《微积分2》期末考试试题及答案

合集下载

微积分下册期末试卷及答案

微积分下册期末试卷及答案

评 分
评 阅 人
14、用拉格朗日乘数法求 在满足条件 下的极值.
评 分
评 阅 人
15、计算.
评 分
评 阅 人
16、计算二重积分
,其中
是由
轴及圆周
所围成的在第一象限内的区域.
评 分
评 阅 人
17、解微分方程.
评 分
评 阅 人
18、判别级数的敛散性.
评 分
评 阅 人
19、将函数展开成的幂级数.
评 分
也收敛。
证:,
…(3分)
而由已知收敛,故由比较原则,也收敛。 …(5分)
2、设,其中为可导函数, 证明.
证明:因为,
…(2分)
…(4分)
所以.
…(5分)


一、填空题(每小题3分,共15分) 分
卷 人
1、设
,且当
时,
,则
.
2、计算广义积分
.
3、设,则
. 4、微分方程具有
形式的特解.
5、级数的和为
.
的反函数为
。且时,。于是
12、求二重极限 .
解:原式
(3分)
(6分)
13、由确定,求.
解:设
,则
, ,
, (3分)
(6分) 14、用拉格朗日乘数法求 在条件下的极值. 解:
令 ,得 , , 为极小值点. (3分)
故 在 下的极小值点为
,极小值为
(6分)
15、计算. 解:
(6分)
16、计算二重积分 ,其中 是由 轴及圆周 所围成的在第一象限内的区域. 解: = =

评 分
评 阅 人
21、设级数

(微积分II)课外练习题 期末考试题库

(微积分II)课外练习题 期末考试题库

《微积分Ⅱ》课外练习题一、选择:1. 函数在闭区间上连续是在上可积的. ( )A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.无关条件2. 二元函数定义域是. ( ) B.D.比较大小:. ( )B. C. D.不确定4.微分方程的阶数是. ( )A.5 B.3 C.2 D.15.下列广义积分发散的是. ( )A. B. C. D.6.是级数收敛的条件. ( )A.必要非充分 B.充分非必要 C.充分必要 D.无关7.如果点为的极值点,且在点处的两个一阶偏导数存在,则点必为的. ( )最大值点 B.驻点 C.最小值点 D.以上都不对微分方程是微分方程. ( )A.一阶线性非齐次 B. 一阶齐次 C. 可分离变量的 D. 一阶线性齐次9 .设是第一象限内的一个有界闭区域,而且。

记,,,则的大小顺序是. ( )C. D.10. 函数的连续区域是. ( )B.D.1. . ( )B. C. D.12.下列广义收敛的是. ( ) A. B. C. D..下列方程中,不是微分方程的是. ( ) A. B. C. D..微分方程的阶数是. ( )A.5 B.3 C.2 D.1.二元函数的定义域是. ( )A. B.C. D..设,则 ( )A. B. C. D..= 其中积分区域D为区域:. ( )A. B. C. D.18.下列等式正确的是. ( ) A.B.C.D.19.二元函数的定义域是. ( )A. B.C. D.20.曲线在上连续,则曲线与以及轴围成的图形的面积是.( )A.B.C.D.||.. ( )A. B. C. D.22.= 其中积分区域D为区域:. ( )A. B. C. D.23.下列式子中正确的是. ( )A. B.C. D.以上都不对24. 二元函数的定义域是 ( )A. B.C. D.25.二元函数在点的某一邻域内有连续的偏导数是函数在点的.( )A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.无关条件26.设,则. ( )A. B. C. D.. . ( )A. B. C. D.. = 其中积分区域D为区域:. ( )A. B. C. D.29. . ( )A. B. C. D.30. 则=. ( )A. B. C. D.31.函数的连续区域是. ( )A. B.C. D.32. . ( )A. B. C. D.33.差分方程的阶数为. ( )A. B. C. D.34.微分方程的阶数是 ( )A. B. C. D.35.函数的定义域是. ( )A. B.C. D.36.级数的部分数列有界是该级数收敛的. ( )A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.无关条件37. ,其中积分区域D为区域. ( )A. B. C. D.38.微分方程的阶是. ( )A.一阶 B. 二阶 C.三阶 D.以上均不对 39.. ( )A. B. C. D.40.二元函数的定义域是 ( )A. B.C. D.以上都不对41.设,则 ( )A. B. C. D.42.下列式子中正确的是. ( )A. B. C. D.以上都不对43., ( )A. B. C. D.44.微分方程是. ( )A.一阶线性非齐次微分方程 B.一阶齐次微分方程C.可分离变量的微分方程 D.不可分离变量的微分方程45. 设是第二象限内的一个有界闭区域,而且。

