旋转典型练习题

合集下载

中考数学《旋转》专题练习含答案解析

中考数学《旋转》专题练习含答案解析

旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。

图形的旋转练习题及答案

图形的旋转练习题及答案

图形的旋转练习题及答案图形的旋转练习题及答案在几何学中,图形的旋转是一种常见的操作。

通过旋转,我们可以改变图形的方向和位置,从而得到新的图形。

旋转练习题可以帮助我们加深对旋转操作的理解,并提高解决几何问题的能力。

本文将介绍一些常见的图形旋转练习题及其答案,希望对读者有所帮助。

1. 旋转正方形首先,我们来看一个简单的例子。

假设有一个正方形,边长为4个单位。

我们需要将这个正方形绕着一个点旋转90度,问旋转后的正方形的边长是多少?解答:旋转后的正方形的边长仍然是4个单位。

旋转只改变了正方形的方向和位置,但没有改变其大小。

2. 旋转矩形接下来,我们考虑一个稍微复杂一些的例子。

假设有一个矩形,长为6个单位,宽为3个单位。

我们需要将这个矩形绕着一个点旋转180度,问旋转后的矩形的长和宽分别是多少?解答:旋转后的矩形的长和宽仍然分别是6个单位和3个单位。

和正方形一样,旋转只改变了矩形的方向和位置,但没有改变其大小。

3. 旋转三角形现在,让我们来考虑一个有趣的例子。

假设有一个等边三角形,边长为5个单位。

我们需要将这个三角形绕着一个点旋转60度,问旋转后的三角形的边长是多少?解答:旋转后的三角形的边长仍然是5个单位。

和之前的例子一样,旋转只改变了三角形的方向和位置,但没有改变其大小。

4. 旋转圆形最后,我们来看一个特殊的例子。

假设有一个半径为2个单位的圆形。

我们需要将这个圆形绕着一个点旋转120度,问旋转后的圆形的半径是多少?解答:旋转后的圆形的半径仍然是2个单位。

和之前的例子一样,旋转只改变了圆形的方向和位置,但没有改变其大小。

通过以上的例子,我们可以看到旋转操作并不改变图形的大小,只改变了其方向和位置。

这是因为旋转是一种刚体变换,保持了图形的形状和大小不变。

在解决几何问题时,我们可以利用旋转的性质来简化问题,找到更简单的解决方法。

总结起来,图形的旋转是一种常见的操作,通过旋转可以改变图形的方向和位置。

旋转练习题可以帮助我们加深对旋转操作的理解,并提高解决几何问题的能力。

图形的旋转练习题

图形的旋转练习题

图形的旋转练习题一、选择题1. 一个图形绕某点旋转90度后,其形状和大小:A. 发生变化B. 不发生变化C. 无法确定D. 形状不变,大小变小2. 如果一个图形绕其对称中心旋转180度,其位置:A. 不变B. 改变C. 无法确定D. 形状改变3. 一个正方形绕其中心点旋转45度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变4. 一个等边三角形绕其一个顶点旋转120度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变5. 一个圆绕其圆心旋转任意角度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变二、填空题6. 一个图形绕某点旋转______度后,其形状和位置都不变。

7. 如果一个图形绕其对称中心旋转______度,其位置不变。

8. 一个图形绕某点旋转180度后,其形状______,位置______。

9. 一个图形绕某点旋转90度后,其形状______,位置______。

10. 一个图形绕其对称中心旋转任意角度后,其形状______,位置______。

三、简答题11. 描述一个正方形绕其中心点顺时针旋转90度后,其四个顶点的新位置。

12. 解释为什么一个圆在绕其圆心旋转任意角度后,其形状和位置都不变。

13. 如果一个正六边形绕其中心点旋转60度,描述其顶点的新位置。

14. 一个矩形绕其对角线中点旋转180度后,其四个顶点的新位置是什么?15. 解释为什么一个图形绕其对称中心旋转180度后,其位置不变。

四、应用题16. 一个时钟的时针在12小时内绕钟面中心点旋转了多少度?17. 如果一个图形被设计为可以围绕其对称中心旋转,那么在旋转过程中,它的对称性如何保持?18. 一个图形绕其一个顶点旋转,如果旋转角度是360度的整数倍,图形的最终位置是什么?19. 在一个平面直角坐标系中,一个点绕原点旋转θ度后,其新的坐标如何计算?20. 如果一个图形绕其对称中心旋转了θ度,那么它的对称轴会如何变化?五、综合题21. 给出一个图形的旋转矩阵,并说明如何使用它来计算图形绕某点旋转后的新位置。

