高三复习解析几何练习题

合集下载

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分12分)已知椭圆:的焦点分别为、,点在椭圆上,满足,.(Ⅰ)求椭圆的方程;(Ⅱ)已知点,试探究是否存在直线与椭圆交于、两点,且使得?若存在,求出的取值范围;若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)本题求椭圆的方程只需确定一个未知数,建立一个方程即可,利用椭圆定义及焦点三角形,结合余弦定理可解:由,得,由余弦定理得,(Ⅱ)表明点在线段DE中垂线上,利用韦达定理列等量关系,求出与的关系,再根据判别式大于零,可解出的取值范围试题解析:(1)由,得,由余弦定理得,∴所求的方程为.(2)假设存在直线满足题设,设,将代入并整理得,由,得①又设中点为,,得②将②代入①得化简得,解得或所以存在直线,使得,此时的取值范围为.【考点】直线与椭圆位置关系2.抛物线:的准线的方程是____;以的焦点为圆心,且与直线相切的圆的方程是____.【答案】,.【解析】分析题意可知,∴准线方程为,焦点为,半径,∴所求圆方程为.【考点】1.抛物线的标准方程;2.直线与圆的位置关系.3.如图,为外一点,是切线,为切点,割线与相交于点,,且,为线段的中点,的延长线交于点,若,则__________;_________.【答案】,.【解析】由切割线定理,∴,,再由相交弦定理,∵是的中点,∴,,则.【考点】1.切割线定理;2.相交弦定理.4.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A.B.C.D.【答案】D.【解析】设关于直线的对称点的坐标为,则,所以,,将其代入椭圆方程可得,化简可得,解得,故应选.【考点】1、椭圆的定义;2、椭圆的简单几何性质;5.如图所示,过⊙O外一点A作一条直线与⊙O交于C,D两点,AB切⊙O于B,弦MN过CD的中点P.已知AC=4,AB=6,则MP·NP= .【答案】【解析】由已知及圆的弦切割线定理得,,又知点P是CD的中点,所以,再由相交弦定理得;故答案为:.【考点】圆的性质.6.已知椭圆C:,为左右焦点,点在椭圆C上,△的重心为,内心为,且有(为实数),则椭圆方程为()A.B.C.D.【答案】A【解析】设点距轴的距离为,因为IG∥,则点距轴的距离为,连接,则,,所以,所以,所以椭圆方程为.【考点】椭圆的标准方程.7.已知双曲线(,)的焦距为,若、、顺次组成一个等比数列,则其离心率为.【答案】【解析】根据题意,有,即,式子两边同时除以,得,结合双曲线的离心率的取值范围,可求得.【考点】双曲线的离心率.8.设椭圆E:的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是.【答案】【解析】如图,设AC中点为M,连接OM,则OM为的中位线,于是,且,即.【考点】椭圆的离心率.9.点M(χ,)是抛物线χ2=2P(P>0)上一点,若点M到该抛物线的焦点的距离为2,则点M到坐标原点的距离为()A.B.C.D.【答案】D【解析】抛物线()的准线方程是,因为点到该抛物线的焦点的距离为,所以,解得:,所以该抛物线的方程是,因为点是抛物线上的一点,所以,所以点到坐标原点的距离是,故选D.【考点】1、抛物线的定义;2、抛物线的标准方程.10.已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为()A.B.C.D.【答案】A【解析】如图所示,过点作的垂线,垂足为,则为的中点.因为点的坐标为,所以,,所以,即,所以抛物线的方程为,此时,,所以直线的方程为,将其代入抛物线方程可得,,解得或,所以或,所以的面积为,故应选.【考点】1、抛物线的定义;2、抛物线的简单几何性质.【思路点睛】本题考查了抛物线的定义、标准方程及其简单的几何性质的应用,属中档题.其解题的一般思路为:首先过点作的垂线,垂足为,则为的中点,然后利用点的坐标为,可求出,进而得出抛物线的方程,从而得出直线的方程,最后将其与抛物线的方程联立求出点的坐标,即可求出的面积.其解题的关键是求出抛物线的方程和直线的方程.11.已知、、c为正数,(1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值;(2)求证:.【答案】(1)25;(2)证明见解析.【解析】(1)先利用两直线垂直得到关于正数的关系,再利用基本不等式进行求解;(2)先对不等式左边的每个括号进行因式分解,再利用基本不等式进行证明.试题解析:(1)由已知,有:即:、为正数,当且仅当时取等号,此时:故当时,的最小值是25.(2)、、c为正数,【考点】基本不等式.12.如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.(1)求椭圆的标准方程;(2)设为抛物线上的两个动点,且使得线段的中点在直线上,为定点,求面积的最大值.【答案】(1)椭圆的标准方程为;(2)面积的最大值为.【解析】(1)由已知得,跟据抛物线定义,得,所以点;据椭圆定义,得.所以椭圆的标准方式是.(2)因为为线段的中点,得直线的方程为;联立,得,由弦长公式和点到直线的距离,得.再根据函数的单调性得面积的最大值为.试题解析:(1)设椭圆的方程为,半焦距为.由已知,点,则.设点,据抛物线定义,得.由已知,,则.从而,所以点.设点为椭圆的左焦点,则,.据椭圆定义,得,则.从而,所以椭圆的标准方式是.(2)设点,,,则.两式相减,得,即.因为为线段的中点,则.所以直线的斜率.从而直线的方程为,即.联立,得,则.所以.设点到直线的距离为,则.所以.由,得.令,则.设,则.由,得.从而在上是增函数,在上是减函数,所以,故面积的最大值为.【考点】1、抛物线的定义;2、椭圆的方程;3、最值问题.【方法点睛】本题考查抛物线的定义和简单几何性质、待定系数法求椭圆的标准方程、直线和椭圆相交中的有关中点弦的问题,综合性强,属于难题;对于直线和圆锥曲线相交中的中点弦问题,解决此类题目的最有效方法是点差法,两式直接相减就可以表示出斜率;而第二问中面积公式求出后,函数单调性的研究更是加深了此题的难度,运算量也比较大,不容易拿高分.13.已知抛物线()的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则点的横坐标为()A.B.C.D.【答案】B【解析】抛物线的焦点为,准线为.双曲线的右焦点为,所以,即,即,过作准线的垂线,垂足为,则,即,设,则代入,解得.故应选B.【考点】圆锥曲线的性质.【思路点睛】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得的坐标,设,过点向准线作垂线,则,根据及,进而可求得点坐标.14.已知抛物线:,过焦点F的直线与抛物线交于两点(在第一象限).(1)当时,求直线的方程;(2)过点作抛物线的切线与圆交于不同的两点,设到的距离为,求的取值范围.【答案】(1);(2)【解析】(1)因为,故,设,,则可得则,由此可求直线的方程;(2)由于,因此故切线的方程为,化简得,则圆心(0,-1)到的距离为,且,故则,则点F到距离,则,然后再根据基本不等式即可求出结果.试题解析:(1)因为,故设,,则故则因此直线的方程为;(2)由于,因此故切线的方程为,化简得则圆心(0,-1)到的距离为,且,故则,则点F到距离则今则,故.【考点】1.直线与抛物线的位置关系;2.点到直线的距离公式;2.基本不等式.15.在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线将于点、,若点的坐标为,求的值.【答案】(1);(2).【解析】(1)极坐标与直角坐标之间的关系是,由此可实现极坐标方程与直角坐标方程的转化;(2)由直线参数方程的标准形式(即参数的几何意义),直线过点,直线上的标准参数方程为,把它代入圆的方程,其解满足,.试题解析:(1)由得,又,则有,配方得圆的标准方程为.(2)直线的普通方程为,点在直线上的标准参数方程为,代入圆方程得:.设对应的参数分别为,则,,于是.【考点】极坐标方程与直角坐标方程的互化,直线参数方程的应用.16.如图,在平面直角坐标系中,已知椭圆:的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.(1)求椭圆的方程;(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的坐标;若不存在说明理由;(3)若过点作直线的平行线交椭圆于点,求的最小值.【答案】(1);(2);(3)【解析】(1)确定椭圆标准方程,只需两个独立条件即可:一个是左顶点为,所以,另一个是,所以,(2)实质利用斜率k表示点,P ,E,假设存在定点,使得,因此,即恒成立,从而即(3)利用斜率k表示点M,因此,本题思路简单,但运算量较大.试题解析:(1)因为左顶点为,所以,又,所以又因为,所以椭圆C的标准方程为.(2)直线的方程为,由消元得,.化简得,,所以,.当时,,所以.因为点为的中点,所以的坐标为,则.直线的方程为,令,得点坐标为,假设存在定点,使得,则,即恒成立,所以恒成立,所以即因此定点的坐标为.(3)因为,所以的方程可设为,由得点的横坐标为,由,得,当且仅当即时取等号,所以当时,的最小值为.【考点】直线与椭圆位置关系17.选修4-4:坐标系与参数方程:在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为。

高三数学解析几何试题

高三数学解析几何试题

高三数学解析几何试题1.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.B.C.D.【答案】D【解析】均为直线,其中平行,可以相交也可以异面,故A不正确;m,n⊥α,则同垂直于一个平面的两条直线平行,选D。