微积分二期末复习题归纳

微积分二期末复习题归纳

12
2. 已知生产某种产品必须投入两种要素,投入量分别为 x1和x2 ,生产函数为 Q = 2x13 x23 ,
其中 Q 为产出量。假设两种要素的价格分别为 4 和 1。试问当产出量 Q=12 时,两要素各投入多少可以使 总费用最小。(04)
12
解:总费用函数为 L
=
4 x1
+
x2
+
λ
(2
x13
x
3 2

∂2z ∂x∂y
=
f1′ex
+
y(ex )2
f1′1′ + (2x −
y)ex
f1′2′

2
xf
′′
22
4.设 w = f (x + y + z, x y z) , f 具有二阶连续导数,求 ∂w , ∂2 w .(05)续 F 偏导数, ∂x ∂x∂z
解:
∂w = ∂x
f1′⋅1 +
f2′⋅ y z
为偶函数(
Q
(1
+
e−x e−x
)
2
=
e−x (1 + e−x
⋅ e2x )2 ⋅e2x
= ex (1 + e x )2

∫∴
π 4 −π
4
sin
x

ex (1 + e x
)2
dx = 0 ,故原式=
2 2
∫2
2.
x
dx (03)(根式代换: u = x − 1 )
1 x −1
1
∫ 3. 已知 y′(x) = arctan(x −1)2 , y(0) = 0,求 y(x)dx. (03)(先自己做吧~) 0

江西财经大学微积分II期末考试题及答案

江西财经大学微积分II期末考试题及答案
F () lim F ( x)
x


b

其中
F () lim F ( x)
x



f ( x)dx f ( x)dx

c

c
f ( x)dx
其中 c 为任意取定的常数. 当且仅当右端两个广义积分都收敛时,左端的广义积分 才收敛,否则发散.
9.已知f ( x) sin x,则 f ( x)dx •••••• • ;
10.• lim 若
x 0
x
0
arctan xdx x
2
1,则 •••••• ;
x 2n 1 x 12.• e ,则级数 若 ••••••• ; n! n 0 n ! n2 n
五、(1).求 xy 2 dxdy, 其中D ( x, y) |1 x 2 y 2 2
D
(2).求 ( x x 2 y 2 )d,其中D : x 2 y 2 1.
六、1.设D ( x, y ) | ( x 1) y 1, y 2 x, x 2 ,
2 1 1 x2 II : 1.• 2. 3. x x 1 dx•••• •0 4 x 2 dx ••••• •0 arctan xdx
y 2Z 2Z 四、设z arctan ,求dz和 2 2 1. x x y
2.•求分程y y y x的通解
2Z 3.设z f ( x y, x sin y ),求dz和 xy
练习思考题
一、填空题
1.• z x 2 2 x y 2的驻点为•••••••••• 求 ;
2.已知f ( x)的弹性函数为 x,则f ( x) •••••• • ;