旋转练习题

旋转练习题

旋转练习题一、选择题1. 一个点绕原点旋转30度后,其坐标变化情况是:A. 坐标不变B. 坐标变为原来的相反数C. 坐标变为原来的两倍D. 坐标变为原来的一半2. 在二维平面上,一个矩形绕其中心点旋转90度后,其形状和大小:A. 发生变化B. 不发生变化C. 形状变化,大小不变D. 形状不变,大小变化3. 一个圆绕其圆心旋转任意角度,其:A. 形状和大小都不变B. 形状不变,大小变化C. 形状变化,大小不变D. 形状和大小都变化4. 一个物体在空间中绕一个轴旋转,其旋转的轨迹是:A. 直线B. 曲线C. 圆D. 椭圆5. 如果一个物体绕一个点旋转180度,其最终位置:A. 与初始位置重合B. 在初始位置的对面C. 在初始位置的旁边D. 在初始位置的上方或下方二、填空题6. 一个点P(x, y)绕原点O(0, 0)顺时针旋转θ度后,新坐标为\( (x', y') \),其中\( x' = x \cdot \cos(\theta) - y \cdot\sin(\theta) \),\( y' = \) ________。

7. 在三维空间中,一个物体绕z轴旋转,其旋转矩阵为:\[ R_z(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]8. 若一个物体绕x轴旋转,其旋转矩阵为:\[ R_x(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix} \]9. 一个物体绕y轴旋转,其旋转矩阵为:\[ R_y(\psi) = \begin{bmatrix} \cos(\psi) & 0 & \sin(\psi) \\ 0 & 1 & 0 \\ -\sin(\psi) & 0 & \cos(\psi) \end{bmatrix} \]10. 一个物体绕任意轴旋转,其旋转矩阵可以由两个已知旋转矩阵的乘积得到,例如绕z轴旋转θ度后再绕x轴旋转φ度,旋转矩阵为\( R_{zx} = R_x(\phi) \cdot R_z(\theta) \)。

小学旋转的练习题

小学旋转的练习题

小学旋转的练习题一、选择题1. 一个图形绕某一点旋转了90度,这个点被称为图形的:A. 旋转中心B. 旋转轴C. 旋转半径D. 旋转角度2. 一个正方形顺时针旋转90度后,它的四个顶点的位置:A. 保持不变B. 位置互换C. 位置不变但方向改变D. 位置和方向都改变3. 如果一个图形绕某点旋转180度,那么这个图形将:A. 回到原来的位置B. 位置不变,方向改变C. 位置改变,方向不变D. 位置和方向都不变4. 一个图形绕其一边的中点旋转180度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置和方向都改变5. 一个图形绕其一个顶点旋转90度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置改变,方向不变二、填空题6. 一个图形绕某点旋转____度,这个点被称为图形的旋转中心。

7. 当一个图形绕其一边的中点旋转180度时,这个图形的位置____。

8. 如果一个图形绕其一个顶点旋转90度,这个图形的位置____。

9. 一个图形顺时针旋转90度后,它的四个顶点的位置____。

10. 一个图形绕某点旋转180度,那么这个图形将____。

三、判断题11. 一个图形旋转后,它的形状和大小都不会改变。

()12. 一个图形绕其一边的中点旋转180度后,图形的每个部分都回到原来的位置。

()13. 一个正方形顺时针旋转90度后,它的面积不变。

()14. 一个图形绕某点旋转90度后,图形的每个部分都回到原来的位置。

()15. 一个图形绕其一个顶点旋转90度后,图形的面积会改变。

()四、简答题16. 描述一个图形绕其一边的中点旋转180度后,图形的哪些部分发生了变化?17. 解释为什么一个图形旋转后,它的形状和大小不会改变。

18. 如果一个图形绕其一个顶点旋转90度,图形的哪些部分保持不变?19. 为什么一个正方形顺时针旋转90度后,它的面积不会改变?20. 描述一个图形绕某点旋转90度后,图形的哪些部分发生了变化,并解释原因。

