩阵为[]⎥⎦⎤⎢⎣⎡=3/23/13/13/2|XY P , (1) 求信道的输入熵,输出熵,平均互信息量;(2) 求信道容量和最佳输入分布; (3) 求信道剩余度。