微积分II期末模拟试卷3套含答案.docx

微积分II期末模拟试卷3套含答案.docx
在仙力)内也F\x)<0・
17、求曲线x3-xy+y3=l(x>0,y>0)±的点到坐标原点的最长距离和最短距离。
微积分II期末模拟试卷3(满分:100分;测试时间:100分钟) 三、填空题(3X5=15)
『1-/_“2
1、曲线<X=Joe du在(0, 0)处的切线方程为
y = t2ln(2-r2)
”=i2”=]n
(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与入有关
7、曲线y=y(x)经过点(0,-1),且满足微分方程y'+2y = 4兀,则当兀=1时,y=()
(A)0;(B)l;(C)2;(D)4
8、设q,是圆域D = {(x,y)|/+y2 si}的第£象限的部分,记Ik=^{y-x)dxdy.则
(A)/, >/2>1.(B) l>/j >/2.(C)I2>/j >1.(D)l>/2>/,.
五、计算题(5X10=50)
12、计算下列定积分
1
(1)j2|ycsi:兀力.(2)求y=cos x - sin x, y = 0(0 < x < —) ^ x轴旋转的旋转体体积
12、计算下列多元微积分
(1)设z=f[x2-y.(p{xy)],其中f(〃,0具有二阶连续偏导数,(p(u)二阶可导,求
y = Jo ln(l + u)du
dx cf
2te= 0< dt
x —o = °
16、设非负函数y = y(x)(xnO)满足微分方程尢y"-y+2 = 0,当曲线y = y(x)过原点
时,其与直线x = \&y =0围成平面区域Q的面积为2,求D绕y轴旋转所得旋转体体积。

浙大微积分2试卷(2012-2013)

浙大微积分2试卷(2012-2013)

y z , ) 0 确定,其中 F 为可微函数, 且 Fz 0, 计算 x x
第1页
共5页
《微积分 II》期末试卷(2012-2013 学年春学期)
8. 求

1 1
d x
2 x 2 | x|
( xy 1) sin ( x 2 y 2 )d y.
9. 设 r
x 2 y 2 z 2 0, u f (r ) 存在二阶连续导数, 求
o
0 1 1 2 2 dx y 2 dy 2 1 . 0 1 3 3
D3
D1
y x3
1 x
方法 2:
( y
D
2
( x y ) 2013 ) d xd y dx 3
1 x
1
1
2 ( y 2 ( x y ) 2013 ) dy . 3
4 x 0 0
2 u 2 u 2 u , 请用 x 2 y 2 z2
r , f (r ), f (r ), f (r ) 表示之.
10.设 z f ( x, y ) 在点 (1,2) 处存在连续的一阶偏导数,且 f (1,2) 2, f x(1,2) 3,
f y(1,2) 4, ( x) f ( x, f ( x,2 x)), 求
1D4
12. 解: V
y
D
1 2 x y 2 d xd y d x y 1 2 x y 2 d y
3 3 1 4 1 4 x (1 2 x y 2 ) 2 y [(1 x)3 (1 2 x) 2 ] d x y 0 d x 3 0 3 0 5 1 1 538 1 1 4 [ (1 x) 4 (1 2 x) 2 ] 0 (54 1) (35 1) . 12 15 12 15 15

微积分下册期末试卷及答案[1]

微积分下册期末试卷及答案[1]

、已知22(,)yf x y x y x +=- 则=),(y x f、已知 则=⎰∞+--dx e x x21π=⎰∞+∞--dx ex 2、函数22(,)1f x y x xy y y =++-+在__________点取得极值 、已知y y x x y x f arctan )arctan (),(++= 则=')0,1(x f、以xe x C C y 321)(+= 21,C C 为任意常数 为通解的微分方程是知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛 则常数p 的取值范围是1p > 1p < 12p << 2p >数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断 是因为该函数在原点无定义 在原点二重极限不存在 在原点有二重极限 但无定义 在原点二重极限存在 但不等于函数值、若2211x y I +≤=⎰⎰22212x y I ≤+≤=⎰⎰22324x y I ≤+≤=⎰⎰则下列关系式成立的是123I I I >> 213I I I >> 123I I I << 213I I I <<、方程xe x y y y 3)1(596+=+'-''具有特解b ax y += xe b ax y 3)(+= x e bx ax y 32)(+= x e bx ax y 323)(+=、设∑∞=12n na收敛,则∑∞=-1)1(n nna绝对收敛 条件收敛 发散 不定 一、填空题 每小题 分 共 分、2(1)1x y y -+、)32,31(- 、 、"6'0y y y -+= 、求由23x y = 4=x 0=y 所围图形绕y 轴旋转的旋转体的体积 解:32y x=的函数为23,0x y y =>。

