高考二轮复习文科数学完全复习教师版
高三数学(文)二轮复习(通用版)教师用书:策略(四)回扣九复数、算法、推理与证明含答案

环节一:记牢概念公式,避免临场卡壳1.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i ;(a +b i)(c +d i)=(ac -bd )+(bc +ad )i ;(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d2i(a ,b ,c ,d ∈R ,c +d i≠0). 2.算法的三种基本逻辑结构(1)顺序结构:如图(1)所示.(2)条件结构:如图(2)和图(3)所示.(3)循环结构:如图(4)和图(5)所示.环节二:巧用解题结论,考场快速抢分1.复数的几个常见结论(1)(1±i)2=±2i ;(2)1+i 1-i =i ,1-i 1+i=-i ; (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ); (4)若ω=-12±32i ,则ω0=1,ω2=ω,ω3=1,1+ω+ω2=0. 2.关于复数模的运算性质(1)|z 1·z 2|=|z 1|·|z 2|;(2)|z |n =|z n |;(3)⎪⎪⎪⎪z 1z 2=|z 1||z 2|.3.合情推理的思维过程(1)归纳推理的思维过程:实验、观察→概括、推广→猜测一般性结论(2)类比推理的思维过程:实验、观察→联想、类推→猜测新的结论环节三:明辨易错易混,不被迷雾遮眼1.复数z 为纯虚数的充要条件是a =0且b ≠0(z =a +b i(a ,b ∈R )).还要注意巧妙运用参数问题和合理消参的技巧.2.类比推理易盲目机械类比,不要被表面的假象(某一点表面相似)迷惑,应从本质上类比.用数学归纳法证明时,易盲目认为n 0的起始取值n 0=1,另外注意证明传递性时,必须用n =k 成立的归纳假设.3.在循环体结构中,易错误判定循环体结束的条件,导致错求输出的结果. 环节四:适当保温训练,树立必胜信念1.(2016·北京高考)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A .1B .2C .3D .4解析:选B 开始a =1,b =1,k =0;第一次循环a =-12,k =1;第二次循环a =-2,k =2;第三次循环a =1,条件判断为“是”,跳出循环,此时k =2.2.已知z =3+2i 2 0075+i 2 015(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限解析:选D 因为z =3+2i 2 0075+i 2 015=3-2i 5-i =(3-2i )(5+i )(5-i )(5+i )=17-7i 26=1726-726i ,所以z 在复平面内对应的点(1726,-726)位于第四象限. 3.如图所示的程序框图的运行结果为( )A .-1 B.12C .1D .2 解析:选A a =2,i =1,i ≥2 016不成立;a =1-12=12,i =1+1=2,i ≥2 016不成立; a =1-112=-1,i =2+1=3,i ≥2 016不成立; a =1-(-1)=2,i =3+1=4,i ≥2 016不成立;……,由此可知a 是以3为周期出现的,结束时,i =2 016=3×672,此时a =-1,故选A.4.观察下列各式:f (1)=3,f (1+2)=6,f (1+2+3)=11,f (1+2+3+4)=20,…,则根据以上式子可以得到第10个式子为________.解析:根据上述各式的特点,可知f (1)=3=2+1,f (1+2)=6=22+2,f (1+2+3)=11=23+3,f (1+2+3+4)=20=24+4,所以f (1+2+3+…+10)=210+10=1 034.答案:f (1+2+3+…+10)=1 034。
高考二轮复习高考文科数学课标版第一讲 函数的图象与性质

第一讲 函数的图象与性质A 组 基础题组1.函数f(x)=+的定义域为( )1x -1x A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)2.已知函数f(x)=3x -,则f(x)( )(13)xA.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数3.(2018湖北武汉调研)函数f(x)=log 2(x 2-4x-5)的单调递增区间是( )A.(-∞,-2) B.(-∞,-1)C.(2,+∞)D.(5,+∞)4.(2018河北石家庄模拟)已知f(x)=(0<a<1),且f(-2)=5, f(-1)=3,则f(f(-3))=( ){log 3x,x >0,a x+b,x ≤0A.-2B.2C.3D.-35.(2018湖南益阳、湘潭调研)函数f(x)=的图象大致是( )x 1-x26.(2018陕西质量检测一)设x ∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x 的图{1,x >0,0,x =0,-1,x <0,象大致是( )7.(2018贵州贵阳模拟)已知函数f(x)是定义在R 上的奇函数,且当x ≥0时, f(x)=log 2(x+2)-1,则f(-6)=( )A.2 B. 4C.-2D.-48.已知函数f(x)=则下列结论正确的是( ){x 4+1,x >0,cos2x ,x ≤0,A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)9.奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(8)=( )A.-1B.0C.1D.-210.已知函数f(x)=,则下列结论正确的是( )2x -1A.函数f(x)的图象关于点(1,0)中心对称B.函数f(x)在(-∞,1)上是增函数C.函数f(x)的图象关于直线x=1对称D.函数f(x)的图象上至少存在两点A,B,使得直线AB ∥x 轴11.(2018四川成都模拟)已知定义在R 上的奇函数f(x)的图象关于直线x=1对称,且当x ∈[0,1]时, f(x)=log 2(x+1),则下列不等式正确的是( )A.f(log 27)<f(-5)<f(6)B.f(log 27)<f(6)<f(-5)C.f(-5)<f(log 27)<f(6)D.f(-5)<f(6)<f(log 27)12.(2018广东惠州模拟)已知函数f(x)=若函数f(x)的图象上关于原点对称的{kx -1,x ≥0,-ln(-x ),x <0,点有2对,则实数k 的取值范围是( )A.(-∞,0)B.(0,12)C.(0,+∞)D.(0,1)13.已知函数f(x)=若f(a)+f(1)=0,则实数a 的值为 .{2x,x >0,x +1,x ≤0,14.(2018广东惠州模拟)已知f(x)=x+-1,f(a)=2,则f(-a)= .1x 15.(2018河南洛阳第一次统考)若函数f(x)=ln(e x +1)+ax 为偶函数,则实数a= . 16.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x ∈R,不等式f(x)≥g(x)恒成立,则实数a 的取值范围是 .B 组 提升题组 1.(2018重庆六校联考)函数f(x)=的大致图象为( )sin πx x22.已知函数f(x)=e |ln x|-,则函数y=f(x+1)的大致图象为( )|x -1x|3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t 之间的函数关系的是( )4.函数f(x)=的图象如图所示,则下列结论成立的是( )ax +b (x +c )2A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<05.(2018河南开封模拟)已知f(x)是定义在R 上周期为4的奇函数,当x ∈(0,2]时, f(x)=2x +log 2x,则f(2 015)=( )A.5 B. C.2 D.-2126.设函数f(x)=若f =2,则实数n 的值为( ){2x +n ,x <1,log 2x,x ≥1,(f(34)) A.-B.-C.D.541314527.∀x ∈,8x ≤log a x+1恒成立,则实数a 的取值范围是( )(0,13)A. B. C. D.(0,23)(0,12][13,1)[12,1)8.设曲线y=f(x)与曲线y=x 2+a(x>0)关于直线y=-x 对称,且f(-2)=2f(-1),则a=( )A.0B.C.D.113239.(2018福建福州模拟)已知函数f(x)=e x +e 2-x ,若关于x 的不等式[f(x)]2-af(x)≤0恰有3个整数解,则实数a 的最小值为( )A.1 B.2eC.e 2+1D.e 3+1e310.已知函数f(x)的定义域为R,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0;f (x 1)-f(x 2)x 1-x 2②f(x+4)=-f(x);③y=f(x+4)是偶函数.若a=f(6),b=f(11),c=f(2 017),则a,b,c 的大小关系正确的是( )A.a<b<cB.b<a<cC.a<c<bD.c<b<a 11.已知函数f(x)=的值域为R,则实数a 的取值范围是 . {(1-2a )x +3a ,x <1,ln x ,x ≥112.已知函数f(x)是定义在R 上的奇函数,当x ≥0时, f(x)=x 2,若对任意的x ∈[m-2,m],不等式f(x+m)-9f(x)≤0恒成立,则实数m 的取值范围是 .13.已知函数f(x)=若f(x-1)<f(2x+1),则x 的取值范围{3x 2+ln(1+x 2+x),x ≥0,3x 2+ln(1+x 2-x),x <0,为 .14.(2018陕西西安八校联考)函数f(x)在定义域R 内可导,若f(x)=f(2-x),且(x-1)f '(x)<0,设a=f(0),b=f,c=f(3),则a,b,c 的大小关系是 .(12)答案精解精析A 组 基础题组1.C 由题意知即0≤x<1或x>1.{x -1≠0,x ≥0,∴f(x)的定义域为[0,1)∪(1,+∞).2.B 易知函数f(x)的定义域为R,∵f(-x)=3-x -=-3x =-=-f(x),(13)-x (13)x[3x-(13)x ]∴f(x)为奇函数.又∵y=3x 在R 上为增函数,y=-在R 上为增函数,∴f(x)=3x -在R 上是增函数.故选B.(13)x(13)x3.D 由x 2-4x-5>0得x ∈(-∞,-1)∪(5,+∞).原函数f(x)=log 2(x 2-4x-5)由t=x 2-4x-5与y=log 2t 复合而成,当x ∈(-∞,-1)时,t=x 2-4x-5为减函数;当x ∈(5,+∞)时,t=x 2-4x-5为增函数.又y=log 2t 为增函数,所以函数f(x)=log 2(x 2-4x-5)的单调递增区间是(5,+∞).故选D.4.B 由题意得f(-2)=a -2+b=5①, f(-1)=a -1+b=3②.联立①②,结合0<a<1,得a=,b=1,所以f(x)=则f(-3)=+1=9,所以f(f(-12{log 3x,x >0,(12)x +1,x ≤0,(12)-33))=f(9)=log 39=2.故选B.5.B 易知函数f(x)的定义域为{x|x ≠±1}, f(-x)==-=-f(x),所以函数f(x)为奇函数.-x 1-(-x )2x 1-x 2当x ∈(0,1)时, f(x)=>0,排除D;当x ∈(1,+∞)时, f(x)=<0,排除A,C.故选B.x 1-x2x1-x26.C 函数f(x)=|x|sgn x=即f(x)=x,{x ,x ≠0,0,x =0,故函数f(x)=|x|sgn x 的图象为直线y=x.故选C.7.C 由题意,知f(-6)=-f(6)=-(log 28-1)=-3+1=-2,故选C.8.D 由f(-x)≠f(x)知f(x)不是偶函数,当x ≤0时, f(x)不是增函数,显然f(x)也不是周期函数,故选D.9.B 由奇函数f(x)的定义域为R,可得f(0)=0,由f(x+2)为偶函数,可得f(-x+2)=f(x+2),故f(x+4)=f((x+2)+2)=f(-(x+2)+2)=f(-x)=-f(x),则f(x+8)=f((x+4)+4)=-f(x+4)=-[-f(x)]=f(x),即函数f(x)的周期为8,所以f(8)=f(0)=0.故选B.10.A 由题知,函数f(x)=的图象是由函数y=的图象向右平移1个单位长度得到的,可得2x -12x 函数f(x)的图象关于点(1,0)中心对称,选项A 正确;函数f(x)在(-∞,1)上是减函数,选项B 错误;易知函数f(x)=的图象不关于直线x=1对称,选项C 错误;由函数f(x)的单调性及函数f(x)2x -1的图象可知函数f(x)的图象上不存在两点A,B,使得直线AB ∥x 轴,选项D 错误.11.C 因为奇函数f(x)的图象关于直线x=1对称,所以函数f(x)是以4为周期的周期函数,所以f(-5)=f(-1)=-f(1)=-1, f(6)=f(2)=f(0)=0.