数学旋转问题练习题

数学旋转问题练习题

数学旋转问题练习题在数学中,旋转是一个常见且重要的概念,它在几何学、代数学和物理学等领域中都有广泛的应用。

旋转问题是数学中常见的问题之一,它需要我们根据给定条件,灵活运用旋转的概念来解决问题。

下面将给出一些数学旋转问题的练习题,帮助读者加深对旋转的理解和运用能力。

练习题1:平面上的旋转问题描述:平面上有三个点A、B和C,以点A为中心,将线段BC顺时针旋转90度得到线段A'D,若点B的坐标为(2,3),点C的坐标为(4,5),则点D的坐标为多少?解题思路:根据旋转的性质,我们知道点D的坐标可以通过将BC绕点A逆时针旋转90度得到。

首先,我们需要计算向量AB和向量AC的坐标表示。

向量AB的坐标表示为(2-0, 3-0) = (2, 3),向量AC的坐标表示为(4-0, 5-0) = (4, 5)。

根据旋转的性质,向量A'D的坐标表示为(-3, 2)。

最后,我们可以通过点A的坐标(0, 0)和向量A'D的坐标(-3, 2)计算出点D的坐标为(0-3, 0+2) = (-3, 2)。

练习题2:三维空间的旋转问题描述:在三维空间中,点O(0,0,0)为坐标原点,点P(2,3,4)为某点的坐标。

将点P绕坐标轴x轴逆时针旋转90度,得到点P',求点P'的坐标。

解题思路:首先,我们需要计算点P绕坐标轴x轴逆时针旋转90度后的变化。

根据旋转的性质,点P'(x',y',z')可以表示为点P(x,y,z)绕坐标轴x轴旋转后的坐标。

对于点P(x,y,z),绕坐标轴x轴逆时针旋转90度后,x'保持不变,y'和z'的坐标可以表示为y' = y*cos(90°) - z*sin(90°) = y*0 - z*1 = -z,z' = y*sin(90°) + z*cos(90°) = y*1 + z*0 = y。

旋转练习题集锦(含答案)

旋转练习题集锦(含答案)

旋转练习题集锦(含答案)一、作图题1、如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个和一点O,的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到,请画出;(2)在方格纸中,将△ABC绕点O旋转180°得到,请画出。

二、简答题2、如图,已知的三个顶点的坐标分别为、、.(1)请直接写出点关于轴对称的点的坐标;(2)将绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;(3)请直接写出:以为顶点的平行四边形的第四个顶点的坐标.三、选择题3、如图所示,在平面直角坐标系中,点A、B的坐标分别为(2,0)和(2,0).月牙①绕点B顺时针旋转900得到月牙②,则点A的对应点A’的坐标为【】(A)(2,2)(B)(2,4)(C)(4,2) (D)(1,2)4、将图按顺时针方向旋转90°后得到的是( )5、在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们把每个小正方形的顶点称为格点,以格点为顶点的图形称为格点图形.如上图中的△ABC称为格点△ABC.现将图中△ABC绕点A顺时针旋转,并将其边长扩大为原来的2倍,则变形后点B的对应点所在的位置是()A.甲 B.乙C.丙 D.丁6、下图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A.60° B.90° C.120°D.180°7、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是 ( )8、下面四个图案中,是旋转对称图形的是()A.B.C.D.9、下列运动是属于旋转的是( )A.电梯的上下运动 B.火车的运动C.钟表中分针的运动 D.升国旗时,国旗的徐徐运动10、如图所示,将其中的图甲变成图乙,可经过的变换是( )A.旋转、平移 B.平移、对称 C.旋转、对称 D.不能确定11、如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72° B.108° C.144° D.216°12、如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A逆时针方向旋转到△ACD’的位置,则∠ADD’的度数是( )A.25° B.30° C.35°D.45°13、如图可以看作是一个等腰直角三角形旋转若干次而成的,则每次旋转的度数最小是( )A.90° B.60° C.45°D.30°14、如图,经过平移或旋转不可能将图甲变为图乙的是()15、下列图形中,既是中心对称图形,又是轴对称图形的是()A.菱形B.等边三角形 C.等腰三角形D.平行四边形16、如图所示,可由一个“基本图案”旋转l80°而形成的是()A B CD17、已知,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转湖A3的坐标为()A.(-2,1) B.(1,1) C.(-1,1) D.(5,1)18、下图是一张边被裁直的白纸,把一边折叠后,BC、BD为折痕,、、B在同一直线上,则∠CBD的度数()A.不能确定B.大于C.小于 D.等于四、计算题19、将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和.将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点.(1)当旋转至如图②位置,点,在同一直线上时,与的数量关系是.(2)当继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(3)在图③中,连接,探索与之间有怎样的位置关系,并证明.20、如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.21、点B.C.E在同一直线上,点A.D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