微积分Ⅱ期末考试试卷总集

微积分Ⅱ期末考试试卷总集

微积分Ⅱ期末考试试卷1一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.若c x g dx x f +=⎰)()(,则=⎰dx x xf )(cos sin ________.2.极限=⎰→xtdt xx 020cos lim________.3.已知xy z =而)tan(t s x +=,)cot(t s y +=则=∂∂sz________. 4.设{}10,10),(≤≤≤≤=y x y x D 则=⎰⎰Dxy d xe σ________.5.微分方程02=+''y y 的通解为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1.设⎰=+21xdx ________.A. c x +arctanB. c x x +++)1ln(2C. c x ++212D. c x ++)1ln(212.2.下列积分值为0的是________.A. ⎰+∞+0211dx xB. ⎰-1121dx xC. ⎰-++ππdx x x x )cos 1sin (2D. ⎰--1121dx x . 3.函数),(y x f z =在点),(00y x 处可微的充分条件是函数在该点处________. A.有极限 B.连续 C.偏导数存在 D.有连续的偏导数. 4. =⎰⎰10),(xdy y x f dx ________.A. ⎰⎰1010),(dx y x f dy B. ⎰⎰y dx y x f dy 01),(C. ⎰⎰100),(y dx y x f dy D. ⎰⎰101),(ydx y x f dy .5.下列级数收敛的是________.A .∑∞=-+-12123n n n n B. nn n n∑∞=+1)1(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n n D. ∑∞=1!n n nn .三、(计算题请写出主要步骤及结果,每小题6分,共18分.) 1. ⎰dx e x x 2 2. ⎰+41)1(x x dx 3.请给出第七章(定积分)的知识小结.四、(请写出主要计算步骤及结果,6分.) 已知方程z x e z xy +=+ 确定函数),(y x z z = 求dz . 五、(请写出主要计算步骤及结果,8分.)求⎰⎰++Dd y x σ)1ln(22,其中D 为圆周122=+y x 围成的区域.六、(请写出主要计算步骤及结果,8分.) 求初值问题的解⎩⎨⎧=+==0)2(0x y dx y x dy 七、(请写出主要计算步骤及结果,8分.) 求幂级数∑∞=-0)1(n nnnx 的收敛半径,收敛区间.并求∑∞=03n nn的和. 八、(请写出主要计算步骤及结果,8分.)求由2x y =与2y x =所围成的平面图形的面积,并求此平面图形分别绕x 轴,y 轴旋转所成的体积.九、经济应用题(请写出主要计算步骤及结果,8分.)某厂生产某种产品的生产函数为y x Q 2005.0=,若甲、乙两种原料的单价分别为1万元和5万元,现用150万元购原料,求两种原料各购多少时,能使生产量最大?最大生产量为多少? 十、证明题(请写出推理步骤及结果,6分.)设)(x f 在],[b a 上连续,在),(b a 内可导,且有M x f ≤'(及0)(=a f ,试证:⎰-≥b adx x f b a M )()(22微积分Ⅱ期末考试试卷1答案一、1.c x g +-)(cos 2.1 3.)(csc )tan()cot()(sec 22t s t s t s t s ++-++4.2-e5.x c x c y 2sin 2cos 21+= 二、1.B 2.C 3.D 4.D 5.D三、1. ce xe e x dxe xe e x xde e x dx xe e x de x dx ex xxxx x x x x x x x x++-=+-=-=-==⎰⎰⎰⎰⎰2222222222222. x t =2t x =⎰⎰⎰=-=+=+-=+=+41212121234ln 221ln 232ln 21ln 2)111(2)1(2)1(t t dt t t t t tdt x x dx四、z x e z xy