于是,结合题意可画出函数f(x)在[-2,4]上的大致图象,如图所示.又2<log 27<3,所以结合图象可知-1<f(log 27)<0,故f(-5)<f(log 27)<f(6).故选C.12.D 依题意,函数f(x)的图象上存在关于原点对称的点,可作出函数y=-ln(-x)(x<0)的图象关于原点对称的函数y=ln x(x>0)的图象,使得它与直线y=kx-1(x>0)的交点个数为2即可,当直线y=kx-1与函数y=ln x 的图象相切时,设切点为(m,ln m),又y=ln x 的导函数为y'=,则1x解得可得切线的斜率为1,结合图象可知k ∈(0,1)时,函数y=ln x 的图{km -1=ln m ,k =1m ,{m =1,k =1,象与直线y=kx-1有2个交点,即函数f(x)的图象上关于原点对称的点有2对.故选D.13.答案 -3解析 ∵f(1)=2>0,且f(1)+f(a)=0,∴f(a)=-2<0,故a ≤0.依题知a+1=-2,解得a=-3.14.答案 -4解析 因为f(x)=x+-1,所以f(a)=a+-1=2,所以a+=3,所以f(-a)=-a--1=--1=-3-1=-4.1x 1a 1a 1a (a +1a )15.答案 -12解析 ∵函数f(x)是偶函数,∴f(x)-f(-x)=ln(e x +1)+ax-ln(e -x +1)+ax=ln+2ax=lne x+1e -x +1e x +2ax=(1+2a)x=0恒成立.∴1+2a=0,即a=-.1216.答案 [-1,+∞)解析 如图,要使f(x)≥g(x)恒成立,则-a ≤1,∴a ≥-1.B 组 提升题组1.D 易知函数f(x)=为奇函数且定义域为{x|x ≠0},只有选项D 满足,故选D.sin πx x22.A 根据已知函数关系式可得f(x)=作出其图象,然后将其向左{e-ln x+(x -1x )=x,0<x ≤1,e ln x-(x -1x )=1x ,x >1.平移1个单位即得函数y=f(x+1)的图象,结合选项知A 正确.3.A 若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10 ℃,所以当t=12时,平均气温应该为10 ℃,故排除B;因为在靠近12月份时其温度小于10 ℃,因此12月份前的一小段时间内的平均气温应该大于10℃,故排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.故选A.4.C 函数f(x)的定义域为{x|x ≠-c},由题中图象可知-c=x P >0,即c<0,排除B.令f(x)=0,可得x=-,则x N =-.又x N >0,所以<0.所以a,b 异号,排除A,D.故选C.ba ba ba 5.D 由题意得f(2 015)=f(4×504-1)=f(-1)=-f(1).又当x ∈(0,2]时, f(x)=2x +log 2x,故f(1)=2+log 21=2,所以f(2 015)=-2.故选D.6.D 因为f=2×+n=+n,当+n<1,即n<-时, f =2+n=2,解得n=-,不符合题意;(34)34323212(f(34))(32+n )13当+n ≥1,即n ≥-时, f =log 2=2,即+n=4,解得n=.故选D.3212(f(34))(32+n )32527.C 由各选项及题意可得解得≤a<1.{0<a <1,log a 13+1≥2,138.C 依题意得曲线y=f(x)即为-x=(-y)2+a(其中-y>0,即y<0,注意到点(x 0,y 0)关于直线y=-x 的对称点是点(-y 0,-x 0)),化简后得y=-,即f(x)=-,于是有-=-2,由此解得-x -a -x -a 2-a 1-a a=.故选C.239.C 因为f(x)=e x +e 2-x >0,所以由[f(x)]2-af(x)≤0可得0<f(x)≤a.令t=e x ,g(t)=t+(t>0),画出函e2t数g(t)的大致图象,如图所示,结合图象分析易知原不等式有3个整数解可转化为0<g(t)≤a 的3个解分别为1,e,e 2.又当t=e x 的值分别为1,e,e 2时,x=0,1,2.画出直线y=e 2+1,故结合函数图象可知a 的最小值为e 2+1.故选C.10.B ∵对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0,f (x 1)-f(x 2)x 1-x 2∴函数f(x)在区间[4,8]上为增函数.∵f(x+4)=-f(x),∴f(x+8)=-f(x+4)=f(x),∴函数f(x)是周期为8的周期函数.∵y=f(x+4)是偶函数,∴函数f(x)的图象关于直线x=-4对称,又函数f(x)的周期为8,∴函数f(x)的图象也关于直线x=4对称.∴b=f(11)=f(3)=f(5),c=f(2 017)=f(252×8+1)=f(1)=f(7).又a=f(6),函数f(x)在区间[4,8]上为增函数,∴b<a<c.故选B.11.答案 [-1,12)解析 要使函数f(x)的值域为R,则有∴{1-2a >0,ln1≤1-2a +3a ,{a <12,a ≥-1,∴-1≤a<.1212.答案 [4,+∞)解析 依题意知函数f(x)在R 上单调递增,且当x ∈[m-2,m]时, f(x+m)≤9f(x)=f(3x),所以x+m ≤3x,即x ≥恒成立,于是有≤m-2,解得m ≥4,即实数m 的取值范围是[4,+∞).m 2m213.答案 (-∞,-2)∪(0,+∞)解析 若x>0,则-x<0, f(-x)=3(-x)2+ln(+x)=3x 2+ln(+x)=f(x),同理可得,当x<01+x 21+x 2时, f(-x)=f(x),且x=0时,f(0)=f(-0),所以f(x)是偶函数.因为当x>0时,函数f(x)单调递增,所以不等式f(x-1)<f(2x+1)等价于|x-1|<|2x+1|,整理得x(x+2)>0,解得x>0或x<-2.14.答案 b>a>c解析 因为f(x)=f(2-x),所以函数f(x)的图象关于直线x=1对称.因为(x-1)f '(x)<0,所以当x>1时, f '(x)<0,所以函数f(x)在(1,+∞)上单调递减;当x<1时, f '(x)>0,所以函数f(x)在(-∞,1)上单调递增.取符合题意的函数f(x)=-(x-1)2,则a=f(0)=-1,b=f=-,c=f(3)=-4,故b>a>c.(12)14。
高考数学二轮复习专题教案人教版

高考数学二轮复习专题教案(人教版)集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显着规律的无限集,如N+={0,1,2,3,...};②描述法。
2、两类关系:(1)元素与集合的关系,用或表示;(2)集合与集合的关系,用,,=表示,当AB时,称A是B的子集;当AB时,称A 是B的真子集。
3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2}(C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}解:选(D),最小的质数是2,不是1,故(A)错;由集合的定义可知(B)(C)都错。
例2、已知集合A=-1,3,2-1,集合B=3,.若BA,则实数=.解:由BA,且不可能等于-1,可知=2-1,解得:=1。
高考数学(文)二轮复习教师用书: 名师寄语 Word版含答案

一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过一轮复习,同学们大都掌握了基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题,而二轮复习承上启下,是知识系统化、条理化,促进灵活运用,提高数学素养的关键时期,为进一步突出重点,攻破难点,提高二轮复习的时效性,建议专题复习时,处理好以下3点:第1点 归纳常考知识,构建主干体系由于二轮复习时间较短,复习中不可能面面俱到,这就需要我们依据《考试大纲》和《考试说明》,结合全国卷近五年的高考试题进行主干网络体系的构建,并紧紧抓住高考的“热点”,有针对性地训练.例如:“三角函数”在高考中的主要考点是什么?回顾近三年的高考试题,不难发现,三角函数一般会考两类题:一类题考查解三角形(正弦定理、余弦定理、面积公式),一类题考查三角变换(和(差)角公式、倍角公式、辅助角公式、三角函数的图象与性质).【例1】 (2016·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.注:本书所有主观题附规范解答及评分细则 [解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C ,2分 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C. 4分 可得cos C =12,所以C =π3.6分(2)由已知得12ab sin C =332.又C =π3,所以ab =6.8分由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25. 10分 所以△ABC 的周长为5+7.12分【名师点评】 边角互化是利用正、余弦定理解题的有效途径,合理应用定理及其变形可化繁为简,提高运算效率,如本题也可以利用结论“a cos B +b cos A =c ”直接得出cos C =12. 【例2】 已知函数f (x )=(sin 2x +cos 2x )2-2sin 22x .(1)求f (x )的最小正周期;(2)若函数y =g (x )的图象是由y =f (x )的图象先向右平移π8个单位长度,再向上平移1个单位长度得到的,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,求y =g (x )的单调递增区间和最小值.[解题指导]f (x )―――――――→三角恒等变换f (x )=A sin(ωx +φ)――――→平移变换y =g (x )求g (x )的单调递增区间和最小值.[解]f (x )=(sin 2x +cos 2x )2-2sin 22x =2sin 2x cos 2x +cos 22x -sin 22x =sin 4x +cos 4x =2sin ⎝⎛⎭⎪⎫4x +π4.2分 (1)函数f (x )的最小正周期为T =2π4=π2.4分 (2)由题意,知g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π4+1=2sin ⎝ ⎛⎭⎪⎫4x -π4+1. 6分令-π2+2k π≤4x -π4≤π2+2k π(k ∈Z ),解得-π16+k 2π≤x ≤3π16+k2π(k ∈Z ).8分当k =0时,得-π16≤x ≤3π16.故当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,3π16, 10分 显然g (x )的单调递减区间是⎝⎛⎦⎥⎤3π16,π4,易知g (x )min=g (0)=0.12分【名师点评】 利用和(差)角公式、倍角公式、辅助角公式将含有多个不同的三角函数式转化为y =A sin(ωx +φ)的形式,再利用三角函数的性质求其单调区间、最值等问题. 通过上述两例,我们可以发现高考对“三角函数”考什么、如何考等问题,明确地构建出了本部分知识的主干知识体系.总之,对主干知识的确定有两种途径:第一,跟着老师去复习,一般来说,老师对主干知识的把握比较准确;第二,自己多看、多做近几年的高考题,从而感悟高考考什么,怎么考,进而能使自己把握主干知识,从而进行针对性地二轮复习.第2点 回避“套路”解题,强化思维训练“思维”是数学的体操,从近几年来看,高考试题稳中有变,变中求新.其特点是:稳以基础为主体,变以选拔为导向,增大试题的思维量,倡导理性思维.因此,在复习备考时,应回避用“套路”解题,强化通过多观察、多分析、多思考来完成解题.【例3】 (2017·全国卷Ⅱ)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上,且MN ⊥l ,则M 到直线NF 的距离为()A.5B .2 2 C .2 3D .3 3[解题指导] 求直线MF 的方程→求出点M ,N 的坐标→△MNF 为等边三角形→求出点M 到直线NF 的距离C [抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF 的方程为y =3(x -1). 联立得方程组⎩⎨⎧y =3x -,y 2=4x ,解得⎩⎪⎨⎪⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l , ∴N (-1,23). ∴|NF |=+2+-232=4,|MF |=|MN |=+2+3-232=4.∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3. 故选C.]【名师点评】 本题在求出点M ,N 的坐标后,求出直线MF 的方程,然后利用点到直线的距离公式求解.本题解法跳出常规,敏锐地判断出△MNF 为等边三角形,从而直接得出答案. 