旋转相关练习题

旋转相关练习题

旋转相关练习题旋转是一种常见的运动方式,它在日常生活中存在于各个方面。

无论是体育运动、舞蹈表演还是工程设计,都可以发现旋转的身影。

今天我们就来做一些旋转相关的练习题,通过动手实践来掌握旋转的基本概念和运算方法。

一、简单旋转练习题1. 小明手持一只铅笔,以手腕为轴心做旋转动作,请描述他手腕所绕的轴线是什么形状?2. 以下哪个物体的旋转轴线属于直线?A.风车的转轴B.自行车的轮轴C.田径比赛中铅球的投掷轴线D.棋盘中心的旋转轴3. 时间过得真快,转眼间一年又过去了。

如果我们假设地球的自转轴为直线,则完成一次自转需要多长时间?二、旋转运算练习题1. 物体A绕着直线轴旋转,角速度为ω,物体B以与轴相同的角速度旋转。

若物体A的半径是物体B的2倍,则物体B与物体A的线速度比值为多少?2. 某车轮以角速度ω绕轴心旋转,车轮半径为R,请计算车轮一个完整的旋转周期所对应的线速度。

三、旋转转换练习题1. 小球A以角速度ω1绕轴旋转,半径为R1;小球B以角速度ω2绕轴旋转,半径为R2。

已知R2 = 2R1,若A和B同时开始旋转,则多久后A与B相对位置性质不再改变?2. 某体育馆内有一个固定的旋转平台,上面放置着数个相同质量、相同半径的小球。

当平台加速开始旋转时,小球A和小球B恰好位于平台边缘两侧,A在平台上,B在平台下。

在平台旋转至一定角度后,小球A和小球B的相对位置将会发生变化。

请问这是因为平台的何种旋转?四、思考题1. 物体在旋转过程中,角速度与半径之间存在着怎样的关系?2. 在旋转运动中,物体的哪些性质会发生改变?以上是关于旋转相关练习题的一些内容。