z y x F +-+=),,(z x x e y F +-= x F y = z x z e F +-=111-+--=---=-=∂∂++z xy zxy y e e y F F x z zx z x Z x 11-+=--=-=∂∂+z xy xe x F F y z z x Z y dy z xy xdx z xy z xy y dy y z dx x z dz 11-++-+--=∂∂+∂∂=五、⎰⎰⎰⎰+=++Drdr r d d y x 122022)1ln()1ln(πθσ⎥⎦⎤⎢⎣⎡+-+=+=⎰⎰⎰1022210221022201)1ln()1ln(21dr r r r r dr r d πθπ 1021021022)1ln(2ln )111ln(2ln r r dr r ++-=⎥⎦⎤⎢⎣⎡+--=⎰ππππ )12ln 2(2ln 22ln 2ln -=-=+-=ππππππ六、x y y 2=-'⎥⎦⎤⎢⎣⎡+⎰=⎰---c dx xe e y dx dxf )1()1(2[]c dx xe exx +=⎰-2[][]⎰⎰++-=+-=---c dx e xee c xde e x xxxx222x ce x +--=22因为00==x y 所以c =2 所求特解为)1(2--=x e y x七、111=+==+n na a R n n 当1±=x 时∑±nn )1(发散 收敛区间为)1,1(- 设∑∑∞=-∞===10)(n n n nnx x nxx S设∑∞=-=1)(n n nxx T则xx xdx nxdx x T n n x n n x n n x-====∑∑⎰∑⎰∞=∞=∞=-11)(012)1(1)(x x T -=所以2)1()()(x xx xT x S -==31=x 时 439431)311(31)31(320==-==∑∞=S n n n 八、31)(102=-=⎰dx x x S()dx x x V x ⎰⎥⎦⎤⎢⎣⎡-=10222)(ππ103=()ππ103)(10222=⎥⎦⎤⎢⎣⎡-=⎰dy y yV y九、解 )1502(005.0),,(2-++=y x y x y x F λλ 0001.0=+=λxy F x02005.02=+=λx F y ⎩⎨⎧==⇒25100y x01502=-+=y x F λ ==25*100*005.02Q 十、b a a x f a f x f x f <<-'=-=ξξ))(()()()(M x f ≤')()()(a x M x f -≤22)(212)()()(a b M a x M dx a x M dx x f baba b a-=-⋅=-≤⎰⎰dx x f dx x f b ab a⎰⎰≥)()(2)(2)(a b Mdx x f b a-≤⎰dx x f b a M b a⎰-≥)()(22微积分Ⅱ期末考试试卷 2一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.已知cos()z xy =,而()y x ϕ=可导,则dzdx=________. 2.若2()1f x xdx c x x =++⎰,则()f x =________.3.p ________时,广义积分22111(1)p dx x --⎰发散.4.若20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑,则函数2sin x 的麦克劳林级数等于________. 5.微分方程0y ay y '''+-=的通解为12x x y c e c e -=+,则a =________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.)1.设xy z xe =,则'x z =________.A.xy xyeB.xy e x 2C.xy eD.xy e xy )1(+ . 2.=________.A.x c + B. arcsinc +C.c +3x c +.3.下列结论正确的个数是________.(1)11230x dx x dx <⎰⎰ (2)22211x e e dx e ---<<⎰(3)cos 0x xdx ππ-=⎰(4)2221[sin ]2sin x t dt x x '=⎰A.0B.1C.2D.3. 