2.已知圆的圆心在直线上,则;圆被直线截得的弦长为____________.【答案】2;8.【解析】标准方程为,可得圆心把圆心坐标代入直线方程中得;即圆心为,圆心到直线的距离,所以弦长等于故答案为2;8.【考点】1.圆的标准方程;2.弦长公式.3.若椭圆:()和椭圆:()的焦点相同且.给出如下四个结论:①圆和椭圆一定没有公共点;②;③;④.其中,所有正确结论的序号是()A.②③④B.①③④C.①②④D.①②③【答案】B【解析】因为椭圆和椭圆的焦点相同且.,所以,,∴①③正确;又,,∴④正确,故选B.【考点】椭圆的简单性质.4.已知双曲线C:,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦,则点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1.【答案】-16【解析】设双曲线的上下焦点分别为F,F',连接QF,QF'.由点P关于双曲线C的上、下焦点的对称点分别为A、B,则F为PA的中点,F'为PB的中点,由点Q在双曲线C的上支上,点P ,关于点Q的对称点P1则Q为PP的中点,由中位线定理可得,,,由双曲线的定义可得1,则.故答案为:﹣16.【考点】双曲线的简单性质.5.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为χ轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;(Ⅱ)若直线l与曲线C相交于A、B两点,且|AB|=,试求实数m的值.【答案】(Ⅰ),;(Ⅱ)或.【解析】(Ⅰ)利用,代入曲线的方程可得曲线的直角坐标方程,消去可得直线的普通方程;(Ⅱ)先将直线的参数方程代入曲线的方程可得,再利用参数的几何意义可得实数的值.试题解析:(Ⅰ)曲线C的极坐标方程是ρ=4cos化为直角坐标方程为:直线的直角坐标方程为:(5分)(Ⅱ)解法一:由(Ⅰ)知:圆心的坐标为(2,0),圆的半径R=2,圆心到直线的距离,∴∴(10分)解法二:把(是参数)代人方程得∵∴∴∴(10分)【考点】1、极坐标方程与直角坐标方程的互化;2、参数方程与普通方程的互化;3、参数的几何意义.6.选修4—4:坐标系与参数方程极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴,曲线的极坐标方程为,曲线的参数方程为(为参数,),射线,,与曲线交于(不包括极点)三点.(1)求证:;(2)当时,两点在曲线上,求与的值.【答案】(1)证明过程详见试题解析;(2)的值为2,的值为.【解析】(1)依题意先表示出,,,根据三角函数公式得.(2)把两点的极坐标,化为直角坐标为,又因为经过点的直线方程为,所以.试题解析:(1)依题意,,.则.(2)当时,两点的极坐标分别为,化为直角坐标为,是经过点且倾斜角为的直线,又因为经过点的直线方程为,所以.【考点】1、极坐标与直角坐标;2、参数方程.7.如图,四边形内接于⊙,过点作⊙的切线交的延长线于,已知.证明:(1);(2).【答案】(1)见解析;(2)见解析.【解析】(1)由弦切角定理及已知条件可得,然后由等角对等弧,等弧对等弦使问题得证;(2)易证得∽,根据三角形相似可得比例相等,从而可证得.试题解析:(1)∵与⊙相切于点,∴.又,∴,∴.(2)∵四边形内接于⊙,∴,又,∴∽.∴,即,∴.【考点】1、弦切角定理;2、圆周角定理;3、三角形相似.8.已知为椭圆内一定点,经过引一弦,使此弦在点被平分,则此弦所在的直线方程是 .【答案】【解析】由于此弦所在直线的斜率存在,所以设斜率为,且设弦的两端点坐标为,,则,两式相减得.∵,∴,∴,∴此弦所在的直线方程为.【考点】直线与椭圆的位置关系.【思路点睛】设出两个交点的坐标,将它们代入椭圆的方程,将两个式子相减得到有关相交弦的中点与相减弦所在直线的斜率关系,求出直线的斜率,利用点斜式写出直线的方程.在解决直线与圆锥曲线相交关于相交弦的问题时,一般利用将交点坐标代入圆锥曲线的方程,两个式子相减得到中点与斜率的关系.9.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线(t为参数),(为参数).(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若上的点P对应的参数方程为,Q为上的动点,求PQ中点M到直线的距离的最小值.【答案】(Ⅰ)为圆心是,半径是1的圆.为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆;(Ⅱ).【解析】第一问将所给的参数方程消参,得到相应的普通方程,利用所得的普通方程可以判断出方程所对应的曲线的类型,第二问根据题中所给的参数值,求得点的坐标,设出动点的坐标,利用中点坐标公式求得,将直线方程化成平面直角坐标方程,利用点到直线的距离公式,结合辅助角公式化简,利用三角函数的性质得出其最小值为.试题解析:(Ⅰ).为圆心是,半径是1的圆.为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线,M到的距离显然,取得最小值.【考点】参数方程与普通方程的转化,极坐标方程与平面直角坐标方程的转化,动点到定直线的距离的最值.10.已知椭圆的左,右焦点分别为,,离心率为,且经过点.(1)求椭圆的方程;(2)直线与椭圆相切,点是直线上的两点,且,,求四边形的面积.【答案】(1);(2).【解析】(1)运用椭圆的离心率和椭圆的关系和点满足椭圆方程,即可解得的值,进而得到椭圆的方程;(2)将直线方程代入椭圆方程,运用直线和椭圆相切的条件,利用判别式等于,求解实数的值,在由点到直线的距离公式和直角梯形的面积公式即可求得四边形的面积.试题解析:(1)依题意,设椭圆的方程为.因为,又,所以,又点在该椭圆上,所以.解得,.所以椭圆的方程为.将直线的方程,代入椭圆的方程中,得,由直线与椭圆仅有一个公共点可知,,化简得,.设,,又因为,所以.故四边形的面积为.【考点】椭圆的标准方程及其简单的几何性质;直线与圆锥曲线问题.【方法点晴】本题主要考察了椭圆的标准方程及其简单的几何性质,着重考查了直线与圆锥曲线的位置关系及应用,把直线方程与圆锥曲线方程联立,根据方程的根与系数的关系是解答此类问题的常用方法和关键,但此类问题思维量和计算量较大,平时主要方法的积累和总结,本题的解答中,把直线的方程代入椭圆的方程,利用的值,利用点到直线的距离公式和,利用梯形的面积公式,从求解四边形的面积.11.(2015秋•通渭县校级期末)抛物线y=x2在点(﹣1,1)处的切线方程为.【答案】2x+y+1=0【解析】直接求出抛物线在点(﹣1,1)处的导数,即切线的斜率,由直线方程的点斜式写出切线方程,化为一般式.解:由y=x2,得:y′=2x,∴y′|x=﹣1=﹣2,所以,抛物线y=x2在点(﹣1,1)处的切线方程为y﹣1=﹣2(x+1),即2x+y+1=0.故答案为2x+y+1=0.【考点】利用导数研究曲线上某点切线方程.12.在极坐标系中,设曲线和相交于点,则=___________.【答案】【解析】曲线和的直角坐标方程分别为和,把代入方程,得,所以.【考点】极坐标方程与直角坐标方程的互化,直线与圆相交弦长.13.(2015秋•栖霞市期末)已知△ABC的两个顶点A,B的坐标分别为(0,﹣),(0,),且AC,BC所在直线的斜率之积等于m(m≠0).(1)求顶点C的轨迹λ的方程,并判断轨迹λ为何种曲线;(2)当m=﹣时,设点P(0,1),过点P作直线l与曲线λ交于E,F两点,且=,求直线l的方程.【答案】(1)见解析;(2).【解析】(1)令C点坐标为(x,y),QC 直线AC,直线BC的斜率,利用AC,BC所在直线的斜率之积等于m,求出轨迹方程,分类讨论图形.(2)求出曲线C的方程,通过直线l的斜率不存在时,以及斜率垂直时,直线l的方程为y=kx+1,代入椭圆方程,设E(x1,y1),F(x2,y2),通过得,以及韦达定理求解直线l的方程.解:(1)令C点坐标为(x,y),则直线AC的斜率,直线BC的斜率,所以有,化简得,.所以当m=﹣1时,λ表示以(0,0)为圆心,为半径的圆,且除去两点;当m <﹣1时,轨迹λ表示焦点在y 轴上的椭圆,且除去两点;当﹣1<m <0时,轨迹λ表示焦点在x 轴上的椭圆,且除去两点; 当m >0时,轨迹λ表示焦点在y 轴上的双曲线,且除去两点.(2)由题意知当时曲线C 为,当直线l 的斜率不存在时,不符合题意.设直线l 的方程为y=kx+1,代入椭圆方程整理得(3+4k 2)x 2+8kx ﹣8=0. 设E (x 1,y 1),F (x 2,y 2),由得,x 1=﹣3x 2. 由韦达定理得,,所以,,消去x 2,解得,所以直线l 的方程为.【考点】直线与圆锥曲线的综合问题;轨迹方程.14. 已知直线l :y =x +,圆O :x 2+y 2=4,椭圆E :+=1(a>b>0)的离心率e =,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)已知动直线l 1 (斜率存在)与椭圆E 交于P ,Q 两个不同点,且△OPQ 的面积S △OPQ =1,若N 为线段PQ 的中点,问:在x 轴上是否存在两个定点A ,B ,使得直线NA 与NB 的斜率之积为定值?若存在,求出A ,B 的坐标,若不存在,说明理由. 【答案】(1);(2)存在两定点,,使得直线与的斜率之积为定值.【解析】(1)由椭圆的离心率可列方程,直线被圆所截弦长等于椭圆短轴长,则可列方程求得,从而求得,得到椭圆标准方程;(2)先假设直线,与椭圆方程联立可求得长度(用表示),在利用点到直线的距离求得三角形边上的高,从而利用面积为求得的关系,又因为为中点,所以可用来表示其坐标,并且可求得其轨迹方程,然后再假设坐标,表示出的斜率,并且使斜率之积为定值,从而求得坐标. 试题解析:(1)设椭圆半焦距为c , 圆心O 到l 的距离d =,则l 被圆O 截得的弦长为2,所以b =1,由题意得e =,∵b =1,∴a 2=4,b 2=1.∴椭圆E 的方程为(2)设P(x 1,y 1),Q(x 2,y 2),直线l 1的方程为:y =kx +m. 则消去y 得(1+4k 2)x 2+8kmx +4m 2-4=0. x 1+x 2=,x 1.x 2=.|PQ|=.|x 1-x 2|=原点O 到直线l 1的距离d =,则S △OPQ =|PQ|.d ==1,∴2|m|.=1+4k 2,令1+4k 2=n ,∴2|m|.=n ,∴n =2m 2,1+4k 2=2m 2. ∵N 为PQ 中点,∴x N ==,y N ==,∵1+4k 2=2m 2,∴x N =,y N =.∴假设x 轴上存在两定点A(s ,0),B(t ,0)(s≠t),则直线NA 的斜率k 1=,直线NB 的斜率k 2=,∴k 1k 2===.当且仅当s +t =0,st =-2时,k 1k 2=,则s =,t =.综上所述,存在两定点A(,0),B(,0),使得直线NA 与NB 的斜率之积为定值. 【考点】点到直线的距离,离心率,两点间距离,求动点的轨迹方程.15. 若双曲线的实轴长是离心率的2倍,则m= .【答案】【解析】利用离心率公式,建立方程,即可求得双曲线的实轴长. 解:∵,且m >0,∴,解得或(舍去).故答案为:【考点】双曲线的简单性质.16. 如图,正方形边长为2,以为圆心、为半径的圆弧与以为直径的半圆交于点,连结并延长交于点.(1)求证:; (2)求的值.【答案】(1)证明见解析;(2).【解析】对于问题(1)主要利用两次切割线定理,再结合等量代换即可证明结论;对于问题(2),可由(1)的结论并结合直角三角形的射影定理及等面积法即可得到所求. 试题解析:(1)由以为圆心为半径作圆,而为正方形,所以为圆的切线,依据切割线定理得 另外圆以为直径,所以是圆的切线,同样依据切割线定理得,故. (2)连结,因为为圆直径,所以,由得又在中,由射影定理得,【考点】1、切割线定理;2、直角三角形的射影定理.17. 如图所示,在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .【答案】【解析】令,则,,则,∴,,∴,∴,故答案为.【考点】椭圆的定义.18.已知双曲线的离心率为,则此双曲线的渐近方程为()A.B.C.D.【答案】C【解析】因为双曲线的离心率为,所以,又因为双曲线中,所以,而焦点在轴上的双曲线的渐近线方程为,所以此双曲线的渐近线方程为,故选C.【考点】1、双曲线的离心率;2、双曲线渐近方程.19.设是双曲线的左、右两个焦点,若双曲线右支上存在一点,使(为坐标原点)且则的值为()A.2B.C.3D.【答案】A【解析】画出图象如下图所示,依题意可知四边形为菱形,所以,设,则,且,解得,则.【考点】1.双曲线;2.向量运算.【思路点晴】有关圆锥曲线的题目,由图双曲线的方程已经知道了,那么我们就先按题意将图形画出来,这是做圆锥曲线题目的时候第一步要做的.由于题目中,也就是平行四边形的对角线相互垂直,所以可以判断它为菱形,这样它的一组邻边就相等,设出点的坐标,然后解出点的坐标,题目就解决出来了.20.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于()A.B.C.D.【答案】D【解析】由题意得,选D.【考点】双曲线的离心率【方法点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.21.圆的圆心到直线的距离为1,则a=A.B.C.D.2【答案】A【解析】圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得,解得,故选A.【考点】圆的方程、点到直线的距离公式【名师】直线与圆的位置关系的判断方法:(1)几何法:利用圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.22.设是坐标原点,椭圆的左右焦点分别为,且是椭圆上不同的两点。