通过这些练习题,我们可以更好地理解旋转的概念和运算方法,提高我们解决旋转问题的能力。

希望这些练习能对你有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转部分练习题一.选择题1.(2013河池)如图(1),已知两个全等直角三角形的直角顶点及一条直角边重合.将△ACB 绕点C按顺时针方向旋转到△A'CB'的位置,其中A'C交直线AD于点E,A'B'分别交直线AD,AC于点F,G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对2.(2014湖北随州)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDC C.△BDE是等边三角形D.△ADE的周长是93.(2014黑龙江哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4√3 C.3√3 D.34.(2014四川遂宁)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°5.(2014甘肃兰州)如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.π/3 B.√3π /3 C.2π/3 D.π6.(2014山东烟台)如图,将△ABC绕点P顺时针旋转90°得△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)7.(2014贵州遵义)如图,已知△ABC中,∠C=90°,,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.B.√3/2 C.D.18.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-1,0),B(-2,3),C(-3,1).将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()A(2,1) B.(2,3) C.(4,1) D.(0,2)9.(2013牡丹江)如图,△ABO中,AB⊥OB,,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(-1,) B.(-1,)或(-2,0) C.(,-1)或(0,-2) D.(,-1) 10.如图,在△ABC中,∠A=60°,将△ABC绕着点C旋转一定角度后,使A′落在AB边上,此时旋转角为() A.60°B.120°C.30°D.无法确定11.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A、70°B、65°C、60°D、55°12.如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D 旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④13.如图6,将RT⊿ABC以直角顶点C为旋转中心顺时针旋转使点A刚好落在AB上(即:点A1),若∠A=55°,则图中∠1= ()(A)110 (B)102 (C)105 (D)12514.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE 绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是( )A.45°B.60°C.90°D.120°15.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(√3,1)B.(√3,﹣1)C.(1,﹣√3)D.(2,﹣1)16.如图,△AOB为等腰三角形,顶点A的坐标(2,√5),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C(,)D.(,4)二.填空题1.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定的角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为________.2.(2014黑龙江牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则SACDE=________.3.(2014山东青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是________.4.已知:在四边形ABCD中,∠BAD=60°,AB=AD,AC=20.(1)若∠B=∠D=90°,如图1,则四边形ABCD的面积是________.(2)若∠B+∠D=180°,如图2,求四边形ABCD的面积.5.如图,边长为2的等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则BD长为________.6.如图,长方形ABCD绕C点顺时针旋转90°得长方形CEFG,则∠ACF=________,△ACF 的形状是________.7.如图,将Rt△ABC绕点C按顺时针方向旋转90°到△A′B′C′的位置,已知斜边AB=10cm,BC=6cm,设A′B′的中点是M.(1)连接CM,求CM的长;(2)连接AM,求AM的长.8.如图,直线l上摆放着两块大小相同的直角三角板,它们中较长直角边的长为√3 cm,较小锐角的度数为30°.(1)将△ECD沿直线AC翻折到如图(a)的位置,ED′与AB相交于点F,则BD′=_______cm ,∠BFD′=_______度(4分)(2)将△ECD沿直线l向左平移到(b)的位置,使E点落在AB上,则平移的距离是(3)将△ECD绕点C逆时针方向旋转得到△E′C D′,设DE与C D′的交点为M,若△CDM为等腰三角形,则旋转角为。