从以上典例我们可以看出,考能力不是考解题套路,而是考动手操作、深入思考、灵活运用的能力(即分析问题和解决问题的能力),考生需要通过眼、手、脑高度的配合才能完成解题.因此,在二轮专题复习中,把握考查方向,强化思维训练非常重要.第3点 注重知识交汇,强化综合运用在知识交汇处命题是一个永恒不变的规律.分析高考试题,我们不难发现,几乎所有的试题都是在“联系”上做“文章”,如果我们对数学知识的掌握是孤立的,那么在解题时,条件与条件之间、条件与结论之间就很难联系在一起,也就很难找到解决问题的有效策略.因此,我们在经历了一轮基础性复习之后,关注知识点间的联系,强化综合成为二轮专题复习的重要策略.【例4】 (2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.[解题指导] 求f ′(x )――――――→结合a 的取值讨论函数f (x )的单调性――――――――→图象的变化趋势求a 的取值范围――――→转化思想x 1+x 2<2⇔f (x 1)>f (2-x 2)―――→构造法证明结论. [解] (1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). 1分 ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. 2分②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.4分③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 6分又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).8分(2)证明:不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)内单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0.9分故当x >1时,g (x )<0.11分从而g (x 2)=f (2-x 2)<0, 故x 1+x 2<2.12分【名师点评】 本题以函数的零点为载体,融导数、不等式于其中,重点考查了学生的分类讨论思想和等价转化及推理论证能力.复习该部分知识时,要强化函数、方程、不等式三者间的内在联系,突现导数解题的工具性.由本例可以看出,在二轮专题复习中,我们务必要密切关注知识之间的相互联系,在强化综合中,加强思维灵活性训练,从而提高分析问题和解决问题的能力,回避偏题、难题、怪题和旧题.总体来说,在二轮专题复习中,我们要做到“三个强化,三个淡化,一个渗透”,即强化主干知识,淡化细枝末节;强化基础能力,淡化题型套路;强化综合应用,淡化“偏、难、怪、旧”,渗透数学思想.。
高三数学二轮复习 教师用书 文

(通用版)2017届高三数学二轮复习教师用书文当你打开本书,你会发现她与众不同:她不同——没有按传统目录去编排;她不同——没有按固定体例去“套”.传统目录太“老”——已不能适应全国卷的高考.全国卷考什么,怎么考,传统目录区分度不高,指导性不明.“方向比努力更重要”,这一点,对二轮复习尤显重要!体例固定太“板”——二轮复习时间紧、任务重,该学什么,怎么学,如果再轻重不分,难易无别,一条道走到黑,哪有这么多时间任你我折腾!当研究完全国新课标卷近5年的高考题,你就会发现,本书的编排设计竟是如此的精妙!因为高考这样考,所以本书这样编排设计[全国课标卷5年考情统计分析]一、30%的题目是基础题目,主要集中在6大知识点进行命题(一)集合与常用逻辑用语1.集合作为高考必考内容,多年来命题较稳定,多在第1题的位置以选择题形式进行考查,难度较小,命题的热点依然会集中在集合的运算上,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等内容命题.(二)平面向量[命题分析]1.平面向量是高考必考内容,每年每卷均有一个小题(选择题或填空题),一般出现在第2~6或第13~15题的位置上,难度较低,主要考查平面向量的模、数量积的运算、线性运算等,数量积是其考查的热点.2.有时也会以平面向量为载体,与三角函数、解析几何等其他知识相交汇综合命题,难度中等.(三)不等式[命题分析]1.不等式作为高考命题热点内容之一,多以选择题、填空题的形式进行考查,直接考查时主要是简单的线性规划问题,关于不等式性质的应用、不等式的解法以及基本不等式的应用,主要体现在其工具作用上.2.题目多出现在第13~15题的位置上,难度中等,但命题的模式比较固定,只要平时多加练习得分不难.3.若不等式与函数、导数、数列等其他知识交汇综合命题,难度较大.(四)空间几何体的三视图、表面积与体积[1.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).2.考查一个小题时,本小题一般会出现在第6~7题的位置上,难度一般;考查2个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第9~11题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.(五)算法、复数、推理与证明[1.高考对复数的考查重点是其代数形式的四则运算(特别是乘、除法),也涉及复数的概念及几何意义等知识,题目多出现在第2~3题的位置,难度较小,纯属送分题目.2.高考对算法的考查,每年平均有一道小题,一般出现在6~9题的位置上,难度中等偏下,都是考查程序框图,热点是循环结构和条件结构,有时综合性较强,其背景涉及数列、统计等知识.3.在全国课标卷中很少直接考查“推理与证明”,特别是合情推理,而演绎推理,则主要体现在对问题的证明上.(六)统计与统计案例[命题分析]1.统计与统计案例是高考命题的热点之一,从题型上看,多为选择题和解答题.2.选择题常出现在第3~4题的位置,多考查统计图表的识别、抽样方法的选取、变量间的相关性判断等,难度较小.3.解答题常出现在第18~19题的位置,多考查用最小二乘法求线性回归方程、样本的相关性检验、用样本估计总体等,难度中等.二、50%的题目是中等题目,主要集中在12个命题点上(七)函数的图象与性质[命题分析]1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等,主要考查求函数的定义域,分段函数函数值的求解或分段函数中参数的求解及函数图象的识别.题型多以选择题、填空题形式考查,一般出现在第9~11或第13~15题位置上,难度中等.2.此部分内容有时出现在选择题、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题.(八)基本初等函数、函数与方程1.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,一般出现在第7~11题的位置,有时难度较大.2.函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国课标卷考查较少,但也要引起重视,题目可能较难.(九)导数的简单应用[命题分析]1.此部分内容是高考命题的热点内容.在选择题、填空题中多考查导数的几何意义,难度较小.2.应用导数研究函数的单调性、极值、最值,多在选择题、填空题最后几题的位置考查,难度中等偏上,属综合性问题.(十)三角函数的图象与性质[1.高考对此部分内容的命题主要集中于三角函数的定义、图象与性质,主要考查图象的变换,函数的单调性、奇偶性、周期性、对称性及最值,并常与三角恒等变换交汇命题.2.主要以选择、填空题的形式考查,难度为中等偏下,大多出现在第6~11或第14题位置上.(十一)三角恒等变换与解三角形1.高考对此部分的考查一般以“二小”或“一大”的命题形式出现.2.若无解答题,一般在选择题或填空题各有一题,主要考查三角函数的图象与性质、三角恒等变换、解三角形,难度一般,一般出现在第4~11或第14~16题位置上.3.若以解答题命题形式出现,主要考查三角函数与解三角形的综合问题,一般出现在解答题第17题位置上,难度中等.(十二)数列1.高考主要考查两类基本数列(等差数列、等比数列)、两种数列求和方法(裂项求和法、错位相减法)、两类综合(与函数综合、与不等式综合),主要突出数学思想的应用.2.若以解答题形式考查,往往与解三角形交替考查,试题难度中等;若以客观题考查,难度中等的题目较多,但有时也出现在第12题或16题位置上,难度偏大,复习时应引起关注.(十三)点、直线、平面之间的位置关系1.高考对此部分命题较为稳定,选择题、填空题多考查线面位置关系的判断,此类试题难度中等偏下.2.解答题的第(1)问考查空间平行关系和垂直关系的证明,而第(2)问多考查面积、体积的计算,难度中等偏上.解答题的基本模式是“一证明二计算”.(十四)直线与圆[命题分析]1.圆的方程近两年为高考全国课标卷命题的热点,需重点关注.此类试题难度中等偏下,多以选择题或填空题形式呈现.2.直线与圆的方程偶尔单独命题,单独命题时有一定的深度,有时会出现在第12题或第16题位置,难度很大,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上.(十五)圆锥曲线的方程与性质[命题分析]1.圆锥曲线的定义、方程与性质是每年必考内容,多以选择题的形式考查,常出现在第4~10题的位置,着重考查圆锥曲线的几何性质与标准方程的求法,难度中等.2.圆锥曲线与直线的综合问题多以解答题的形式考查,常出现在第20题的位置,一般难度较大.(十六)概率[1.对概率的考查是高考命题的热点之一,命题形式为“一小一大”,即一道选择或填空题和一道解答题.2.选择或填空题常出现在第3~8题或第13题的位置,主要考查古典概型、几何概型,难度一般.3.解答题常出现在第18或19题的位置,多以交汇性的形式考查,交汇点主要有两种:一是两图(频率分布直方图与茎叶图)择一与频率与概率的关系、数据的数字特征相交汇来考查;二是两图(频率分布直方图与茎叶图)择一与线性回归或独立性检验相交汇来考查,难度中等.(十七)选修4-4(坐标系与参数方程)[命题分析]1.坐标系与参数方程是高考的选考内容之一,高考考查的重点主要有两个方面:一是简单曲线的极坐标方程;二是参数方程、极坐标方程与曲线的综合应用.2.全国课标卷对此部分内容的考查以解答题形式出现,难度中等,备考此部分内容时应注意转化思想的应用.(十八)选修4-5(不等式选讲)[命题分析]1.不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.2.此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.三、20%的题目是较难题目,主要集中在3大块(一)选择题、填空题中的压轴题[命题分析]1.每年高考题中的第12题和第16题都有一定难度,所考查的知识点多样,有函数的零点与不等式,函数、导数与不等式,数列与不等式,圆锥曲线的综合问题和一些知识点的创新问题等.2.学有余力的考生在对此部分内容复习时要有深度和广度,能力一般的考生要掌握一定的答题技巧,争取拿分.(二)解答题第20题压轴题1.解答题第20题压轴题一般考查解析几何的有关内容,难度较大.2.本题常考查直线与圆锥曲线的位置关系、最值、范围、定点、定值、存在性问题及证明问题,多涉及最值与范围的求解,综合性强.(三)解答题第21题压轴题[命题分析]1.解答题第21题压轴题一般考查利用导数研究函数的有关性质,难度中等偏上.2.本题考查内容灵活多变,常涉及分类讨论思想、数形结合思想.另外,多与不等式、方程根的分布及函数的值域等问题相结合设置成综合性试题,难度较大.题型专题(一) 集合与常用逻辑用语集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[题组练透]1.(2016²全国甲卷)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B =( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2016²河南六市联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是( )A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)解析:选B ∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0<a<3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.3.(2016²江西两市联考)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A.{x|2<x<3} B.{x|-1<x≤0}C.{x|0≤x<6} D.{x|x<-1}解析:选C 由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁U B)∩A,因为∁U B={x|x≥0},所以(∁U B)∩A ={x|0≤x<6},故选C.4.