高三数学解析几何试题

高三数学解析几何试题

高三数学解析几何试题1.(本小题满分12分)如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,.(Ⅰ)求椭圆的标准方程;(Ⅱ)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.【答案】(Ⅰ)(Ⅱ)以为直径的圆经过定点:,证明见解析【解析】第一问根据椭圆的离心率和对应的弦长,求出对应的的值,从而得出椭圆的方程,第二问设出两点的坐标,从而求得直线和直线的方程,从而求得点的坐标,从而写出以为直径的圆的方程,根据点在椭圆上,以及曲线过定点的条件,从而求得所过的定点的坐标.试题解析:(Ⅰ)设,∵直线斜率为时,,∴,∴∴,∵,∴.∴椭圆的标准方程为.(Ⅱ)以为直径的圆过定点.设,则,且,即,∵,∴直线方程为:,∴,直线方程为:,∴,以为直径的圆为即,∵,∴,令,,解得,∴以为直径的圆经过定点:.【考点】椭圆的方程,曲线过定点问题.2.已知圆C的方程为,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.【答案】【解析】在直线上至存一点,使得以该点为圆心,为半径的圆与圆有公共点,所以圆心到直线的距离,解之得,故的最大值为.【考点】1.直线与圆的位置关系;2.圆与圆的位置关系.3.参数方程为参数和极坐标方程所表示的图形分别是()A.圆和直线B.直线和直线C.椭圆和直线D.椭圆和圆【答案】D【解析】由题可知,由参数方程可得,极坐标方程,两端同时乘以,可得,由于,化简可得;【考点】•简单曲线的极坐标方程 椭圆的参数方程4.(本小题满分14分)已知椭圆的两个焦点分别为、,短轴的两个端点分别为.(Ⅰ)若为等边三角形,求椭圆的方程;(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.【答案】(1);(2)或.【解析】本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,设出椭圆的标准方程,根据焦点坐标以及为等边三角形,列出a与b的关系式,解出a和b的值,从而得出椭圆的标准方程;第二问,通过短轴长为2,得到椭圆的标准方程,再讨论直线的斜率是否存在,当直线的斜率存在时,与椭圆的方程联立,消参,得出、,利用向量垂直的充要条件,列出表达式,解出k的值,从而得到直线的方程.试题解析:(Ⅰ)设椭圆的方程为.根据题意知, 解得,故椭圆的方程为.(Ⅱ)容易求得椭圆的方程为.当直线的斜率不存在时,其方程为,不符合题意;当直线的斜率存在时,设直线的方程为.由得.设,则对任意都成立,因为,所以,即,解得,即.故直线的方程为或.【考点】椭圆的标准方程及其几何性质、直线与椭圆的位置关系.5.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.【答案】(1);(2)存在实数使得以线段AB为直径的圆恰好经过坐标原点O.【解析】本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和长轴长列出方程,解出a和c的值,再利用计算b的值,从而得到椭圆的标准方程;第二问,将直线与椭圆联立,消参,利用韦达定理,得到、,由于以线段AB为直径的圆恰好经过坐标原点O,所以,即,代入和,解出k的值.试题解析:(1)设椭圆的焦半距为c,则由题设,得,解得,所以,故所求椭圆C的方程为.(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点,,将直线的方程代入,并整理,得.(*)则,.因为以线段AB为直径的圆恰好经过坐标原点O,所以,即.又,于是,解得,经检验知:此时(*)式的Δ>0,符合题意.所以当时,以线段AB为直径的圆恰好经过坐标原点O.【考点】椭圆的标准方程及其几何性质、直线与椭圆的位置关系.6.已知双曲线(,)的离心率为,若抛物线()的焦点到双曲线的渐近线的距离为,则.【答案】【解析】,所以双曲线的渐近线方程为,又抛物线的焦点坐标为,由点到直线的距离公式得.【考点】双曲线、抛物线的几何性质.7.已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(Ⅰ)求椭圆C的方程;(Ⅱ)设P为椭圆C上一点,若过点的直线与椭圆C相交于不同的两点S和T,满足(O为坐标原点),求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)根据椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形可得,,再根据直线与圆相切可得的一个关系式,解方程组可得的值.(Ⅱ)由题意知直线的斜率存在,设直线方程为,与椭圆方程联立消去整理为关于的一元二次方程,由题意可知其判别式大于0,从而可得的范围.再由韦达定理可得两根之和,两根之积.设,根据可得间的关系式.可解得.将其代入椭圆方程可得的关系式,根据的范围可得的范围.试题解析:解:(Ⅰ)由题意,以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为,∴圆心到直线的距离(*)∵椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴,,代入(*)式得,∴,故所求椭圆方程为(Ⅱ)由题意知直线的斜率存在,设直线方程为,设,将直线方程代入椭圆方程得:,∴,∴.设,,则,由,当,直线为轴,点在椭圆上适合题意;当,得∴.将上式代入椭圆方程得:,整理得:,由知,,所以,综上可得.【考点】1椭圆的方程;2直线与椭圆的位置关系问题.8.已知椭圆,斜率为1的直线交E于A,B两点,若AB的中点为P,O为坐标原点,则直线OP的斜率为()A.B.C.D.【答案】B【解析】设交点、中点,把A、B两点坐标代入椭圆方程,用点差法可得,因此,故B为正确答案.【考点】1、斜率的求法;2、中点弦问题.9.已知是直线上一动点,是圆C:的两条切线,是切点,若四边形的最小面积是2,则的值为()A.3B.C.D.2【答案】D【解析】圆的方程可化为,因为四边形的最小面积是,且此时切线长为,故圆心到直线的距离为,即,解得,又,所以.【考点】直线与圆的位置关系.【思路点睛】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,解决本题时先求圆的半径,四边形的最小面积是,转化为三角形的面积是,求出切线长,再求的距离也就是圆心到直线的距离,可解的值.10.已知是双曲线(,)的左顶点,、分别为左、右焦点,为双曲线上一点,是的重心,若,则双曲线的离心率为()A.B.C.D.与的取值有关【答案】B【解析】因为,所以,所以,即,所以,故选B.【考点】1.双曲线的几何性质;2.共线向量的性质.11.若直线与曲线相交于两点,则直线的倾斜角的取值范围是()A.B.C.D.【答案】B【解析】如图,满足条件的斜率存在,直线过点,且在图中阴影中,此时的倾斜角范围为,故选B.【考点】直线与双曲线的位置关系.12.椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.【答案】(1);(2),恒过定点.【解析】(1)因为,左焦点到的距离,解得,,,所以椭圆的方程为;(2)设,联立直线方程与椭圆方程得:,根据直线与圆锥曲线的位置关系得:,,因为为直径的圆过椭圆右顶点,所以,将坐标代入结合根与系数的关系化简得:,解得或都满足,分析两种情况,时,,恒过点,当时,,恒过点.试题解析:(1)由题意得:e==,①左焦点(-c,0)到点P(2,1)的距离为=,②由①②可解得c=1,a=2,b2=a2-c2=3.∴所求椭圆C的方程为+=1.(2)设A(x1,y1),B(x2,y2),将y=kx+m代入椭圆方程得,(4k2+3)x2+8kmx+4m2-12=0.∴x1+x2=-,x1x2=,且y1=kx1+m,y2=kx2+m.∵AB为直径的圆过椭圆右顶点A2(2,0),∴·=0.∴(x1-2,y1)·(x2-2,y2)=(x1-2)(x2-2)+y1y2=(x1-2)(x2-2)+(kx1+m)(kx2+m)=(k2+1)x1x2+(km-2)(x1+x2)+m2+4=(k2+1)·-(km-2)·+m2+4=0.整理得7m2+16km+4k2=0.∴m=-k或m=-2k都满足Δ>0.当m=-2k时,直线l的方程为y=kx-2k=k(x-2),恒过定点A2(2,0),不合题意,舍去.当m=-k时,直线l的方程为y=kx-k,即y=k(x-),恒过定点(,0).【考点】1、椭圆的标准方程;2、直线与圆锥曲线的位置关系;3、直线系过定点.【方法点晴】本题主要考查的是椭圆的标准方程,直线与圆锥曲线的位置关系,利用向量研究垂直关系和直线系恒过定点问题,属于难题.解题时一定要注意涉及直线与圆锥曲线的位置关系时,联立方程组,得一元二次方程后,根据根与系数的关系得:,,待用;过定点问题,需将两参数化为一个,转化为直线系,得出所求定点.13.已知F是椭圆的左焦点,P是椭圆上的一点,PF⊥x轴,OP∥AB(O为原点,A为右顶点,B为上顶点),则该椭圆的离心率是______.【答案】【解析】把x c代入椭圆方程求得y=±,∴|PF|=,∵OP∥AB, PF∥OB,∴△PFO∽△ABO,∴,求得b=c,∴e=.【考点】椭圆的离心率.14.已知椭圆C:,其中(e为椭圆离心率),焦距为2,过点M(4,0)的直线l与椭圆C交于点A,B,点B在AM之间.又点A,B的中点横坐标为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求直线l的方程.【答案】(Ⅰ),(Ⅱ)y=(x﹣4).【解析】(Ⅰ)运用离心率公式和椭圆的a,b,c的关系,解得a,b,即可得到椭圆方程;(Ⅱ)设出直线l的方程,联立椭圆方程,消去y,运用判别式大于0,以及韦达定理和中点坐标公式,求出直线的斜率,即可得到所直线方程.试题解析:(Ⅰ)由条件椭圆C:,其中(e为椭圆离心率),焦距为2,可得c=1,a=2,故b2=a2﹣c2=3,椭圆的标准方程是.(Ⅱ)由过点M(4,0)的直线l与椭圆C交于点A,B,点B在AM之间.,可知A,B,M三点共线,设点A(x1,y1),点B(x2,y2).若直线AB⊥x轴,则x1=x2=4,不合题意.当AB所在直线l的斜率k存在时,设直线l的方程为y=k(x﹣4).由消去y得,(3+4k2)x2﹣32k2x+64k2﹣12=0.①由①的判别式△=322k4﹣4(4k2+3)(64k2﹣12)=144(1﹣4k2)>0,解得k2<,x 1+x2=,由又点A,B的中点横坐标为.可得解得k2=,即有k=±.y=(x﹣4).直线l的方程:y=(x﹣4).【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.15.在直角坐标系中,直线的参数方程为,(为参数),在以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(Ⅰ)直接写出直线、曲线的直角坐标方程;(Ⅱ)设曲线上的点到与直线的距离为,求的取值范围.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)两式相加消去参数,即得直线的普通方程,利用二倍角公式和进行求解;(Ⅱ)设出椭圆上点的参数坐标,再利用点到直线的距离公式和配角公式、三角函数的性质进行求解.试题解析:(Ⅰ)直线的直角坐标方程为,因为,所以,则,即曲线的直角坐标方程为.(Ⅱ)∵曲线的直角坐标方程为,即,∴曲线上的点的坐标可表示为.∵,∴,∴的最小值为,的最大值为.∴,即的取值范围为.【考点】1.曲线的参数方程、极坐标方程与普通方程的转化;2.点到直线的距离公式.16.如图,以的边为直径作圆,圆与边的交点恰为边的中点,过点作于点.(I)求证:是圆的切线;(II)若,求的值.【答案】. (I)见试题解析;(II)【解析】(Ⅰ)由//,可得,所以是⊙的切线.(Ⅱ)根据.是的中点,可得,.再由,所得在直角三角形中,;在直角三角形中,. 故.试题解析:(Ⅰ)如图,连接.因为是的中点,是的中点,所以//.因为,所以,所以是⊙的切线.(Ⅱ)因为是⊙的直径,点在⊙上,所以.又是的中点,所以. 故.因为,所以. 在直角三角形中,;在直角三角形中,.于是.【考点】圆的性质.17.已知直线l的方程为y=x+4,圆C的参数方程为(θ为参数),以原点为极点,x轴正半轴为极轴.建立极坐标系.(Ⅰ)求直线l与圆C的交点的极坐标;(Ⅱ)若P为圆C上的动点.求P到直线l的距离d的最大值.【答案】(Ⅰ),.(Ⅱ)+2.【解析】(I)由圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1化为普通方程,与直线方程联立解得交点坐标,利用可得极坐标.(II)圆心(0,2)到直线l的距离为d1,可得P到直线l的距离d的最大值为d1+r.解:(I)由圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1化为:x2+(y﹣2)2=4,联立,解得或.可得极坐标分别为:,.(II)圆心(0,2)到直线l的距离=,∴P到直线l的距离d的最大值为+r=+2.【考点】参数方程化成普通方程.18.已知抛物线C的标准方程为,M为抛物线C上一动点,为其对称轴上一点,直线MA与抛物线C的另一个交点为N.当A为抛物线C的焦点且直线MA与其对称轴垂直时,△MON的面积为18.(1)求抛物线C的标准方程;(2)记,若t值与M点位置无关,则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.【答案】(1);(2)时,不是“稳定点”;时,与无关.【解析】(1)过抛物线的焦点且和抛物线的对称轴垂直的直线被抛物线截得的弦长等于.所以得底,高为.根据面积可求得的值.从而可得抛物线方程. (2)设出直线方程,与抛物线方程联立,消去可得关于的一元二次方程.由题意可知其判别式大于0,由韦达定理可得两根之和,两根之积.从而可求得.注意讨论的正负.试题解析:(Ⅰ)由题意,,,抛物线C的标准方程为.(Ⅱ)设,设直线的方程为,联立得,,,,由对称性,不妨设,(ⅰ)时,,同号,又,,不论取何值,均与有关,即时,不是“稳定点”;(ⅱ)时,,异号,又,,仅当,即时,与无关,【考点】直线与抛物线的位置关系问题.19.设为抛物线的焦点,为该抛物线上不同的三点,,为坐标原点,且的面积分别为,则()A.2B.3C.6D.9【答案】B【解析】由题意可知,设,则,由得,即,又在抛物线上,所以,,所以,故选B.【考点】1.向量的坐标运算;2.抛物线的标准方程与性质;3.三角形面积公式.【名师】本题考查向量的坐标运算、抛物线的标准方程与性质、三角形面积公式,中档题.向量与圆锥曲线的相关知识融合,是最近高考命题的热点,解题思路上由向量运算得到坐标之间的关系或几何元素之间的关系,然后再根据圆锥曲线相关的知识经过运算求解.20.若直线上存在点可作圆的两条切线,切点为,且,则实数的取值范围为.【答案】【解析】若, 则.直线上存在点可作和的两条切线、等价于直线与圆有公共点,由圆心到直线的距离公式可得,解之可得.【考点】点到直线的距离公式及直线与圆的位置关系的运用.21.已知为椭圆上一点,是焦点,取最大值时的余弦值为,则此椭圆的离心率为______.【答案】【解析】由已知由于为椭圆上一动点,所以当是短轴端点时,有最大值,所以,解得,故答案填.【考点】1、椭圆的几何性质;2、离心率.22.已知椭圆的左焦点和右焦点,上顶点为,的中垂线交椭圆于点,若左焦点在线段上,则椭圆离心率为.【答案】【解析】由题意知,设,则,所以,故,易求得,代入椭圆方程得,解得,所以.【考点】椭圆离心率23.过双曲线的左焦点作圆⊙的切线,且点为,延长交双曲线右支于点,若为的中点,,则双曲线的离心率为( ) A.B.C.D.【答案】C【解析】如图所示,设双曲线的右焦点为,依题意可得,,则∴,即.【考点】双曲线的几何性质.【名师】在双曲线的几何性质中,涉及较多的为离心率和渐近线方程.(1)求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a,b,c的齐次关系式,将b用a,e表示,令两边同除以a或a2化为e的关系式,进而求解.(2)求曲线=1(a>0,b>0)的渐近线的方法是令=0,即得两渐近线方程=0. 24.选修4—1:几何证明选讲如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=PA·PC;(2)若⊙O的半径为,OA=OM,求:MN的长.【答案】(1)证明见解析;(2).【解析】(1)做出辅助线连接,根据切线得到直角,根据垂直得到直角,即且,根据同角的余角相等,得到角的相等关系,得到结论;(2)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即,代入所给的条件,得到要求线段的长.试题解析:(1)连结,则,且为等腰三角形,则,,,.由条件,根据切割线定理,有,所以.(2),在中,.延长交⊙于点,连结.由条件易知∽,于是,即,得.所以.【考点】与圆有关的比例线段.25.选修4-1:几何证明选讲如图, 已知为圆的直径,为圆上一点, 连接并延长使,连接并延长交圆于点,过点作圆的切线, 切点为.(1)证明:;(2)若,求的长度.【答案】(1)见解析;(2).【解析】(1)连接,然后由直径的性质结合已知条件推出,从而可利用切割线定理证明得结果;(2)首先利用切割线定理求得的长,从而利用勾股定理求得的长.试题解析:(1)连接,为圆的直径,.是圆的切线, 是圆的割线,(2)是圆的切线,是圆的割线,.,得.【考点】1、直径的性质;2、切割线定理.26.已知圆截直线所得弦长为6,则实数的值为()A.8B.11C.14D.17【答案】B【解析】圆,圆心,半径.故弦心距.再由弦长公式可得;故选B.【考点】直线与圆的位置关系.27.选修4-1:几何证明选讲如图,是的直径,是的切线,交于点.(1)过做的切线,交与点,证明:是的中点;(2)若,求的大小.【答案】(1)见解析;(2).【解析】(1)连接,然后利用弦切角定理证得是等腰三角形,再结合直径的性质可使问题得证;(2)首先利用三角函数的定义得到的表达式,然后根据线段间的关系建立方程求解即可.试题解析:(1)证明:连接,∵是的切线,也是的切线,∴弦切角,∴是等腰,,∵是的直径,∴.∴是的外心,即是的中点.(2)解:,中,,,∴;解方程的,∴锐角.【考点】1、弦切角定理;2、直径的性质;3、三角函数的定义.28.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.(1)求曲线的普通方程,并将的方程化为极坐标方程;(2)直线的极坐标方程为,其中满足,若曲线与的公共点都在上,求.【答案】(1)的普通方程,的极坐标方程;(2).【解析】(1)因为为参数,所以利用,消元得到曲线的普通方程,并根据公式,以及代入得到曲线的极坐标方程;(2)联立曲线和的极坐标方程,并消去得到的三角函数,利用,计算三角函数值,并且得到的值.试题解析:(1)消去参数得到的普通方程,将,代入的普通方程,得到的极坐标方程.(2)曲线的公共点的极坐标满足方程组,若,由方程组得,由已知,可解得,根据,得到,当时,极点也为的公共点,在上,所以.【考点】1.参数方程与普通方程以及极坐标方程的互化;(2)极坐标方程的综合应用.29.已知双曲线的离心率,则双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】渐近线方程为,故选C.【考点】双曲线.30.选修4 - 1:几何证明选讲如图,EF是⊙O的直径,AB∥EF,点M在EF上,AM、BM分别交⊙O于点C、D。