(0°﹤旋转角﹤180°)。

(4分)9.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.10.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=√2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+√2;;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+√2;…,按此规律继续旋转,直至得到点P2014为止.AP2014=.三.简答题1.P为等边三角形ABC内部一点,且P到三角形的三角形顶点的长分别为3,4,5,求∠CPB 的度数和这个等边三角形的面积.2.如图1,在△ABC中,AB=BC,CD为AB边上的高,点E、F分别是边AC、BC的中点,连接DE、DF,已知∠ABC=α(0°<α<90°).(1)求证:∠EAD=∠EDF;(2)如图2,将∠AED 绕点E顺时针旋转适当的角度,得到∠MEN,在旋转过程中始终保持点M在边BA延长线上,点N在边FD延长线上,连接MN.猜想∠EMN大小与α的关系,并证明你的结论;(3)若将∠AED绕点E逆时针旋转适当的角度,得到∠MEN,在旋转过程中始终保持点M 在边AB延长线上,点N在边DF延长线上,请在图3中补全图形,并猜想运动过程中(2)结论是否发生变化,若成立直接写出(2)中结论;若不成立写出新的结论,不必证明.3.直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角α(0<α<120°且α≠90°),得到Rt△A′B′C.(1)如图,当边A′B′经过点B时,求旋转角α的度数;(2)在三角板旋转的过程中,边A′C与AB所在直线交于点D,过点D作DE∥A′B′交CB′边于点E,联结BE.①当0°<α<90°时,设AD=x,BE=y,求y与x之间的函数解析式及自变量x的取值范围;②当S=1/3S⊿ABC=时,求AD的长.4.(2013北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图(1),直接写出∠ABD的大小(用含α的式子表示).(2)如图(2),∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明.(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.5.如图(1),在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的数量关系,并加以证明;(2)如图(2),在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明6.(2014河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.7.如图,四边形ABCD是正方形,△ABE绕点A按逆时针方向旋转90°得到△ADF,若DE =5cm,BF=11cm,求正方形ABCD的面积.8.如图,正方形ABCD的边长为1,BC、CD上各有一点P、Q,若∠PAQ=45°,求△CPQ 的周长.9.如图,正比例函数y=kx的图象经过点A(2,4),AB⊥x轴于点B.(1)求该正比例函数的解析式.(2)将△ABO绕点A逆时针旋转90°得到△ADC,写出点C的坐标,试判断点C是否在直线y=1/3x+1上,并说明理由.10.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.11.如图,△ABC中,∠BAC=90°,AC=2,,△ACD是等边三角形.(1)求∠ABC 的度数.(2)以点A为中心,把△ABD顺时针旋转60°,画出旋转后的图形.(3)求BD的长度.12.如图所示,P、Q分别是正方形ABCD的边BC、CD上的点,(1)若∠PAQ=45°,求证:PB+DQ=PQ.(2)若△PCQ的周长等于正方形ABCD周长的一半,求证:∠PAQ=45°.13.已知:如图①,在△ABC中,AB=AC,∠BAC=90°,点D,E分别是AB,AC边的中点,将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).探究DB′与EC′的数量关系,并给予证明.14.如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A′B′C′D是什么图形?面积是多少?(3)求∠C′DC和∠CDA′的度数;(4)连接AA′,求∠DAA′的度数.15.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E在BC上.若BE=2,,CD=1,求∠EAD的度数.(提示:将△ABE绕点A按逆时针方向旋转90°,得到△ACF,并连结DF、EF)16.如图,两个同样大小的等边△ABC和△ACD的边长为a,把它们拼成一个四边形ABCD,另一个足够大的等边△AEF绕点A旋转,AE与BC相交于点M,AF与CD相交于点N.(1)试判断∠DAN与∠CAM是否相等,并简要说明理由;(2)求四边形AMCN的面积;(3)探索△AMN何时面积最小,并求出这个最小面积.17.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′.(1)求点O与O′的距离;(2)求∠AOB的度数;(3)求S△AOC +S△AOB的值.18.如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得点C落在AB的延长线上的点C1处,连结AA1.①写出旋转角的度数;②求证:∠A1AC=∠C1.(2)如图所示,在等边△ABC中,D是AB边上的动点(不与点A、B重合),以CD为一边,向上作等边△EDC,连结AE.①求证:AE∥BC;②图中是否存在旋转三角形?若存在,求其旋转中心和旋转角度.19.如图,已知△AOB,将△AOB绕O点旋转到△COD的位置,使C点落在OB边上,连接AC,BD.(1)若∠AOB=90°(如图①),小亮发现∠BAC=∠BDC,请你证明这个结论;(2)若∠AOB=60°(如图②),小亮发现的结论是否仍然成立?说明理由;(3)若∠AOB为任意角α(如图③),小亮发现的结论还成立吗?说明理由20.如图,正方形ABCD的边长为5,点F为正方形ABCD内的点,△BFC经逆时针旋转后能与△BEA重合.(1)旋转中心是哪一点?旋转了多少度?(2)判断△BEF是怎样的三角形,并说明理由;(3)若∠BFC=90°,说明AE∥BF.21.如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,2√2,√10.△ADP 沿点A旋转至△ABP’,连结PP’,并延长AP与BC相交于点Q.(1)求证:△APP’是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.22.如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2√2,PC=5,求∠BQC的度数.(2)点P 是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.24.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,∠AFB=∠(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ (3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.25.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到,连结CC′交斜边于点E,CC′的延长线交BB′于点F,设∠ABC=α,∠CAC′=β.(1)证明:∠ACC′=∠ABB′;(2)试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.26.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.27.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD 到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN 的长.28.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(√3 -1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:)。

相关文档
最新文档