(2016²湖北七市联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为( )A.147 B.140 C.130 D.117解析:选B 由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,与y=3,y =5时,没有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3³50-10=140,故选B.5.已知全集U={a1,a2,a3,a4},集合A是集合U的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=________.(用列举法表示)解析:若a1∈A,则a2∈A,则由若a3∉A,则a2∉A可知,a3∈A,假设不成立;若a4∈A,则a3∉A,则a2∉A,a1∉A,假设不成立,故集合A={a2,a3}.答案:{a2,a3}[技法融会]1.集合运算中的3种常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴求解;(2)图象法:若已知的集合是点集,用图象法求解;(3)Venn图法:若已知的集合是抽象集合,用Venn图求解.2.(易错提醒)在写集合的子集时,易忽视空集;在应用条件A∪B=B⇔A∩B=A⇔A⊆B 时,易忽略A=∅的情况.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件;(2)充要条件与集合的关系:设命题p对应集合A,命题q对应集合B,则p⇒q等价于A⊆B,p⇔q等价于A=B.[题组练透]1.(2016²湖北七市联考)已知a,b为两个非零向量,设命题p:|a²b|=|a||b|,命题q:a与b共线,则命题p是命题q成立的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选C |a²b|=|a||b|⇔|a||b||cos〈a,b〉|=|a||b|⇔cos〈a,b〉=±1⇔a∥b,故p是q成立的充要条件,选C.2.若p是q的充分不必要条件,则下列判断正确的是( )A.┐p是q的必要不充分条件B.┐q是p的必要不充分条件C.┐p是┐q的必要不充分条件D.┐q是┐p的必要不充分条件解析:选C 由p是q的充分不必要条件可知p⇒q,q p,由互为逆否命题的两命题等价可得┐q⇒┐p,┐p┐q,∴┐p是┐q的必要不充分条件,选C.3.(2016²天津高考)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:选C 设数列的首项为a1,则a2n-1+a2n=a1q2n-2+a1q2n-1=a1q2n-2(1+q)<0,即q<-1,故q<0是q<-1的必要而不充分条件.故选C.4.已知“x>k”是“3x+1<1”的充分不必要条件,则k的取值范围是( )A.[2,+∞) B.[1,+∞) C.(2,+∞) D.(-∞,-1]解析:选A 由3x+1<1,可得3x+1-1=-x+2x+1<0,所以x<-1或x>2,因为“x>k”是“3x+1<1”的充分不必要条件,所以k≥2.[技法融会]1.判定充分条件与必要条件的3种方法(1)定义法:正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A⊆B,则A是B的充分条件(B是A的必要条件);若A=B,则A是B的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.2.(易错提醒)“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定是┐p:∃x0∈M,┐p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定是┐p:∀x∈M,┐p(x).[题组练透]1.(2016²南昌一模)已知命题p:函数f(x)=|cos x|的最小正周期为2π;命题q:函数y=x3+sin x的图象关于原点中心对称,则下列命题是真命题的是( ) A.p∧q B.p∨qC.(┐p)∧(┐q) D.p∨(┐q)解析:选B 因为命题p为假,命题q为真,所以p∨q为真命题.2.(2016²浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2解析:选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.3.(2016²广州五校联考)以下有关命题的说法错误的是( )A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∨q为假命题,则p,q均为假命题D.对于命题p:∃x∈R,使得x2+x+1<0,则┐p:∀x∈R,均有x2+x+1<0解析:选D 选项D中┐p应为:∀x∈R,均有x2+x+1≥0.故选D.[技法融会]1.命题真假的4种判定方法(1)一般命题p的真假由涉及的相关知识辨别.(2)四种命题真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律.(3)形如p∨q,p∧q,┐p命题的真假根据真值表判定.(4)全称命题与特称命题的真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M中的每一个元素x验证p(x)成立,要判定其为假命题时,只需举出一个反例即可;②特称命题:要判定一个特称命题为真命题,只要在限定集合M中至少能找到一个元素x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.2.(易错提醒)“否命题”是对原命题“若p,则q”既否定其条件,又否定其结论;而“命题p的否定”即:非p,只是否定命题p的结论.一、选择题1.命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是( )A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:选A 改变原命题中的三个地方即可得其否定,∃改为∀,x0改为x,否定结论,即ln x≠x-1,故选A.2.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是( )A.0 B.1 C.2 D.3解析:选C 由题中集合可知,集合A 表示直线x +y =1上的点,集合B 表示直线x -y=3上的点,联立可得A ∩B ={(2,-1)},M 为A ∩B 的子集,可知M 可能为{(2,-1)},∅,所以满足M ⊆(A ∩B )的集合M 的个数是2.3.(2016²武汉调研)已知命题p :x ≥1,命题q :1x<1,则┐p 是 q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选D 由题意,得┐p 为x <1,由1x<1,得x>1或x<0,故q 为x >1或x<0,所以┐p 是q 的既不充分也不必要条件,故选D.4.(2016²河南八市质量检测)已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( )A .A ∪B =R B .A ∪(∁U B )=RC .(∁U A )∪B =RD .A ∩(∁U B )=A解析:选D 因为A ={x |-4<x <4},B ={x |x >4},所以∁U B ={x |x ≤4},所以A ∩(∁U B )=A ,故选D.5.(2016²天津高考)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件解析:选C 当x =1,y =-2时,x >y ,但x >|y |不成立;若x >|y |,因为|y |≥y ,所以x >y .所以x >y 是x >|y |的必要而不充分条件.6.已知全集U ={x ∈Z|0<x <10},集合A ={1,2,3,4},B ={x |x =2a ,a ∈A },则(∁U A )∩B =( )A .{6,8}B .{2,4}C .{2,6,8}D .{4,8}解析:选A 法一:由已知得全集U ={1,2,3,4,5,6,7,8,9},所以∁U A ={5,6,7,8,9},而B ={2,4,6,8},故(∁U A )∩B ={6,8},所以选A.法二:因为2,4∈A ,所以2,4∉∁U A ,故2,4∉(∁U A )∩B ,所以排除B 、C 、D ,所以选A. 7.若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( ) A .a >-2 B .a ≤-2C .a >-1D .a ≥-1解析:选C A ={x |-1<x <2},B ={x |-2<x <a },如图所示:∵A ∩B ≠∅,∴a >-1.8.(2016²皖江名校联考)命题p :存在x 0∈⎣⎢⎡⎦⎥⎤0,π2,使sin x 0+cos x 0>2;命题q :命题“∃x 0∈R ,2x 20+3x 0-5=0”的否定是“∀x ∈R ,2x 2+3x -5≠0”,则四个命题(┐p )∨(┐q ),p ∧q ,(┐p )∧q ,p ∨(┐q )中,真命题的个数为( )A .1B .2C .3D .4解析:选B 因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,易知命题q 为真命题,故(┐p )∨(┐q )真,p ∧q 假,(┐p )∧q 真,p ∨(┐q )假.9.如图所示的程序框图,已知集合A ={x |x 是程序框图中输出的x 的值},集合B ={y |y 是程序框图中输出的y 的值},全集U =Z ,Z 为整数集.当输入的x =-1时,(∁U A )∩B 等于( )A .{-3,-1,5}B .{-3,-1,5,7}C .{-3,-1,7}D .{-3,-1,7,9}解析:选D 根据程序框图所表示的算法,框图中输出的x 值依次为0,1,2,3,4,5,6;y 值依次为-3,-1,1,3,5,7,9.于是A ={0,1,2,3,4,5,6},B ={-3,-1,1,3,5,7,9},因此(∁U A )∩B ={-3,-1,7,9}.10.(2016²广州高考模拟)下列说法中正确的是( ) A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则┐p :∀x ∈R ,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”解析:选D f (0)=0,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则┐p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a 在(0,+∞)上是减函数.若p 且┐q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)²f (1)<0,即-1²(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则┐q 对应的a 的范围是(-∞,2].因为p 且┐q 为真命题,所以实数a 的取值范围是1<a ≤2.故选C.12.(2016²浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则┐p :_______________________.解析:全称命题的否定为特称命题,┐p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.已知集合A ={x ∈R||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.解析:A ={x ∈R||x -1|<2}={x ∈R|-1<x <3},集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}.故A ∩Z 中所有元素之和为0+1+2=3.答案:315.已知命题p :∀x ∈R ,x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p 且q ”是真命题,则实数a 的取值范围为________.解析:由已知条件可知p 和q 均为真命题,由命题p 为真得a ≤0,由命题q 为真得a ≤-2或a ≥1,所以a ≤-2.答案:(-∞,-2]16.对任意两个集合X ,Y ,定义X -Y ={x |x ∈X 且x ∉Y },X ΔY =(X -Y )∪(Y -X ).设A ={y |y =x 2,x ∈R},B ={y |y =3sin x ,x ∈R},则A ΔB =________.解析:由已知得A ={y |y =x 2,x ∈R}=[0,+∞).B ={y |y =3sin x ,x ∈R}=[-3,3],于是A -B =(3,+∞),B -A =[-3,0),故A ΔB =[-3,0)∪(3,+∞).答案:[-3,0)∪(3,+∞)题型专题(二) 平面向量(1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.