高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练

解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。

为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。

一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。

2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。

3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。

4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。

二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。

2. 设正方体的边长为3cm,求正方体的表面积和体积。

3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。

4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。

以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。

通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。

加油!。

高三数学一轮复习解析几何(解析版)

高三数学一轮复习解析几何(解析版)

数 学H 单元 解析几何H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c .从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H2 两直线的位置关系与点到直线的距离 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 22.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.22.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故线段AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即 4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H3 圆的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=06.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.17.[2014·湖北卷] 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b ,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有|MB |=λ|MA |,则(1)b =________; (2)λ=________.17.(1)-12 (2)12[解析] 设点M (cos θ,sin θ),则由|MB |=λ|MA |得(cos θ-b )2+sin 2θ=λ2[](cos θ+2)2+sin 2θ,即-2b cos θ+b 2+1=4λ2cos θ+5λ2对任意的θ都成立,所以⎩⎪⎨⎪⎧-2b =4λ2,b 2+1=5λ2.又由|MB |=λ|MA |,得λ>0,且b ≠-2,解得⎩⎨⎧b =-12,λ=12. 18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.H4 直线与圆、圆与圆的位置关系 5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-85.B [解析] 圆的标准方程为(x +1)2+(y -1)2=2-a ,r 2=2-a ,则圆心(-1,1)到直线x +y +2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4, 故选B.6.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π36.D [解析] 易知直线l 的斜率存在,所以可设l :y +1=k (x +3),即kx -y +3k -1=0.因为直线l 圆x 2+y 2=1有公共点,所以圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,即k 2-3k ≤0,解得0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.7.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .47.B [解析] 由图可知,圆C 上存在点P 使∠APB =90°,即圆C 与以AB 为直径的圆有公共点,所以32+42-1≤m ≤32+42+1,即4≤m ≤6.11.,[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4911.C [解析] 作出不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0表示的平面区域Ω(如下图阴影部分所示,含边界),圆C :(x -a )2+(y -b )2=1的圆心坐标为(a ,b ),半径为1.由圆C 与x 轴相切,得b =1.解方程组⎩⎪⎨⎪⎧x +y -7=0,y =1,得⎩⎪⎨⎪⎧x =6,y =1,即直线x +y -7=0与直线y =1的交点坐标为(6,1),设此点为P .又点C ∈Ω,则当点C 与P 重合时,a 取得最大值, 所以,a 2+b 2的最大值为62+12=37,故选C.21.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.21.解:方法一:(1)设S (x ,y )为曲线Γ上任意一点.依题意,点S 到点F (0,1)的距离与它到直线y =-1的距离相等, 所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线, 所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为y =14x 2.设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝⎛⎭⎫12x 0,0. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝⎛⎭⎫12x 0+6x 0,3. 又N (0,3),所以圆心C ⎝⎛⎭⎫14x 0+3x 0,3, 半径r =12|MN |=⎪⎪⎪⎪14x 0+3x 0, |AB |=|AC |2-r 2 =⎣⎡⎦⎤12x 0-⎝⎛⎭⎫14x 0+3x 02+32-⎝⎛⎭⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二:(1)设S (x ,y )为曲线Γ上任意一点,则|y -(-3)|-(x -0)2+(y -1)2=2.依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3,所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一. 6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11 6.C [解析] 依题意可得C 1(0,0),C 2(3,4),则|C 1C 2|=33+42=5.又r 1=1,r 2=25-m ,由r 1+r 2=25-m +1=5,解得m =9.9.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.9.25 55 [解析] 由题意可得,圆心为(2,-1),r =2,圆心到直线的距离d =|2-2-3|12+22=355,所以弦长为2r 2-d 2=2 4-95=2555 .18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.12.[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12C. [-2,2]D. ⎣⎡⎦⎤-22,22 12.A [解析] 点M (x 0,1)在直线y =1上,而直线y =1与圆x 2+y 2=1相切.据题意可设点N (0,1),如图,则只需∠OMN ≥45°即可,此时有tan ∠OMN =|ON ||MN |≥tan 45°,得0<|MN |≤|ON |=1,即0<|x 0|≤1,当M 位于点(0,1)时,显然在圆上存在点N 满足要求,综上可知-1≤x 0≤1.20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=2 2,O 到直线l 的距离为4105,故|PM |=4105,所以△POM 的面积为165.14.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.14.(x -2)2+(y -1)2=4 [解析] 因为圆心在直线x -2y =0上,所以可设圆心坐标为(2b ,b ).又圆C 与y 轴的正半轴相切,所以b >0,圆的半径是2b .由勾股定理可得b 2+(3)2=4b 2,解得b =±1.又因为b >0,所以b =1,所以圆C 的圆心坐标为(2,1),半径是2,所以圆C 的标准方程是(x -2)2+(y -1)2=4.14.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.14.0或6 [解析] ∵圆C 的标准方程为(x +1)2+(y -2)2=9,∴圆心为C (-1,2),半径为 3.∵AC ⊥BC ,∴|AB |=3 2.∵圆心到直线的距离d =|-1-2+a |2=|a -3|2,∴|AB |=2r 2-d 2=29-⎝ ⎛⎭⎪⎫|a -3|22=3 2,即(a -3)2=9,∴a =0或a =6. 9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.H5 椭圆及其几何性质21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=2 2得|DF 1|=|F 1F 2|2 2=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3 22,所以2a =|DF 1|+|DF 2|=2 2,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y 1x 1+1=-1.而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=⎝⎛⎭⎫-432+⎝⎛⎭⎫13-532=4 23.综上,存在满足题设条件的圆,其方程为x 2+⎝⎛⎭⎫y -532=329.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以 |AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 2+4 =x 202+8x 20+4 (0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.、、[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.20.解: (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎭⎫2332-1b 21=1,故b 21=3. 由椭圆的定义知2a 2=⎝⎛⎭⎫2332+(1-1)2+⎝⎛⎭⎫2332+(1+1)2=2 3.于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.(i)若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当 x =-2时,同理可知,|OA →+OB →|≠|AB →|.(ii)若直线l 不垂直于x 轴,设l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3.因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2. 故|OA →+OB →|≠|AB →|.综合(i),(ii)可知,不存在符合题设条件的直线.17.、[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-517.解: 设椭圆的焦距为2c, 则 F 1(-c, 0), F 2(c, 0).(1)因为B (0, b ), 所以BF 2=b 2+c 2=a .又BF 2=2, 故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0, b ), F 2(c, 0)在直线 AB 上,所以直线 AB 的方程为 x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c2,⎩⎪⎨⎪⎧x 2=0,y 2=b ,所以点 A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2.因为直线 F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2,故e 2=15, 因此e =55. 14.[2014·江西卷] 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.14.33[解析] 由题意A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,F 1(-c ,0),则直线F 1B 的方程为y -0=-b 2a 2c(x +c ). 令x =0,得y =-b 22a,即D ⎝⎛⎭⎫0,-b 22a ,则向量DA =⎝⎛⎭⎫c ,3b 22a ,F 1B →=⎝⎛⎭⎫2c ,-b 2a .因为AD ⊥F 1B ,所以DA →·F 1B →=2c 2-3b 42a2=0,即2ac =3b 2=3(a 2-c 2),整理得(3e -1)(e +3)=0,所以e =33(e >0).故椭圆C 的离心率为33.20.、、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0,其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x +3,得b 2x 2+43x +6-2b 2=0. 又x 1,x 2是方程的根,所以⎩⎨⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3,得|AB |=4 63|x 1-x 2|=2·48-24b 2+8b 4b 2.由点P 到直线l 的距离为32及S △P AB =12×32|AB |=2,得|AB |=4 63,即b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6,从而所求C 的方程为x 26+y 23=1.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 9.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .20.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b2a ,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1. 代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28,故a =7,b =27.21.,,[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.21.解:(1)由题意知,a 2-b 2a =32,可得a 2=4b 2.椭圆C 的方程可简化为x 2+4y 2=a 2. 将y =x 代入可得x =±5a 5. 因此2×25a 5=4105,即a =2,所以b =1,所以椭圆C 的方程为x 24+y 2=1.(2)(i)设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1). 因为直线AB 的斜率k AB =y 1x 1,且AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8mkx +4m 2-4=0, 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2, 所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0). 可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此,存在常数λ=-12使得结论成立.(ii)直线BD 的方程y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由(i)知M (3x 1,0),所以△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|. 因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时,等号成立, 此时S 取得最大值98,所以△OMN 面积的最大值为98.20.、[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.解: (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心(0,0)到直线l 的距离d =2|m |5.由d <1,得|m |<52,(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y 23=1得x 2-mx +m 2-3=0,由根与系数的关系得x 1+x 2=m ,x 1x 2=m 2-3, ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[]m 2-4(m 2-3)=1524-m 2.由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.20.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.20.解:(1)由已知可得,c a =63,c =2,所以a = 6.又由a 2=b 2+c 2,解得b =2,所以椭圆C 的标准方程是x 26+y 22=1.(2)设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1,消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.因为四边形OPTQ 是平行四边形,所以OP →=QT →,即(x 1,y 1)=(-3-x 2,m -y 2).所以⎩⎪⎨⎪⎧x 1+x 2=-12m 2+3=-3,y 1+y 2=4mm 2+3=m .解得m =±1.此时,四边形OPTQ 的面积S 四边形OPTQ =2S △OPQ =2×12·|OF |·|y 1-y 2|=2 ⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=2 3. 18.、[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2,。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.中心在原点,其中一个焦点为(-2,0),且过点(2,3),则该椭圆方程为;【答案】【解析】略2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)。