4.1200(cos ,sin )d f r r rdr πθθθ=⎰⎰ ________.A. 110(,)dy f x y dx ⎰⎰ B. 10(,)dx f x y dy ⎰⎰C. 110(,)dx f x y dy ⎰⎰ D. 1(,)dy f x y dx ⎰⎰.5.微分方程1y y '-=的通解是________. A .x y ce = B. 1x y ce =+ C .1x y ce =- D. (1)x y c e =+.三、(请写出主要计算步骤及结果,每小题8分,共16分.) 1. arctan x xdx ⎰ 2. 41⎰.四、(请写出主要计算步骤及结果,8分.)已知方程sin xy x z yz += 确定函数(,)z f x y = ,求dz . 五、(请写出主要计算步骤及结果,8分.)求2()Dx y d σ-⎰⎰,其中D 是由直线2y =,y x =及2y x =围成的区域.六、(请写出主要计算步骤及结果,8分.)求由y =与3y x =所围成的平面图形的面积,并求此平面图形绕x 轴旋转所形成的立体的体积.七、(请写出主要计算步骤及结果,8分.)判断级数n ∞=的敛散性.八、(请写出主要计算步骤及结果,8分.)求幂级数1(1)nn n e x n∞=-∑的收敛半径,收敛区间.九、经济应用题(请写出主要计算步骤及结果,8分.)某工厂生产A 、B 两种产品,单位成本分别为2元和14元,需求量分别为1Q 件和2Q 件,价格分别为1P 元和2P 元,且满足关系式1214()Q P P =-,2128048Q P P =+-,试求A 、B 两种产品的价格1P ,2P ,使该厂总利润最大(要求利用极值的充分条件). 十、证明题(请写出推理步骤及结果,6分.) 设)(x f 为连续函数,试证:()()(())x x tf t x t dt f u du dt -=⎰⎰⎰.微积分Ⅱ期末考试试卷2答案一、填空题(每小题3分,共15分)1.sin[()][()()]x x x x x ϕϕϕ'-+2. 21x x ⎛⎫ ⎪+⎝⎭ 3.1p ≥4.()()1212121,(2)!n n n n x x n --∞=-∈-∞+∞∑ 5.0二、单项选择题(每小题3分,共15分) 1.D 2.C 3.B 4.B 5.C三、(请写出主要计算步骤及结果,每小题8分,共16分.)1.2222222221arctan arctan (1211arctan (32211111arctan (5221111arctan arctan 22211(1)arctan (822x xdx xdx x x x dx x x x x dx x x x x x c x x x c ==-++-=-+=-++=+-+⎰⎰⎰⎰分)分)分)分)2.44114141(2(42ln(1(632ln(82===+=⎰⎰⎰分)分)分)分).四、(请写出主要计算步骤及结果,8分.)sin (1sin cos (4sin (5cos (6cos sin (8cos cos x y z x z y z F xy x z yz F y z F x z F x z y F z y z x F x z yF z x z y F x z y y z x zdz dx dyx z y x z y=+-'''=+=-=-'∂+=-='∂-'∂-=-='∂-+-=+--分),,分)分)分)分)五、(请写出主要计算步骤及结果,8分.)图(1分)22222220222303420()()(31()(5231()(68211()(7881(8yy Dy y x y d dy x y dx x xy dyy y dy y y σ-=-=-=-=-=-⎰⎰⎰⎰⎰⎰分)分)分)分)分)六、(请写出主要计算步骤及结果,8分.)图(1分)130341201260)(321()(4345(512](75(814x S x dxx x V x dx ππ=-=-==-=⎰⎰分)分)分)分)分)七、(请写出主要计算步骤及结果,8分.)1(4n =分)由比较判别法的极限形式知级数3121,n n n∞∞==∑敛散性相同,因为3121,n n∞=∑所以0n ∞=收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档