(2)在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量的终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[题组练透]1.(2016²河北三市联考)已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn等于( )A .-12 B.12C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.2.(2016²唐山模拟)在等腰梯形ABCD 中,M 为BC 的中点,则=( )解析:选 B因为,所以.又M是BC的中点,所以,故选B.3.(2016²广州综合测试)在梯形ABCD中,AD∥BC,已知AD=4,BC=6,若 (m,n∈R),则mn=( )A.-3 B.-13C.13D.3解析:选A过点A作AE∥CD,交BC于点E,则BE=2,CE=4,∴∴mn=1-13=-3.4.(2016²杭州综合测试)设P是△ABC 所在平面内的一点,且,则△PAB 与△PBC的面积的比值是( )A.13B.12C.23D.34解析:选B ∵,∴,又△PAB在边PA上的高与△PBC在边PC 上的高相等,∴S△PABS△PBC==12.[技法融会]1.平面向量线性运算的2种技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b≠0时,a∥b⇔存在唯一实数λ,使得a =λb)来判断.2.(易错提醒)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(1)两个向量的数量积是一个数量,而不是向量,它的值为两个向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值确定.(2)求非零向量a ,b 的夹角,一般利用公式cos 〈a ,b 〉=a ²b |a ||b |先求出夹角的余弦值,然后求夹角.(3)向量a 在向量b 方向上的投影为a ²b|b |=|a |cos θ(θ为两向量的夹角).[题组练透]1.(2016²全国丙卷)已知向量=⎝ ⎛⎭⎪⎫12,32,=⎝⎛⎭⎪⎫32,12,则∠ABC =( ) A .30° B .45° C .60° D .120° 解析:选A 因为=⎝ ⎛⎭⎪⎫12,32,=⎝⎛⎭⎪⎫32,12, 所以²=34+34=32.又因为²=||||cos ∠ABC =1³1³cos ∠ABC =32,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.2.(2016²合肥质检)已知不共线的两个向量a ,b 满足|a -b |=2且a ⊥(a -2b ),则|b |=( )A. 2 B .2 C .2 2 D .4解析:选B 由a ⊥(a -2b )得,a ²(a -2b )=|a |2-2a ²b =0,则|a -b |=(a -b )2=|a |2-2a ²b +|b |2=|b |=2,选项B 正确.3.(2016²重庆二测)设单位向量e 1,e 2的夹角为2π3,a =e 1+2e 2,b =2e 1-3e 2,则b在a 方向上的投影为( )A .-332B .- 3 C. 3 D.332解析:选A 依题意得e 1²e 2=1³1³cos2π3=-12,|a |=(e 1+2e 2)2=e 21+4e 22+4e 1²e 2=3,a ²b =(e 1+2e 2)²(2e 1-3e 2)=2e 21-6e 22+e 1²e 2=-92,因此b 在a 方向上的投影为a ²b |a |=-923=-332,选A.4.(2016²天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则的值为( )A .-58 B.18 C.14 D.118解析:选B 如图所示,=+又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以,,所以.又,则.又=1,∠BAC =60°, 故=34-12-14³1³1³12=18.故选B. 5.(2016²长春质检)已知向量a =(1,3),b =(0,t 2+1),则当t ∈[-3,2]时,⎪⎪⎪⎪⎪⎪a -t b |b |的取值范围是________.解析:由题意,b|b |=(0,1),根据向量的差的几何意义,⎪⎪⎪⎪⎪⎪a -tb |b |表示同起点的向量tb|b |的终点到a 的终点的距离,当t =3时,该距离取得最小值1,当t =-3时,该距离取得最大值13,即⎪⎪⎪⎪⎪⎪a -tb |b |的取值范围是[1,13 ].答案:[1,13 ][技法融会]1.平面向量数量积运算的2种形式(1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择求夹角和模的基底进行转化;(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.2.(易错提醒)两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.一、平面向量与其他知识的交汇平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[新题速递]1.已知向量a ,b 满足|a |=2|b |≠0,且关于x 的函数f (x )=-2x 3+3|a |x 2+6a ²bx +5在R 上单调递减,则向量a ,b 夹角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤0,π3C.⎝ ⎛⎭⎪⎫0,π6D.⎣⎢⎡⎦⎥⎤2π3,π 解析:选D 设向量a ,b 的夹角为θ,因为f (x )=-2x 3+3|a |x 2+6a ²bx +5,所以f ′(x )=-6x 2+6|a |x +6a ²b ,又函数f (x )在R 上单调递减,所以f ′(x )≤0在R 上恒成立,所以Δ=36|a |2-4³(-6)³(6a ²b )≤0,解得a ²b ≤-14|a |2,因为a ²b =|a ||b |cos θ,且|a |=2|b |≠0,所以|a ||b |cos θ=12|a |2cos θ≤-14|a |2,解得cos θ≤-12,因为θ∈[0,π],所以向量a ,b 的夹角θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,π,故选D.2.(2016²广东茂名二模)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83 D.53解析:选B ∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3,∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ³13(2x +3y )=13(6+9y x +4x y +6)≥13⎝ ⎛⎭⎪⎫12+29y x ²4x y =8,当且仅当2x =3y =32时,等号成立.∴3x +2y 的最小值是8.故选B.[技法融会]这两题考查的是平面向量与函数、不等式的交汇.第1题由函数的性质把问题转化为平面向量问题,求解时应注意两向量的夹角θ∈[0,π].而第2题是利用平面向量的知识得到有关x 和y 的一个等式,再利用基本不等式求解.二、新定义下平面向量的创新问题近年,高考以新定义的形式考查向量的概念、线性运算、数量积运算的频率较大,其形式体现了“新”.解决此类问题,首先需要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,通过转化思想解决,这是破解新定义信息题的关键所在.[新题速递]1.已知向量a 与b 的夹角为θ,定义a ³b 为a 与b 的“向量积”,且a ³b 是一个向量,它的长度|a ³b |=|a ||b |sin θ,若u =(2,0),u -v =(1,-3),则|u ³(u +v )|等于( )A .4 3 B. 3 C .6 D .2 3解析:选D 由题意v =u -(u -v )=(1,3),则u +v =(3,3),cos 〈u ,u +v 〉=32,得sin 〈u ,u +v 〉=12,由定义知|u ³(u +v )|=|u |²|u +v |sin 〈u ,u +v 〉=2³23³12=2 3.故选D.2.定义平面向量的一种运算a ⊙b =|a +b |³|a -b |³sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ²b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.。
高考数学(文)二轮复习教师用书:第1部分 重点强化专题 技法篇 Word版含答案

技法篇:4大思想提前看,依“法”训练提时效高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符号来记录与描述,那么数学思想方法则是数学意识,重在领会、运用,属于思维的范畴,着眼于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.这些在一轮复习中都有所涉及,建议二轮复习前应先学习此部分.带着方法去复习,这样可以使理论指导实践,“一法一练”“一练一过”,既节省了复习时间又能起到事半功倍的效果,而市面上有些资料把方法集中放于最后,起不到”依法训练”的作用,也因时间紧造成学而不透、学而不深,在真正的高考中不能从容应对.不过也可根据自身情况选择学完后再复习此部分.思想1函数与方程思想函数的思想,就是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的数学思想.方程的思想,就是建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想.【例1】(1)(2017·天水二模)定义域为R的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=1,则不等式f(x)e x<1的解集为()A.(-∞,0)B.(0,+∞) C.(-∞,2) D.(2,+∞)B[构造函数g(x)=f(x)e x,则g′(x)=e x·f′(x)-e x·f(x)(e x)2=f′(x)-f(x)e x.由题意得g′(x)<0恒成立,所以函数g(x)=f(x)e x在R上单调递减.又g(0)=f(0)e0=1,所以f(x)e x<1,即g(x)<1,解得x>0,所以不等式的解集为(0,+∞).故选B.](2)(名师押题)已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.【导学号:04024000】[1,+∞) [以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎨⎧y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0,即(y -a )[y -(a -1)]=0,由题意得⎩⎨⎧a >0,a -1≥0,解得a ≥1.] [方法指津]函数与方程思想在解题中的应用1.函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.2.数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.3.解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.4.立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.[变式训练1] 将函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为________.【导学号:04024001】5π24 [把y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象上所有的点向左平移m 个单位长度后,得到y =sin ⎣⎢⎡⎦⎥⎤4(x +m )-π3=sin ⎝ ⎛⎭⎪⎫4x +4m -π3的图象, 而此图象关于y 轴对称,则4m -π3=k π+π2(k ∈Z ),解得m =14k π+5π24(k ∈Z ).又m >0,所以m 的最小值为5π24.]思想2 数形结合思想数形结合思想,就是通过数与形的相互转化来解决数学问题的思想.其应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质,如应用函数的图象来直观地说明函数的性质.(2)“以数定形”,把直观图形数量化,使形更加精确,如应用曲线的方程来精确地阐明曲线的几何性质.【例2】 (经典高考题)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.