【解析】(1)两式相加消去参数可得曲线的普通方程,由曲线的极坐标方程得,整理可得曲线的直角坐标方程。

(2)由(1)知曲线的方程为,且点在曲线上,所以把直线的参数方程与曲线的方程联立,利用韦达定理可得试题解析:(1)(2)将代人直角坐标方程得【考点】(1)极坐标方程、参数方程与直角坐标方程的互化;(2)直线参数方程中参数的几何意义。

3.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1)(2)或【解析】第一问注意极坐标和直角坐标的转换,第二问注意用好公式即可,注意直线的参数方程中参数的几何意义的应用.试题解析:(1)由得,于是有,化简可得(2)将代入圆的方程得,化简得.设、两点对应的参数分别为、,则,,,,或.【考点】极坐标方程与直角坐标方程的转换,直线被曲线截得的弦长问题,直线的参数方程中参数的几何意义的应用.4.已知抛物线y2 =8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点,则直线FA与直线FB的斜率之和为A.0B.2C.-4D.4【答案】A【解析】由题可知,如图,,设,联立,化为,由于,所以,因此,直线FA与直线FB的斜率之和为;【考点】抛物线的简单性质5.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为_______.【答案】【解析】∵圆心与点(1,0)关于直线y=x对称,∴圆心为,又∵圆C的半径为1,∴圆C的标准方程为.【考点】圆的标准方程.6.已知是圆的切线,切点为,.是圆的直径,与圆交于点,,则圆的半径.【答案】【解析】在直角三角形中,由切割线定理可得,即,解得.【考点】1.勾股定理;2.切割线定理.7.如图,双曲线的中心在坐标原点,分别是双曲线虚轴的上、下顶点,是双曲线的左顶点,为双曲线的左焦点,直线与相交于点.若双曲线的离心率为2,则的余弦值是()A.B.C.D.【答案】【解析】可设双曲线方程为,即得,,,所以直线方程为,直线方程为,又把和的直线方程联立解得,又,所以,即所以有,,则,又故答案选【考点】双曲线的简单性质.8.已知抛物线,则A.它的焦点坐标为B.它的焦点坐标为C.它的准线方程是D.它的准线方程是【答案】C【解析】将抛物线化为标准方程得,所以其焦点坐标为,准线方程为.【考点】抛物线的标准方程及几何性质.9.已知双曲线的离心率为,则的值为A.B.3C.8D.【答案】B【解析】试题分析:由题意知,,所以,解之得,故应选.【考点】1、双曲线的概念;2、双曲线的简单几何性质;10.已知抛物线:的焦点为,抛物线上的点到焦点的距离为3,椭圆:的一个焦点与抛物线的焦点重合,且离心率为.(1)求抛物线和椭圆的方程;(2)已知直线:交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.【答案】(1)抛物线的方程为:;椭圆的方程为;(2)或.【解析】(1)由抛物线的定义并结合已知条件可得,,进而得出抛物线的方程;再由椭圆的一个焦点与抛物线的焦点重合,可得椭圆半焦距,即,又由椭圆的离心率为,即可联立方程组解出,的值,进而得出椭圆的方程;(2)首先设出、,然后联立直线与椭圆的方程并整理得到一元二次方程,由韦达定理可得,,以及判别式得出参数的取值范围,最后由原点在以线段为直径的圆的外部即得到关于的不等式,进而求出的取值范围.试题解析:(1)由题意可知,解得,所以抛物线的方程为:.∴抛物线的焦点,∵椭圆的一个焦点与抛物线的焦点重合,∴椭圆半焦距,.∵椭圆的离心率为,∴,解得,,∴椭圆的方程为.(2)设、,由得,∴,,由,即,解得或.①∵原点在以线段为直径的圆的外部,则,∴,解得.②由①②解得实数的范围是或.【考点】1、抛物线;2、椭圆的标准方程;3、直线与椭圆相交的综合问题.11.如图,已知椭圆()经过点,离心率,直线的方程为.(1)求椭圆的标准方程;(2)是经过椭圆右焦点的任一弦(不经过点),设直线与相交于点,记,,的斜率分别为,,,问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.【答案】(1);(2)存在常数符合题意.【解析】(1)根据点在椭圆上,可将其代入椭圆方程,又且解方程组可得的值.(2)设直线的方程为,与椭圆方程联立消去可得关于的一元二次方程,从而可得两根之和,两根之积.根据斜率公式可用表示出.从而可得的值.试题解析:解:(Ⅰ)由点在椭圆上得,,①又,所以,②由①②得,故椭圆的方程为.(Ⅱ)假设存在常数,使得,由题意可设则直线的方程为,③代入椭圆方程,并整理得,设,则有,④在方程③中,令得,,从而.又因为共线,则有,即有,所以=,⑤将④代入⑤得,又,所以,故存在常数符合题意.【考点】1椭圆的简单几何性质;2直线与椭圆的位置关系问题.12.【选修4-2:极坐标与参数方程】已知直线n的极坐标是,圆A的参数方程是(θ是参数)(1)将直线n的极坐标方程化为普通方程;(2)求圆A上的点到直线n上点距离的最小值.【答案】(1);(2).【解析】(1)利用,即可将极坐标方程化为平面直角坐标系方程;消去参数即可将圆的参数方程化为普通方程;(2)运用普通方程,并利用圆心到直线的距离减去半径即得最小值.试题解析:(1)由,展开为,化为;(2)圆A的(θ是参数)化为普通方程为,圆心,半径.∴圆心到直线n的距离.∴圆A上的点到直线n上点距离的最小值为:.【考点】(1)极坐标、参数方程化普通方程;(2)圆上点到直线距离的最值问题.13.已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标().【答案】(1);(2),.【解析】(1)先得到的普通方程,进而得到极坐标方程;(2)先联立求出交点坐标,进而求出极坐标.试题解析:(1)将消去参数,化为普通方程5,即.将代入得,所以的极坐标方程为.(2)的普通方程为.由,解得或,所以与交点的极坐标分别为,.【考点】1、参数方程与普通方程的互化;2、极坐标方程与直角坐标方程的互化.14.已知双曲线的一条渐近线过点(2,),则双曲线的离心率为()A.B.C.D.【答案】B【解析】因为双曲线的方程为所以双曲线一条渐近线方程经过点可得,,解得离心率,故选D.【考点】1、双曲线的渐近线;2、双曲线的离心率.15.已知直线l经过点,倾斜角,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设l与圆C相交于两点A、B,求A、B两点间的距离.【答案】(1);(2).【解析】(1)首先根据两角差的余弦公式展开,然后两边同时乘以,根据,,化简,得到圆的直角坐标方程;(2)根据定点和倾斜角写出直线的参数方程,代入圆的方程得到关于的二次方程,根据韦达定理和的几何意义,,即可求出结果.试题解析:解:(1)由得,所以,即,故圆C的直角坐标方程为.(2)直线l的参数方程为,即(t为参数),把(t为参数)代入得,设方程的两根为,,则,.故.【考点】1.极坐标方程与直角坐标方程的互化;2.弦长公式.【易错点睛】极坐标与参数方程的问题,属于基础题型,对于形如(t为参数)的参数方程,应先化为直线参数方程的标准形式后才能利用的几何意义解题.在参数方程与普通方程的互化中,必须使的取值范围保持一致.16.选修4-4:坐标系与参数方程已知直线(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.【答案】(1);(2)【解析】(1)由得普通方程为,的普通方程为.联立方程组,即可求出结果;(2)的参数方程为(为参数),故点的坐标是,从而点到直线的距离,根据三角函数的性质即可求出结果.试题解析:(1)的普通方程为,的普通方程为,联立方程组,解得交点坐标为,,所以;(2)曲线(为参数).设所求的点为,则到直线的距离当时,取得最小值.【考点】1.极坐标;2.参数方程.17.若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】由题意得直线和直线截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为,即【考点】直线与圆位置关系18.已知椭圆:的左右焦点分别为,,离心率为,直线:,为点关于直线对称的点,若为等腰三角形,则的值为.【答案】.【解析】分析题意可知为等腰三角形可得,即点到直线距离为,∴,故填:.【考点】双曲线的标准方程及其性质.19.已知椭圆过定点,以其四个顶点为顶点的四边形的面积等于以其两个短轴端点和两个焦点为顶点的四边形面积的倍.(Ⅰ)求此椭圆的方程;(Ⅱ)若直线与椭圆交于,两点,轴上一点,使得为锐角,求实数的取值范围.【答案】(Ⅰ)椭圆的方程为;(Ⅱ)的取值范围.【解析】(Ⅰ)以四个顶点为顶点的四边形和以其两个短轴端点和两个焦点为顶点的四边形均为菱形,易求它们的对角线长,根据其面积关系可得,又再把点代入椭圆方程,可得,从而求得其方程;(Ⅱ)由为锐角,得,根据向量数量积的坐标运算可得两点坐标之间的关系,整理方程组,根据韦达定理把两根之和和两根之积代入上面的关系式,可得关于的不等式,解不等式即可求得参数的取值范围.试题解析:(Ⅰ)以椭圆四个顶点为顶点的四边形的面积,以两个短轴端点和两个焦点为顶点的四边形面积.,即.可设椭圆方程为,代入点可得.所求椭圆方程为.(Ⅱ)由为锐角,得,设,,则,,,联立椭圆方程与直线方程消去并整理得.所以,,进而求得,所以,即,解之得的取值范围【考点】待定系数法求椭圆方程及直线与椭圆位置关系的应用.【方法点睛】本题第一问主要考查了待定系数求椭圆方程,发现两个四边形的形状快速求得其面积是解答本问的突破口;第二问中,对条件“为锐角”的转化是关键,在直线与圆锥曲线的位置关系问题中,夹角为“锐角”、“钝角”、 “直角”及“点在圆外、圆内、圆上”等实际上都可以转化为向量的数量积问题,通过向量数量积的坐标运算可得直线与圆锥曲线的交点坐标之间的关系,再结合方程组和韦达定理即可建立函数、方程或不等式,这里面会考查到学生转化的数学思想,数形结合的数学思想及函数与方程的思想等,这类问题综合性较强,属于中高档题目.20. (2015秋•锦州校级期中)已知△ABC ,点A (2,8)、B (﹣4,0)、C (4,﹣6),则∠ABC 的平分线所在直线方程为 . 【答案】x ﹣7y+4=0【解析】先求出三角形ABC 是等腰直角三角形,作出∠ABC 的角平分线BD ,求出D 点坐标,BD 的斜率,再用点斜式求得所在直线方程即可.解:如图示:,∵k AB =,k BC =﹣,∴AB ⊥BC ,∵|AB|==10,|BC|==10,∴|AB|=|BC|, ∴△ABC 是等腰直角三角形, 作出∠ABC 的角平分线BD ,∴直线BD 是线段AC 的垂直平分线,D 是AC 的中点, ∴D (3,1), 由k AC =﹣7得:k BD =,∴直线BD 的方程是:y=1=(x ﹣3), 整理得:x ﹣7y+4=0, 故答案为:x ﹣7y+4=0.【考点】待定系数法求直线方程.21. 如图,分别是双曲线的左、右焦点,过的直线与的左、右两支分别交于点.若为等边三角形,则双曲线的离心率为()A.4B.C.D.【答案】B【解析】由双曲线的定义,知,.又==.又为等边三角形,所以=,即=,所以,所以,所以.在中,由余弦定理,得-=,即,所以,所以,故选B.【考点】1、双曲线的定义及几何性质;2、余弦定理.【方法点睛】离心率的求解中可以不求出的具体值,而是得出与的关系,从而求得,一般步骤如下:①根据已知条件得到齐次方程;②化简得到关于的一元二次方程;③求解的值;④根据双曲线离心率的取值范围进行取舍.22.在以坐标原点为极点,轴的正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,正三角形的顶点都在上,且依逆时针次序排列,点的坐标为.(I)求点的直角坐标;(II)设是圆上的任意一点,求的取值范围.【答案】(I),;(II) .【解析】(I)先将曲线的极坐标方程化为普通方程,进而化为参数方程,再确定所求点的坐标;(II)设出点的参数坐标,化简表达式,利用三角恒等变形进行求解.试题解析:(1)由题意,得曲线的普通方程为,其参数方程为为参数,又因为点的坐标为,所以点的坐标为,即;点的坐标为,即.(2)由圆的参数方程,可设点,于是,∴的范围是.【考点】1.曲线的极坐标、普通方程、参数方程的转化;2.三角恒等变换.23.已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1);(2)或.【解析】(1)把转化为 ,再利用,,转化为直角坐标方程;(2)将代入圆的方程化简得,.,求得,所以或.试题解析:(1)由得.∵,,,∴曲线的直角坐标方程为,即;(2)将代入圆的方程得,化简得.设两点对应的参数分别为、,则∴.∴,,或.【考点】参数方程、极坐标方程、直角坐标方程的互化及应用24.设双曲线的左、右焦点分别为,,离心率为,过的直线与双曲线的右支交于,两点,若是以为直角顶点的等腰直角三角形,则()A.B.C.D.【答案】C【解析】设,则,,,∵,∴,∴,∵为直角三角形,∴,∴,∵,∴,∴,故选C.【考点】1、双曲线的定义;2、双曲线的简单几何性质.25.已知抛物线的焦点F与双曲线的右焦点重合,抛物线的准线与轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3C.D.4【答案】B【解析】因为抛物线的焦点F与双曲线的右焦点重合,所以抛物线的标准方程为,,设点,则由,得,即,即,解得,即A点的横坐标为3;故选B.【考点】1.抛物线的定义;2.双曲线的定义.【技巧点睛】本题考查抛物线、双曲线的定义的应用和两点间的距离公式,属于基础题;在处理与抛物线的焦点有关的问题时,要注意利用抛物线的定义使抛物线的点到焦点的距离和到准线的距离进行相互转化,但要注意抛物线的标准方程的形式,如抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,物线上的点到焦点的距离为.26.在平面直角坐标系中,直线的参数方程为(为参数),在以直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的直角坐标方程和直线的普通方程;(2)若直线与曲线相交于两点,求的面积.【答案】(1),;(2).【解析】(1)利用极坐标与直角坐标的互化,可把极坐标方程化为普通方程;消去参数可得直线的直角坐标方程;(2)将直线的参数方程代入曲线的方程,得,由,即可求解的长度,再利用点到直线的距离公式求解的高,即可求解三角形的面积.试题解析:(1)由曲线的极坐标方程是:,得.∴由曲线的直角坐标方程是:.由直线的参数方程,得代入中消去得:,所以直线的普通方程为:(2)将直线的参数方程代入曲线的普通方程,得,设两点对应的参数分别为,所,因为原点到直线的距离,所以的面积是【考点】参数方程、极坐标方程与直角坐标方程的互化;直线参数的应用.27.如图,椭圆左、右焦点分别为,上顶点轴负半轴上有点,满足,且,若过三点的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若为椭圆上的点,且直线垂直于轴,直线与轴交于点,直线与交于点,求的面积的最大值.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)由题得,即的外接圆圆心为,半径,则由过三点的圆与直线相切可求得,进而得到,则椭圆的方程可求;(Ⅱ)首先证明点恒在椭圆上通过设、直线,利用三角形面积公式化简可知,通过联立直线与椭圆方程后由韦达定理、换元化简可知,,令求出的最大值进而即得结论.试题解析:(Ⅰ)由题得,即,的外接圆圆心为,半径,∵过三点的圆与直线相切,∴,解得:,∴所求椭圆方程为:.(Ⅱ)设,则,∴,与的方程分别为:.则,∵,∴点恒在椭圆上.设直线,则,记,,,令,则,∵函数在为增函数,∴当即时,函数有最小值4,即时,,又∵.故【考点】【名师】本题考查了椭圆离心率,方程的求法,以及直线与椭圆位置关系,属中档题.解题时注意设而不求思想的应用.以及基本不等式的综合应用,难点在于证明点恒在椭圆上28.以双曲线的右焦点为圆心,为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为 .【答案】【解析】由题意得【考点】双曲线渐近线29.设分别为椭圆()与双曲线()的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值范围为()A.B.C.D.【答案】B【解析】设,则,又,,所以,,则,由得,又,所以,即,所以.故选B.【考点】椭圆与双曲线的性质.【名师】本题是椭圆与双曲线的综合题,解题时要注意它们性质的共同点和不同点,如离心率是相同的,准线方程是,但椭圆中有,,双曲线中有,,这在解题时要特别注意不能混淆,否则易出错.30.在直角坐标系中,直线为过点,且倾斜角为的直线,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线(1)写出直线的参数方程和曲线的直角坐标方程;(2)若直线与曲线相交于两点,且,求的长【答案】(1)直线:(为参数,其中),;(2).【解析】(1)过点,倾斜角为的直线的参数方程为,由此可写出题中直线的参数方程,利用公式,可把极坐标方程化为直角坐标方程;(2)考虑到参数方程中参数的几何意义,由于在椭圆内部,对应的参数分别为,则,因此把直线参数方程代入椭圆的直角坐标方程,整理后可得,利用可求得,从而得,而,由此可得弦长.试题解析:(1)直线:(为参数,其中),(2)把:代入,整理得,由于点在椭圆内,则恒成立,由韦达定理由于,由的几何意义知,所以,又,则所以【考点】参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化.31.选修4—1:几何证明选讲如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=PA·PC;(2)若⊙O的半径为,OA=OM,求:MN的长.【答案】(1)证明见解析;(2).【解析】(1)做出辅助线连接,根据切线得到直角,根据垂直得到直角,即且,根据同角的余角相等,得到角的相等关系,得到结论;(2)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即,代入所给的条件,得到要求线段的长.试题解析:(1)连结,则,且为等腰三角形,则,,,.由条件,根据切割线定理,有,所以.(2),在中,.延长交⊙于点,连结.由条件易知∽,于是,即,得.所以.【考点】与圆有关的比例线段.32.、分别是椭圆:的左、右焦点,为坐标原点,是上任意一点,是线段的中点.已知的周长为,面积的最大值为.(Ⅰ)求的标准方程;(Ⅱ)过作直线交于两点,,以为邻边作平行四边形,求四边形面积的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,可得,……①又面积,可得,……②,由即可求出椭圆方程;(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,, 9分设,则,,然后再利用基本不等式即可求出结果.试题解析:解:(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,即,……① 2分又面积,所以当时,最大,所以,……② 4分由解得,所以的标准方程为.(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,,设,则,,因为,所以,当且仅当时,等号成立,所以,,四边形面积的取值范围.【考点】1.椭圆方程;2.直线与椭圆的位置关系.33.设是坐标原点,椭圆的左右焦点分别为,且是椭圆上不同的两点。