(3,+∞) [作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.][方法指津]数形结合思想在解题中的应用1.构建函数模型并结合其图象求参数的取值范围或解不等式.2.构建函数模型并结合其图象研究方程根或函数零点的范围.3.构建解析几何模型求最值或范围.4.构建函数模型并结合其图象研究量与量之间的大小关系.[变式训练2] (1)已知函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两个不相等的实根,则实数k 的取值范围是( ) 【导学号:04024002】A .(-1,1)B .(0,2)C .(0,1)D .(0,1] (2)若不等式4x 2-log a x <0对任意x ∈⎝ ⎛⎭⎪⎫0,14恒成立,则实数a 的取值范围为( ) A.⎝ ⎛⎭⎪⎫1256,1 B.⎣⎢⎡⎭⎪⎫1256,1 C.⎝ ⎛⎭⎪⎫0,1256 D.⎝ ⎛⎦⎥⎤0,1256 (1)C (2)B [(1)当x ≥2时,f (x )=2x ,此时f (x )在[2,+∞)上单调递减,且0<f (x )≤1.当x <2时,f (x )=(x -1)3,此时f (x )过点(1,0),(0,-1),且在(-∞,2)上单调递增.当x →2时,f (x )→1.如图所示作出函数y =f (x )的图象,由图可得f (x )在(-∞,2)上单调递增且f (x )<1,f (x )在[2,+∞)上单调递减且0<f (x )≤1,故当且仅当0<k <1时,关于x 的方程f (x )=k 有两个不相等的实根,即实数k 的取值范围是(0,1).(2)由已知4x 2<log a x 对任意x ∈⎝ ⎛⎭⎪⎫0,14恒成立,相当于在⎝ ⎛⎭⎪⎫0,14上,函数y =log a x 的图象恒在函数y =4x 2图象的上方,显然当a >1时,不成立,当0<a <1时,如图,只需log a 14≥4×⎝ ⎛⎭⎪⎫142⇒a 14≥14⇒a ≥1256,又0<a <1,故a ∈⎣⎢⎡⎭⎪⎫1256,1.故选B.] 思想3 分类讨论思想分类讨论思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.【例3】(1)(经典高考题)设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞) (2)设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________. (1)C (2)2或72[(1)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1. 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23,故选C.(2)若∠PF 2F 1=90°,则|PF 1|2=|PF 2|2+|F 1F 2|2.∵|PF 1|+|PF 2|=6,|F 1F 2|=25,解得|PF1|=143,|PF2|=43,∴|PF1||PF2|=72.若∠F2PF1=90°,则|F1F2|2=|PF1|2+|PF2|2=|PF1|2+(6-|PF1|)2,解得|PF1|=4,|PF2|=2,∴|PF1||PF2|=2.综上所述,|PF1||PF2|=2或72.][方法指津]分类讨论思想在解题中的应用1.由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.2.由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等.3.由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.4.由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类,如:角的终边所在的象限;点、线、面的位置关系等.[变式训练3] (1)已知二次函数f(x)=ax2+2ax+1在区间[-3,2]上的最大值为4,则a 等于()A.-3B.-3 8C.3 D.38或-3(2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________.(1)D (2)32或6 [(1)当a >0时,f (x )在[-3,-1]上单调递减,在[-1,2]上单调递增,故当x =2时,f (x )取得最大值,即8a +1=4,解得a =38.当a <0时,易知f (x )在x =-1处取得最大,即-a +1=4,∴a =-3.综上可知,a =38或-3.故选D.(2)当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立;当q ≠1时,由题意,得⎩⎪⎨⎪⎧ a 1q 2=a 3=32,a 1(1-q 3)1-q =S 3=92.所以⎩⎪⎨⎪⎧ a 1q 2=32, ①a 1(1+q +q 2)=92,②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0,所以q =-12或q =1(舍去).当q =-12时,a 1=a 3q 2=6.综上可知,a 1=32或a 1=6.]思想4 转化与化归思想转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题转化为简单的问题,将难解的问题转化为容易求解的问题,将未解决的问题转化为已解决的问题.【例4】(1)(2016·洛阳模拟)抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-1,0),则|PF ||P A |的最小值是( )【导学号:04024003】A.12B.22C.32D.232(2)若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________.[解题指导] (1)利用抛物线的定义把|PF ||P A |的最值问题等价转化成直线P A 的斜率问题.(2)令t =3x ,方程转化为关于t 的一元二次方程,再分离变量求解.(1)B (2)(-∞,-8] [(1)如图,作PH ⊥l 于H ,由抛物线的定义可知,|PH |=|PF |,从而|PF ||P A |的最小值等价于|PH ||P A |的最小值,等价于∠P AH 最小,等价于∠P AF最大,即直线P A 的斜率最大.此时直线P A 与抛物线y 2=4x 相切,由直线与抛物线的关系可知∠P AF =45°,所以|PF ||P A |=|PH ||P A |=sin 45°=22.(2)设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝ ⎛⎭⎪⎫t +4t , ∵t >0,∴-⎝ ⎛⎭⎪⎫t +4t ≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].][方法指津]转化与化归思想在解题中的应用1.在三角函数中,涉及到三角式的变形,一般通过转化与化归将复杂的三角问题转化为已知或易解的三角问题,以起到化暗为明的作用,主要的方法有公式的“三用”(顺用、逆用、变形用)、角度的转化、函数的转化等.2.换元法:是将一个复杂的或陌生的函数、方程、不等式转化为简单的或熟悉的函数、方程、不等式的一种重要的方法.3.在解决平面向量与三角函数、平面几何、解析几何等知识的交汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言进行转化.4.在解决数列问题时,常将一般数列转化为等差数列或等比数列求解.5.在利用导数研究函数问题时,常将函数的单调性、极值(最值)、切线问题,转化为其导函数f ′(x )构成的方程.[变式训练4] (1)在正方体ABCD -A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体的边长为1,则四面体B -EB 1D 1的体积为________.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.(1)105 16 (2)⎝ ⎛⎭⎪⎫-373,-5 [(1)连接BD ,DE (图略),因为BD ∥B 1D 1,所以∠EBD 就是异面直线BE 与B 1D 1所成的角,设A 1A =1,则DE =BE =52,BD =2,cos ∠EBD =54+2-542×52×2=105,由=(2)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t-3t 恒成立,则m+4≥-1,即m≥-5;由②得m+4≤2x-3x在x∈(t,3)上恒成立,则m+4≤23-9,即m≤-373.因为函数g(x)在区间(t,3)上总不为单调函数,所以m的取值范围为-373<m<-5.]课后对应完成数学思想专练(一)~(四),(注:因所练习题知识点比较整合,难度比较大,建议部分学生学完“第一部分重点强化专题”后再做此部分训练)。
高三数学(文)二轮复习(通用版)教师用书:策略(四)回扣五数列含答案

环节一:记牢概念公式,避免临场卡壳 1.等差数列、等比数列2.判断等差数列的常用方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. (3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. 3.判断等比数列的常用方法(1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. 环节二:巧用解题结论,考场快速抢分 1.等差数列的重要规律与推论(1)a n =a 1+(n -1)d =a m +(n -m )d ,p +q =m +n ⇒a p +a q =a m +a n . (2)a p =q ,a q =p (p ≠q )⇒a p +q =0;S m +n =S m +S n +mnd . (3)S k ,S 2k -S k ,S 3k -S 2k ,…构成的数列是等差数列.(4)若等差数列{a n }的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m (a m +a m +1),S 偶-S 奇=md ,S 奇S 偶=a ma m +1.(5)若等差数列{a n }的项数为奇数2m -1,所有奇数项之和为S 奇,所有偶数项之和为S偶,则所有项之和S 2m -1=(2m -1)a m ,S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S 偶=a m ,S 奇S 偶=m m -1. 2.等比数列的重要规律与推论(1)a n =a 1q n -1=a m q n -m ,p +q =m +n ⇒a p ·a q =a m ·a n .(2){a n },{b n }成等比数列⇒{a n b n }成等比数列.(3)连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m ,…)仍然成等比数列(注意:这连续m 项的和必须非零才能成立).(4)若等比数列有2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=q .(5)等比数列前n 项和有:①S m +n =S m +q m S n ;②S m S n =1-q m1-q n(q ≠±1). 环节三:明辨易错易混,不被迷雾遮眼1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.易混淆几何平均数与等比中项,正数a ,b 的等比中项是±ab .3.易忽视等比数列中公比q ≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.4.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q ≠1两种情况进行讨论.5.对于通项公式中含有(-1)n 的一类数列,在求S n 时,切莫忘记讨论n 的奇偶性;遇到已知a n +1-a n -1=d 或a n +1a n -1=q (n ≥2),求{a n }的通项公式,要注意分n 的奇偶性讨论.6.求等差数列{a n }前n 项和S n 的最值,易混淆取得最大或最小值的条件. 环节四:适当保温训练,树立必胜信念1.若等差数列{a n }的前n 项和为S n ,且a 2+a 3=6,则S 4的值为( ) A .12 B .11 C .10 D .9解析:选A 由题意得S 4=a 1+a 2+a 3+a 4=2(a 2+a 3)=12.2.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2 解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92,两式相除得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2. 3.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B. 4.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2 B .16 C.114 D.32解析:选C 设数列{a n }的公比为q ,由a 3=a 2+2a 1,得q 2=q +2,∴q =2,∴a n =a 1·2n-1,由a m ·a n =16a 21,得a 21·2m+n -2=16a 21,∴m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114. 5.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9+9×(9-1)2×12=9+18=27.答案:276.已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________. 解析:由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,a 8=a 7-a 6=3,…,∴数列{a n }是周期为6的周期数列,而2 016=6×336,∴a 2 016=a 6=-1.答案:-17.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2,∴{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =1(2n -1)(2n +1)=12×⎝⎛⎭⎫12n -1-12n +1,∴数列{b n }的前n 项和T n =12×[⎝⎛⎭⎫11-13+(13-15)+…+⎝⎛⎭⎫12n -1-12n +1]=12×⎝⎛⎭⎫1-12n +1=n2n +1. 8.设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解:(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3. 又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n , 所以数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,而当n =2时,32-22-5×2+112=3=T 2,所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。
2019年高考数学文科二轮复习 教师用书 第3部分 考前增分策略 专题1 考前教材重温

专题一 考前教材重温 1.三角函数与平面向量1.α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=y x(x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.[应用1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. [答案] -152.同角三角函数的基本关系式及诱导公式.(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限.[应用2] cos 4+tan ⎝ ⎛⎭⎪⎫-6+sin 21π的值为________. [答案]22-333.正弦、余弦和正切函数的常用性质.[应用3] 函数y =sin ⎝⎭⎪⎫-2x +3的递减区间是________.[答案] ⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z ) 4.三角函数化简与求值的常用技巧.解答三角变换类问题要灵活地正用、逆用,变形运用和、差、倍角公式和诱导公式,进行化简、求值.常用到切割化弦、降幂、拆角拼角等技巧.如: α=(α+β)-β,2α=(α+β)+(α-β), α=12[(α+β)+(α-β)].α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4,α=⎝ ⎛⎭⎪⎫α+π4-π4. [应用4] 已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=1213,则cos ⎝⎛⎭⎪⎫α+π4=________. [答案] -56655.解三角形.(1)正弦定理:a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).注意:①正弦定理的一些变式:(i)a ∶b ∶c =sin A ∶sin B ∶sin C ;(ⅱ)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(ⅲ)a =2R sin A ,b =2R sin B ,c =2R sin C ;②已知三角形两边及一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解,要结合具体情况进行取舍.在△ABC 中,A >B ⇔sinA >sin B.(2)余弦定理:a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc等,常选用余弦定理判定三角形的形状.[应用5] 在△ABC 中,a =3,b =2,A =60°,则B =________. [答案] 45°6.求三角函数最值的常见类型、方法.(1)y =a sin x +b (或a cos x +b )型,利用三角函数的值域,须注意对字母a 的讨论. (2)y =a sin x +b sin x 型,借助辅助角公式化成y =a 2+b 2sin(x +φ)的形式,再利用三角函数有界性解决.(3)y =a sin 2x +b sin x +c 型,配方后转化为二次函数求最值,应注意|sin x |≤1的约束. (4)y =a sin x +bc sin x +d型,反解出sin x ,化归为|sin x |≤1解决.(5)y =a sin x +bc sin x +d型,化归为A sin x +B cos x =C 型或用数形结合法(常用到直线斜率的几何意义)求解.(6)y =a (sin x +cos x )+b sin x ·cos x +c 型,常令t =sin x +cos x ,换元后求解(|t |≤2).[应用6] 函数y =sin 2x +sin x -1的值域为________.[答案] ⎣⎢⎡⎦⎥⎤-54,1 7.向量的平行与平面向量的数量积.(1)向量平行(共线)的充要条件:a∥b (b ≠0)⇔a =λb ⇔(a·b )2=(|a||b |)2⇔x 1y 2-y 1x 2=0.(2)a·b =|a||b |cos θ,变形:|a |2=a 2=a·a ,cos θ=a·b|a||b |,a 在b 上的投影(正射影的数量)=a·b|b |.注意:〈a ,b 〉为锐角⇔a·b >0且a ,b 不同向; 〈a ,b 〉为钝角⇔a·b <0且a ,b 不反向.[应用7] 已知圆O 为△ABC 的外接圆,半径为2,若AB →+AC →=2AO →,且|OA →|=|AC →|,则向量BA →在向量BC →方向上的投影为________.[答案] 38.向量中常用的结论.(1)OA →=λOB →+μOC →(λ,μ为实数),若λ+μ=1,则三点A ,B ,C 共线; (2)在△ABC 中,若D 是BC 边的中点,则AD →=12(AB →+AC →);(3)已知O ,N ,P 在△ABC 所在平面内.若|OA →|=|OB →|=|OC →|,则O 为△ABC 的外心;若NA →+NB →+NC →=0,则N 为△ABC 的重心;若PA →·PB →=PB →·PC →=PC →·PA →,则P 为△ABC 的垂心. [应用8] 在△ABC 中,D 是AB 的中点,E 是AC 的中点,CD 与BE 交于点F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A.⎝ ⎛⎭⎪⎫12,12 B .⎝ ⎛⎭⎪⎫23,23 C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 [答案] C2.数列、不等式1.等差数列及其性质.(1)等差数列的判定:a n +1-a n =d (d 为常数)或a n +1-a n =a n -a n -1(n ≥2). (2)等差数列的性质①当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)·d =dn +a 1-d 是关于n 的一次函数,且斜率为公差d ;前n 项和S n =na 1+n n -2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 是关于n 的二次函数且常数项为0.②若公差d >0,则为递增等差数列;若公差d <0,则为递减等差数列;若公差d =0,则为常数列.③当m +n =p +q 时,则有a m +a n =a p +a q ,特别地,当m +n =2p 时,则有a m +a n =2a p . ④S n ,S 2n -S n ,S 3n -S 2n 成等差数列.[应用1] 已知等差数列{a n }的前n 项和为S n ,且S 10=12,S 20=17,则S 30为( ) A .15 B .20 C.25 D .30[答案] A 2.等比数列及其性质.(1)等比数列的判定:a n +1a n =q (q 为常数,q ≠0)或a n +1a n =a na n -1(n ≥2). (2)等比数列的性质:当m +n =p +q 时,则有a m ·a n =a p ·a q ,特别地,当m +n =2p 时,则有a m ·a n =a 2p . [应用2] (1)在等比数列{a n }中,a 3+a 8=124,a 4a 7=-512,公比q 是整数,则a 10=________. (2)各项均为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+…+log 3a 10=________.[答案] (1)512 (2)10 3.求数列通项的常见类型及方法.(1)已知数列的前几项,求数列的通项公式,可采用归纳、猜想法.(2)如果给出的递推关系式符合等差或等比数列的定义,可直接利用等差或等比数列的公式写出通项公式.(3)若已知数列的递推公式为a n +1=a n +f (n ),可采用累加法. (4)数列的递推公式为a n +1=a n ·f (n ),则采用累乘法. (5)已知S n 与a n 的关系,利用关系式a n =⎩⎪⎨⎪⎧S 1n =,S n -S n -1n ,求a n .(6)构造转化法:转化为等差或等比数列求通项公式.[应用3] 已知f (x )是定义在R 上不恒为零的函数,对于任意的x ,y ∈R ,都有f (xy )=xf (y )+yf (x )成立.数列{a n }满足a n =f (2n)(n ∈N *),且a 1=2,则数列{a n }的通项公式为a n =________. [答案] n ·2n4.数列求和的方法.(1)公式法:等差数列、等比数列求和公式; (2)分组求和法; (3)倒序相加法; (4)错位相减法; (5)裂项法; 如:1nn +=1n -1n +1;1nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k . (6)并项法;数列求和时要明确项数、通项,并注意根据通项的特点选取合适的方法.[应用4] 数列{a n }满足a n +a n +1=12(n ∈N ,n ≥1),若a 2=1,S n 是{a n }的前n 项和,则S 21的值为________. [答案] 925.如何解含参数的一元二次不等式.解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小,也是分大于、等于、小于三种情况.在解一元二次不等式时,一定要画出二次函数的图象,注意数形结合. [应用5] 解关于x 的不等式ax 2-(a +1)x +1<0(a >0).________________________________________________________________________________________________________________________________________ [解] 原不等式化为⎝ ⎛⎭⎪⎫x -1a (x -1)<0. ∴当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1<x <1a ; 当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1;当a =1时,不等式的解集为∅. 6.处理二次不等式恒成立的常用方法.(1)结合二次函数的图象和性质用判别式法,当x 的取值为全体实数时,一般应用此法. (2)从函数的最值入手考虑,如大于零恒成立可转化最小值大于零. (3)能分离变量的,尽量把参变量和变量分离出来. (4)数形结合,结合图形进行分析,从整体上把握图形.