理第20题 解析几何(解析版)-2022年高三毕业班数学第X题满分练(全国通用)

理第20题  解析几何(解析版)-2022年高三毕业班数学第X题满分练(全国通用)

第20题解析几何高考考点命题分析三年高考探源 考查频率曲线的方程或轨迹方程高考全国卷每年必有一道解析几何解答题,在高考中解析几何一般运算量较大,该题通常有2问,第1问多为曲线方程的确定,第2问多为直线与圆锥曲线的位置关系的应用,考查热点是长度、面积及定点定值问题2021课标全国Ⅰ21 2021课标全国Ⅱ20 2020课标全国Ⅰ202020课标全国Ⅱ19 2019课标全国Ⅲ20 2019课标全国Ⅰ19 2019课标全国Ⅱ21★★★★★ 直线与圆锥曲线位置关系及应用(长度、面积、定点、定值)2021课标全国Ⅰ21 2021课标全国Ⅱ20 2020课标全国Ⅰ20 2020课标全国Ⅲ20 2019课标全国Ⅰ19 2019课标全国Ⅱ21 2019课标全国Ⅲ21★★★★★例题(2021高考全国I )已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)5解:(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,(2分)所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(4分)(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,(5分)设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x x y y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,(8分) 所以,()()()222222001212000001414164422x x AB x x x x x y xx y ⎛⎫⎛⎫=++-=+-+- ⎪ ⎪⎝⎭⎝⎭,(9分)点P 到直线AB 的距离为200244x y d x -=+(100分)所以,()()()2300222200002041114442224PABx y S AB d xx y x y x -=⋅=+-=-+△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB △的面积取最大值321202052⨯=(12分)1.(2022届山西省吕梁市高三模拟)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F 3(3,6为C 上一点,过点1F 且与y 轴不垂直的直线l 与C 交于A ,B 两点. (1)求C 的方程;(2)在平面内是否存在定点Q ,使得QA QB ⋅为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)221128x y +=(2)存在;8,03Q ⎛⎫- ⎪⎝⎭【解析】 (1)设C 的半焦距为()0c c >,由题意得222223361c a a b a b c⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2221284a b c ⎧=⎪=⎨⎪=⎩,所以C 的方程为221128x y +=.(2)假设存在定点(),Q s t ,使得QA QB ⋅为定值λ,设()11,A x y ,()22,B x y . 由(1)知()2,0F -,因为l 不垂直于y 轴,故设l 的方程为2x my =-,联立,得2221128x my x y =-⎧⎪⎨+=⎪⎩,消去x 并化简,得()22238160m y my +--=.则()226464230m m ∆=++>,且122823m y y m +=+,1221623y y m =-+, ()()1111,2,QA x s y t my s y t =--=---,()()2222,2,QB x s y t my s y t =--=---,所以()()()()121222QA QB my s my s y t y t ⋅=----+--()()()()2221212122m y y m s t y y s t =+-++++++⎡⎤⎣⎦()()()222221618222323m m s t m s t m m λ+++⎡⎤⎣⎦=--+++=++. 所以()()()222222221616828223223m s m tm s t m s t m λλ⎡⎤⎡⎤---+-++++++=+⎣⎦⎣⎦, 所以()()2216822222s s t λ--++++=,80t -=,()22163233s t λ-+++=,所以83s =-,0=t ,449λ=-.所以存在8,03Q ⎛⎫- ⎪⎝⎭,使得QA QB ⋅为定值449-.2.(2022届河南省顶级名校高三4月联合考)己知抛物线1C 的方程是223y x =,圆2C 的方程是()2211x a y -++=,过抛物线1C 上的点()(),0>P a b b 作圆2C 的切线,两切线分别与抛物线1C 相交于与点P 不重合的()()()112212,,,>A x y B x y y y 两点. (1)求直线P A ,PB 的方程(直线PB 的方程用含b 的等式表示); (2)若PA PB =,求实数2b 的值.【答案】(1)x a =,()242214370b x by b b ---+=(2)227+【解析】 (1)由题意可知,直线PB 的方程是x a =,根据条件可设直线PA 的方程是()y k x a b =-+,即0kx y ka b --+=, ∵直线PA 与圆()2211x a y -++=相切,∴()2111k a ka bk --+=+,∴212b k b-=,∴直线PA 的方程是2221130222b b b x y b b b ----⋅+=,即()242214370b x by b b ---+=.(2)若210b -=,则0k =,直线PA 与抛物线1C 没有两个交点,不合题意, 故210b -≠,∴直线PA 的方程可写成()4222237121b b b x y b b -=+--,将它代入223y x =并化简得()2242314370b y by b b ---+=,∴()()2224Δ(4)121730b b b b =---->①,()12431b y b b +=-,即()12431by b b =--, ∴()21112211114PA b y b by k k=+-=++-()()()()()2222222222221354164143119131b b b b b b b b b b b b ⎡⎤+-⎢⎥=+---⎢⎥---⎣⎦,∵2PB b =,∴()22222135231b b b b b +-=-,解得,22b =,或227b += 经检验,22b =与227b +=①,所以实数2b 的值是227+3.(2022届山西省高三第二次模拟)已知双曲线()2222:10,0x y C a b a b-=>>经过点()12,0A ,()24,0A ,(322,3A ,(422,3A -,53,3A 中的3个点.(1)求双曲线C 的方程;(2)已知点M ,N 是双曲线C 上与其顶点不重合的两个动点,过点M ,N 的直线1l ,2l 都经过双曲线C 的右顶点,若直线1l ,2l 的斜率分别为1k ,2k ,且121k k +=,判断直线MN 是否过定点,若过定点,求出该点的坐标;若不过定点,请说明理由【答案】(1)22143x y -=(2)直线MN 过定点,且定点坐标为()2,3【解析】 (1)由于34,A A 关于x 轴对称,所以34,A A 要么都在双曲线C 上,要么都不在双曲线C 上.点12,A A 不可能都在双曲线C 上,因为双曲线C 经过3个点,所以34,A A 都在双曲线C 上.将34,A A 的坐标代入22221x y a b-=得22831a b -=,由34,A A 都在双曲线C 上可知()24,0A 、53,3A 都不在双曲线C 上,所以点()12,0A 在双曲线C 上,故2a =, 结合22831a b -=可得3b = 所以双曲线C 的方程为22143x y -=.(2)设()()1122,,,M x y N x y ,其中12y y ≠,故可设直线MN 的方程为x my n =+,由22143x my nx y =+⎧⎪⎨-=⎪⎩消去x 并化简得()2223463120m y mny n -++-=,2340m -≠,21212226312,3434mn n y y y y m m -+=-⋅=--. 因为双曲线C 的右顶点为()12,0A ,且121k k +=, 所以121212122222y y y y x x my n my n +=+--+-+-12122212122(2)()(2)()(2)my y n y y m y y m n y y n +-+=+-++-22222222222226246123343413126122(2)3434mn m mn mnm m m m n m m n m n nn m m -----==----+---,所以32n m =-+,代入x my n =+得()32x m y =-+, 当3y =时,2x =, 所以直线MN 过定点()2,3.4.(2022届河北省九师联盟高三4月联考)已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为()16,0F ,)26,0F .且该双曲线过点(22,2P .(1)求C 的方程;(2)如图.过双曲线左支内一点(),0T t 作两条互相垂直的直线分别与双曲线相交于点A ,B 和点C ,D .当直线AB ,CD 均不平行于坐标轴时,直线AC ,BD 分别与直线x t =相交于P .Q 两点,证明:P ,Q 两点关于x 轴对称. 【答案】(1)22142x y -=(2)证明见解析 【解析】 (1)解:由已知可得22226821a b a b ⎧+⎪⎨-=⎪⎩,解得224,2a b ==, 所以双曲线C 的方程为22142x y -=; (2)证明:由题意,设直线AB 的方程为x my t =+,直线CD 的方程为1x y t m=-+,点 ()()()()11223344,,,,,,,A x y B x y C x y D x y ,由22142x y x my t ⎧-=⎪⎨⎪=+⎩,得 ()2222240m y mty t -++-=,则()()22222(2)424168320mt m t m t ∆=---=+->,得2224m t +>,所以212122224,22mt t y y y y m m --+==--, 同理可得()2234342242,1212t m mt y y y y m m-+==--,其中,m t 满足2224t m +>, 直线AC 的方程为()133111y y y y x x x x --=--,令x t =,得()131113y yy t x y x x -=-+-, 又11331,x my t x y t m =+=-+,所以()2121331m y y y m y y +=+,即()2132131,m y y P t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 同理可得()2242241,m y y Q t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 因为()()()()()()()2222123412341324222213241324111m m y y y y y y y y my y my y m y y m y y my y m y y ⎡⎤++++++⎣⎦+=++++()()()()()222222222221324442212122120m t t m mt mt m m m m m m y y m y y ⎡⎤---+⋅+⋅⎢⎥----⎢⎥⎣⎦==++, 所以,P Q 两点关于x 轴对称.5.(2022届天津市第七中学高三阶段检测)已知曲线C 上动点M 与定点()2,0F 的距离和它到定直线1:22l x =-22,若过()0,1P 的动直线l 与曲线C 相交于,A B 两点.(1)说明曲线C 的形状,并写出其标准方程; (2)是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)曲线C 为椭圆,标准方程为:22142x y +=,(2)存在定点()0,2Q ,使得QA PA QB PB =恒成立. 【解析】 (1) 设(),M x y ()2222222x y x ++=+,整理可得:22142x y +=, ∴曲线C 为椭圆,标准方程为:22142x y +=.(2)①当直线l 与y 轴垂直时,即:1l y =,由椭圆对称性可知:PA PB =,QA QB ∴=,∴点Q 在y 轴上;②当直线l 与x 轴垂直时,即:0l x =,则(2A ,(0,2B -, 若存在定点Q ,则由①知:点Q 在y 轴上,可设()()0,1Q t t ≠,由QA PA QB PB =221212t t --=++1t =(舍)或2t =,()0,2Q ∴; 则若存在定点Q 满足题意,则Q 点坐标必然是()0,2,只需证明当直线l 斜率存在时,对于()0,2Q ,都有QA PAQB PB=成立即可. 设:1l y kx =+,()11,A x y ,()22,B x y ,由221142y kx x y =+⎧⎪⎨+=⎪⎩得:()2212420k x kx ++-=,其中23280k ∆=+>恒成立,122122412212k x x k x x k ⎧+=-⎪⎪+∴⎨⎪=-⎪+⎩,121212112x x k x x x x +∴+==,设点B 关于y 轴的对称点为B ',则()22,B x y '-, 11111211QA y kx k k x x x --===-,22222211QB y kx k k x x x '--===-+--, 12112220QA QB k k k k k x x '⎛⎫∴-=-+=-= ⎪⎝⎭,即,,Q A B '三点共线,12QA QA x PAQB QB x PB∴==='; 综上所述:存在定点()0,2Q ,使得QA PAQB PB=恒成立. 6.(2022届浙江省嘉兴市高三4月二模)已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆1C 上的点31,2A ⎛⎫- ⎪⎝⎭到两焦点1F ,2F 的距离之和为4.(1)求椭圆1C 的标准方程;(2)若抛物线22:2(0)C y px p =>的焦点F 与椭圆1C 的右焦点2F 重合,过点(,0)(0)P m m >作直线1l 交抛物线2C 于点M ,N ,直线MF 交抛物线2C 于点Q ,以Q 为切点作抛物线2C 的切线2l ,且21l //l ,求MNQ △面积S 的最小值.【答案】(1)22143x y +=;(2)16.【解析】 (1)因为椭圆1C 上的点31,2A ⎛⎫- ⎪⎝⎭到两焦点1F ,2F 的距离之和为4,所以有24a =,即2a =,将点31,2A ⎛⎫- ⎪⎝⎭代入椭圆1C 的方程22214x yb+=,得219144b+=,从而23b =, 所以椭圆1C 的标准方程为22143x y +=; (2)由(1)知椭圆的右焦点为(1,0),因为抛物线2C 的焦点与椭圆1C 的右焦点重合,所以12p=,即2p =,从而抛物线2C 的方程为24y x =.设()11,M x y ,()22,N x y ,设直线MN 为:(0)x ty m t =+≠,联立24x ty my x =+⎧⎨=⎩,消去x 得2440y ty m --=,所以121244y y t y y m +=⎧⎨=-⎩①, 直线2114:14y MF x y y -=+与抛物线22:4C y x =联立,消去x 得 2211440y y y y ---=,所以得Q 点的纵坐标为14y -,所以21144,Q y y ⎛⎫- ⎪⎝⎭,因为21l //l ,所以直线2l 为:21144t x ty y y =++与抛物线22:4C y x =联立,消去x 得2211161640t y ty y y ---=,故2221114240t t t y y y ⎛⎫∆=++=+= ⎪⎝⎭,得12y t =-,代入①式可以得224y t t =+,122244y y t m t t ⎛⎫=-+=- ⎪⎝⎭,即212m t=+,又有()2,2Q t t ,直线MN 为212(0)x ty t t =++≠,得2221||12MN t t t =+++222121Q MN d t t t -⎫=++⎪⎭+所以33222222112222216MNQ S t t t t ⎛⎫⎛⎫=++≥⋅ ⎪ ⎪ ⎪⎝⎭⎝=⎭△, 当且仅当1t =±时取到最小值.7.(2022届山西省吕梁市高三第二次模拟)已知O 为坐标原点,椭圆2222:1(0)x y C a b a b+=>>6(6,1)P . (1)求椭圆C 的方程;(2)直线l 与椭圆C 交于A ,B 两点,直线OA 的斜率为1k ,直线OB 的斜率为2k ,且1213k k =-,求OA OB ⋅的取值范围.【答案】(1)22193x y +=;(2)[3,0)(0,3]-.【解析】 (1)由题意,226611c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c =+,解得3,3a b ==所以椭圆C 为22193x y +=. (2)设()()1122,,,A x y B x y ,若直线l 的斜率存在,设l 为y kx t =+,联立22193y kx tx y =+⎧⎪⎨+=⎪⎩,消去y 得:()222136390+++-=k x ktx t ,22Δ390k t =+->,则12221226133913kt x x k t x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k =121213y y x x =-, 故121213=-y y x x 且120x x ≠,即2390-≠t ,则23≠t ,又1122,y kx t y kx t =+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t t kx t kx t kt x x t y y t k k k k t x x x x x x t k , 整理得222933=+≥t k ,则232≥t 且Δ0>恒成立. 221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=- ⎪+⎝⎭t t OA OB x x y y x x x x x x k t t , 又232≥t ,且23≠t ,故2331[3,0)(0,3)⎛⎫-∈- ⎪⎝⎭t . 当直线l 的斜率不存在时,2121,x x y y ==-,又12k k =212113-=-y x ,又2211193x y +=,解得2192x =,则222111233⋅=-==OA OB x y x . 综上,OA OB ⋅的取值范围为[3,0)(0,3]-.8.(2022届浙江省温州市高三3月适应性测试)已知椭圆()22122:10x y C a b a b+=>>离心率为662⎝⎭;圆()()2223:4C x m y n -+-=的圆心为M ,M 是椭圆上1C 上的点,过O 作圆2C 两条斜率存在的切线,交椭圆1C 于A ,B .(1)求椭圆1C 方程;(2)记d OA OB =+,求d 的最大值. 【答案】(1)2213x y +=(2)22【解析】 (1)依题意22222226216a b a b c c a ⎧⎪⎪⎝⎭⎝⎭+=⎪⎪⎪=+⎨⎪⎪=⎪⎪⎪⎩,解得3,1,2a b c ==所以椭圆1C 的方程为2213x y +=.(2)设过原点的圆()()2223:4C x m y n -+-=的切线方程为y kx =,即0kx y , 231km n k -=+()222348340m k mnk n -++-=, 其两根12,k k 满足21223434n k k m -=-,设12,OA OB k k k k ==,(),M m n 是椭圆1C 上的点,所以22221,133m m n n +==-. 2221222243341334133434343m m n k k m m m ⎛⎫--- ⎪-⎝⎭====----. 设()()1122,,,A x kx B x kx ,则2211221,1OA k x OB k x +=+,且2222221211221,133x x k x k x +=+=,2212221233,1313x x k k ==++ 所以()()222222112211OA OB k x k x +=+++()222222222222222222121122112211221122333362x x k x k x k x k x k x k x k x k x =+++=-+-++=-+ 2212221233621313k k k k ⎛⎫=-+ ⎪++⎝⎭()()()()222212212212313313621313k k k k k k +++=-⨯++ 2222221212122222221212123318332626262=41339233k k k k k k k k k k k k ++++=-⨯=-⨯=-+++++. 所以由基本不等式得()22222d OA OB OA OB =+≤+=,当且仅当OA OB =时等号成立. 所以d 的最大值为229.(2022届云南省高三第二次统一检测)已知曲线C ()22110x y x -++=,点D 的坐标为()1,0,点P 的坐标为()1,2.(1)设E 是曲线C 上的点,且E 到D 的距离等于4,求E 的坐标;(2)设A ,B 是曲线C 上横坐标不等于1的两个不同的动点,直线P A ,PB 与y 轴分别交于M 、N 两点,线段MN 的垂直平分线经过点P .证明:直线AB 的斜率为定值. 【答案】(1)(3,23或(3,23-(2)证明见解析 【解析】 (1)∵曲线C ()22110x y x -++=,移项平方得()()22211x y x -+=+,化简得24y x =, ∴曲线C 的方程为24y x =.∴()1,0D 为抛物线24y x =的焦点,直线1x =-为抛物线24y x =的准线. 设()00,E x y ,则01ED x =+. ∵4ED =,∴014x +=,解得03x =.∴20412y x ==,解得023y =± ∴E 的坐标为(3,23或(3,23-.(2)∵()1,2P ,曲线C 的方程为24y x =,2241=⨯, ∴点()1,2P 在曲线C 上.∵A 、B 是曲线C 上横坐标不等于1的两个不同的动点,直线P A 、PB 与y 轴分别交于点M 、N ,∴直线P A 、PB 的斜率都存在,且都不为0,分别设为k 、1k ,则10kk ≠,直线P A 的方程为()21y k x -=-,即2y kx k =+-.当0x =时,2y k =-,即()0,2M k -. 同理可得()10,2N k -.∵线段MN 的垂直平分线经过点P , ∴12222k k -+-=,即1k k =-.由224y kx k y x=+-⎧⎨=⎩,得:()2222222440k x k k x k k --++-+=. 设()11,A x y ,则1,1x 是()2222222440k x k k x k k --++-+=的解.由韦达定理得:2112441k k x x k -+=⋅=.∴21244422k k y k k k k-+=⨯+-=-.∴22444,2k k A k k ⎛⎫-+- ⎪⎝⎭. 同理可得22444,2k k B k k ⎛⎫++- ⎪-⎝⎭. ∴2222442214444ABk k k k k k k k k ---+==-++-+-. ∴直线AB 的斜率为定值.10.(2022届河南省五市高三第二次联合调研)已知椭圆C :22221x y a b+=(0a b >>)的上顶点和两焦点构成的三角形为等腰直角三角形,且面积为2,点M 为椭圆C 的右顶点. (1)求椭圆C 的方程;(2)若经过点(,0)P t 的直线l 与椭圆C 交于,A B 两点,实数t 取何值时以AB 为直径的圆恒过点M ?【答案】(1)22142x y +=,(2)23t = 【解析】 (1)由题意知:2b cbc =⎧⎨=⎩解得:2b c ==2a =,所以椭圆C 的方程为22142x y +=. (2)由(1)知:(2,0)M ,若直线l 的斜率不存在,则直线l 的方程为x t =(22t -<<), 此时222t A t ⎛- ⎝,2,22t B t ⎛-⎝, 由0MA MB ⋅=得2222,2022t t t t ⎛⎛--⋅---= ⎝⎝, 解得23t =或2t =(舍),即23t =. 若直线l 的斜率存在,不妨设直线l :()y k x t =-,11(,)A x y ,22(,)B x y 联立()22142y k x t x y ⎧=-⎪⎨+=⎪⎩,得()()22222124240k x k ty k t +-+-=.所以,2122412k tx x k +=+,221222412k t x x k -=+.由题意知:0MA MB ⋅=,即1122(2,)(2,)0x y x y -⋅-=, 易得()()()()222212121240kx x k t x x k t +-++++=,()()()()()22222222124244120k k tk t k t k t k +--++++=(),整理得,()223840k t t -+=,因为k 不恒为0故解得23t =或2t =(舍), 综上,23t =时以AB 为直径的圆恒过点M . 11.(2022届江苏省南通市高三二模))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是F 1,F 2,焦距为2,点P 是椭圆C 上一动点,12PF F △的内切圆的面积的最大值为3π. (1)求椭圆C 的方程;(2)延长12,PF PF 与椭圆C 分别交于点A ,B ,问:1212PF PF F AF B+是否为定值?并说明理由.【答案】(1)22143x y +=,(2)是,理由见解析 【解析】 (1)设12PF F △的内切圆的半径为r ,点P 的坐标为()00,x y . 因为焦距为2,所以122F F =,故1c =. 12PF F △的面积()12012121122S F F y PF PF F F r =⋅=++⋅,故0(1)y a r =+. 对于给定的椭圆,要使 12PF F △的内切圆的面积最大,即r 最大,即0y 最大, 由于12PF F △的内切圆的面积的最大值为3π,故此时3r =, 所以0y b =时,有3(1)b a =+①又221a b -=.②由①②,得224,3a b ==,所以椭圆C 的方程22143x y +=. (2)由题意知:12(1,0),(1,0)F F - ,设()()1122,,,A x y B x y ,直线1PF 的方程为1x my =-,与(1)中所求椭圆22:143x y C +=联立方程组并消去x 得, ()2234690my my +--=,24(1)0m ∆=+> ,所以012934y y m -=+,所以221001103409PF y m y F A y -+==-. 因为点00(,)P x y 在直线1:1PF x my =-上,所以001x m y +=, 又点 00(,)P x y 在椭圆22:143x y C +=上,所以22003412x y +=,所以()20222100000113431452993x PF y x y x y F A ⎛⎫++ ⎪+++⎝⎭===. 同理,可得202523PF x F B -=, 所以1212103PF PF F A F B +=(定值). 12.(2022届浙江省稽阳高三4月联考)如图,点()()00,10A x x >在抛物线22x py =上,抛物线的焦点为F ,且||2AF =,直线y kx k =-交抛物线于B ,C 两点(C 点在第一象限),过点C 作y 轴的垂线分别交直线OA ,OB 于点P ,Q ,记PQO ,ACP △的面积分别为1S ,2S .(1)求0x 的值及抛物线的方程; (2)当0k <时,求12S S 的取值范围.【答案】(1)202,4x x y ==(2)10,3⎛⎫ ⎪⎝⎭【解析】 (1)12,22pAF p =+=∴=, 204,2x y x ∴==.(2)设()()1122,,,C x y B x y ,因为直线OA :12y x = 则()112,P yy ,直线OB 的方程为:22y y x x =,1212,y x Q y y ⎛⎫∴ ⎪⎝⎭, 联立方程组24y kx kx y=-⎧⎨=⎩消去y 可得:2440x kx k -+=,121244x x k x x k +=⎧∴⎨=⎩1121221,1x x x x x x x ∴+=∴=- ()()12111212111112212112y x y y PQ y y S S x y y PC y ⎛⎫- ⎪⋅⎝⎭∴==--- 2222211111121222221111112424112424x x x x x x x S S x x x x x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭∴==⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 21211221214414x S x x S x ∴==--,222111122222111144414444S x x x S x x x x ⎛⎫-+∴==-=-=-+ ⎪----⎝⎭ 又10,01k x <∴<<,-4<x12-4<-3, 221144141,103434x x ∴-<<--<+<--故1210,3S S ⎛⎫∈ ⎪⎝⎭.。

高三专题复习:解析几何解答题提升训练

高三专题复习:解析几何解答题提升训练

解析几何解答题提升训练1、利用弦长公式求解直线与圆锥曲线的弦长问题当直线(斜率为k)与圆锥曲线交于点A(x1,y1),B(x2,y2)时,则|AB|=1+k2·|x1-x2|=1+1k2|y1-y2|,而|x1-x2|=x1+x22-4x1x2,可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.例1、【湖北省2014届孝感高中、黄冈中学等八所重点中学高三联考】已知椭C:(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。

2、利用点差法求解圆锥曲线问题点差法是一种常见的设而不求的方法,在解答平面解析几何的某些问题时,合理的运用点差法,可以有效减少解题的运算量,达到优化解题过程的目的。

点差法的基本过程为:设点、代入、作差、整理代换。

例2、【河南省豫东、豫北十所名校2014届高三上学期第四次联考试题】在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>与直线:()l x m m R=∈,四点)0,22(),1,3(--,)1,3(-,(3,3--)中有三个点在椭圆C上,剩余一个点在直线l上.(I)求椭圆C的方程;(Ⅱ)若动点P在直线l上,过P作直线交椭圆C于M,N两点,使得PM PN=,再过P作直线'l MN⊥.证明直线'l恒过定点,并求出该定点的坐标.3、圆锥曲线中的范围和最值问题的求解方法:求解有关圆锥曲线的最值、参数范围的问题:一是注意题目中的几何特征,充分考虑图形的性质;二是运用函数思想。

建立目标函数,求解最值。

在利用代数法解决最值和范围问题时常从以下几个方面入手:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的范围;(4)利用已知的不等关系构造不等式,从而求出参数的范围;(5)利用函数的值域的求法,从而确定参数的取值范围.例3、 【2013课标全国Ⅱ,理20】平面直角坐标系xOy 中,过椭圆M :2222=1x y a b +(a >b >0)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程; (2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.例4、 【辽宁省抚顺市六校联合体2014届高三上学期期中考试】已知椭圆C:()222210x y a b a b +=>>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.(1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25||PA PB -<时,求实数t 取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三复习解析几何练习题
解析几何是高中数学的重要内容之一,也是高考数学中的重点和难点。

在高三阶段,解析几何是学生们需要加强练习和熟练掌握的内容
之一。

下面将为大家介绍几个高三复习解析几何的练习题。

一、平面几何题
1. 已知四边形ABCD,AB=BC=CD=DA,以BC和AD为边,平分
角AOK,角AOK的度数是多少?
解析:由已知条件可知,ABCD为菱形。

菱形的性质是对角线互相
垂直且互相平分。

因此,角AOK为90度。

2. 给定平面直角坐标系,点A(2,-3)在直线y=x上,点B(4,-2)在直
线y=-2x上,求直线AB的斜率。

解析:直线AB的斜率等于两个点的纵坐标之差与横坐标之差的比值。

点A与点B的纵坐标之差为-2-(-3)=-2+3=1,横坐标之差为4-2=2,因此直线AB的斜率为1/2。

二、空间几何题
1. 已知四面体ABCD,面ABCD的中心为O,直线AD与平面
ABC垂直,求证AB与平面OBC平行。

解析:根据已知条件,AD与平面ABC垂直,即AD与平面ABC
的法线向量垂直。

而面ABCD的中心O位于平面ABC上,所以向量
OB与向量OA垂直。

由于向量OA与向量AD平行,所以向量OB与向量AD也平行,即平面OBC与平面ABC平行。

2. 设P为正方体ABCD-A1B1C1D1的重心,求证向量CBD与向量PP1平行。

解析:根据重心的定义,重心是由正方体八个顶点连接到重心的向量的和的平凡中心,即向量AP+向量BP1+向量CP+向量DP1=0。

因正方体其中一对相对的棱平行于向量CBD,并且向量AP+向量CP平行于向量APA1,所以向量CBD与向量PP1平行。

通过以上的几个解析几何练习题,可以帮助高三学生们加强对解析几何知识点的理解和运用。

解析几何作为高考数学中的重点和难点,需要同学们进行大量的练习和总结,提高解题策略和解题能力。

希望同学们通过不断的练习和理解,能够在高考中取得优异的成绩。

相关文档
最新文档