[应用6] 如果kx 2+2kx -(k +2)<0恒成立,则实数k 的取值范围是 ( ) A .-1≤k ≤0 B .-1≤k <0 C .-1<k ≤0 D .-1<k <0[答案] C7.利用基本不等式求最值必须满足三个条件才可以进行,即“一正,二定,三相等”.常用技巧:(1)对不能出现定值的式子进行适当配凑. (2)对已知条件的最值可代入(常数代换法)或消元.(3)当题中等号条件不成立时,可考虑从函数的单调性入手求最值. [应用7] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3 [答案] D8.解决线性规划问题有三步.(1)画:画出可行域(有图象).(2)变:将目标函数变形,从中抽象出截距或斜率或距离. (3)代:将合适的点代到原来目标函数中求最值. 利用线性规划思想能解决的几类值域(最值)问题: (1)截距型:如求z =y -x 的取值范围. (2)条件含参数型:①已知x ,y 满足约束条件⎩⎪⎨⎪⎧ x -2≤0,y -1≤0,x +2y +k ≥0,且z =y -x 的最小值是-4,则实数k =-2,②已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y +k ≥0,且存在无数组(x ,y )使得z =y +ax 取得最小值,则实数a =12.(3)斜率型:如求y +bx +a的取值范围. (4)距离型(圆半径平方型R 2):如求(x -a )2+(x -b )2的取值范围.[应用8] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a 等于( ) A .3 B .2 C.-2 D .-3[答案] B3.概率与统计1.随机抽样方法.简单随机抽样、系统抽样、分层抽样的共同点是抽样过程中每个个体被抽取的机会相等,且是不放回抽样.[应用1] 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福社区的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次抽取的总户数为________. [答案] 242.对于统计图表问题,求解时,最重要的就是认真观察图表,从中提取有用信息和数据.对于频率分布直方图,应注意的是图中的每一个小矩形的面积是数据落在该区间上的频率.茎叶图没有原始数据信息的缺失,但数据很大或有多组数据时,茎叶图就不那么直观、清晰了. [应用2] 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图1所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. [答案] 43.在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘小矩形底边中点的横坐标之和,众数是最高矩形的中点的横坐标.[应用3] 某公司为了解用户对其产品的满意度,随机调查了40个用户,根据用户满意度的评分制成频率分布直方图(如图2),则该地区满意度评分的平均值为________.图2[答案] 77.5 4.变量间的相关关系.假设我们有如下一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ).线性回归方程y ^=b ^x +a ^,[应用4] 回归直线y ^=b ^x +a ^必经过点________. [答案] (x ,y )5.互斥事件的概率公式P (A +B )=P (A )+P (B ).(1)公式适合范围:事件A 与B 互斥. (2)P (A )=1-P (A ).[应用5] 抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________.[答案] 236.古典概型.P (A )=mn(其中,n 为一次试验中可能出现的结果总数,m 为事件A 在试验中包含的基本事件个数).[应用6] 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4 B .0.6 C .0.8 D .1[答案] B7.几何概型.一般地,在几何区域D 内随机地取一点,记事件“该点在其内部一个区域d 内”为事件A ,则事件A 发生的概率为P (A )=d 的度量D 的度量.此处D 的度量不为0,其中“度量”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的度量分别为长度、面积和体积等.即P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.[应用7] 在棱长为2的正方体ABCD A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为 ( ) A.π12 B .1-π12C.π6D .1-π6[答案] B4.立体几何1.几何体的三视图排列规则:俯视图放在正视图下面,侧视图放在正视图右面,“长对正,高平齐,宽相等.”由几何体的三视图确定几何体时,要注意以下几点:(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体. (2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线.(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体.[应用1] 如图3,若一个几何体的正视图、侧视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________.图3[答案] 432.空间几何体表面积和体积的求法:几何体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,求几何体的体积常用公式法、割补法、等积变换法.[应用2] 如图4所示,一个空间几何体的正视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为 ( )图4A .4πB .3π C.2π D.32π [答案] D3.空间平行问题的转化关系.图5平行问题的核心是线线平行,证明线线平行的常用方法有:三角形的中位线、平行线分线段成比例(三角形相似)、平行四边形等.[应用3] 判断下列命题是否正确,正确的在括号内画“√”号,错误的画“×”号. (1)如果a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面.( ) (2)如果直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行.( ) (3)如果直线a ,b 和平面α满足a ∥α,b ∥α,那么a ∥b .( ) (4)如果直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,那么b ∥α.( ) [答案] (1)× (2)× (3)× (4)√ 4.空间垂直问题的转化关系.线面垂直的判定线面垂直的定义面面垂直的判定面面垂直的性质垂直问题的核心是线线垂直,证明线线垂直的常用方法有:等腰三角形底边上的中线、勾股定理、平面几何方法等.[应用4] 已知两个平面垂直,下列命题:①一个平面内已知直线必垂直于另一个平面内的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确命题的个数是( ) A .3 B .2 C.1 D .0[答案] C5.多面体与球接、切问题的求解策略.(1)涉及球与棱柱、棱锥的接、切问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.[应用5] 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( ) A .96 3 B .16 3 C.24 3 D .48 3[答案] D5.平面解析几何1.直线的倾斜角与斜率.(1)倾斜角的范围为[0,π). (2)直线的斜率.①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的斜率为k =y 1-y 2x 1-x 2(x 1≠x 2);③直线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC .[应用1] 直线x cos θ+3y -2=0的倾斜角的范围是________.[答案] ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π2.直线方程的五种形式.(1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线.(2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线.(3)两点式:已知直线经过P 1(x 1,y 1),P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标轴的直线.(4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +y b=1,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式.[应用2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. [答案] 5x -y =0或x +y -6=0 3.两条直线的位置关系.(1)若已知直线的斜截式方程,l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则: ①l 1∥l 2⇔k 1=k 2,且b 1≠b 2;②l 1⊥l 2⇔k 1·k 2=-1; ③l 1与l 2相交⇔k 1≠k 2.(2)若已知直线的一般方程l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0,则: ①l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0; ③l 1与l 2相交⇔A 1B 2-A 2B 1≠0;④l 1与l 2重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0.[应用3] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合.[答案] -1 12 m ≠3且m ≠-1 34.点到直线的距离及两平行直线间的距离.(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B2; (2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.[应用4] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. [答案]1513265.圆的方程.(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为12D 2+E 2-4F 的圆.[应用5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. [答案] -16.直线与圆的位置关系的判断.(1)几何法:根据圆心到直线的距离d 与圆半径r 的大小关系来判定.(2)代数法:将直线方程代入圆的方程消元得一元二次方程,根据Δ的符号来判断. [应用6] 已知圆C :(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,直线3x +4y +2=0与圆C 相切,则该圆的方程为 ( ) A .(x -1)2+y 2=6425B .x 2+(y -1)2=6425C .(x -1)2+y 2=1 D .x 2+(y -1)2=1[答案] C7.圆锥曲线的定义和性质.4|OF |,△MFO 的面积为43,则抛物线方程为( ) A .y 2=6x B .y 2=8x C .y 2=16x D .y 2=152x[答案] B8.(1)在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意二次项的系数是否为零,利用解的情况可判断位置关系:有两解时相交;无解时相离;有唯一解时,在椭圆中相切,在双曲线中需注意直线与渐近线的关系,在抛物线中需注意直线与对称轴的关系,而后判断是否相切.(2)直线与圆锥曲线相交时的弦长问题:斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=+k2x 1+x 22-4x 1x 2]或|P 1P 2|=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].(3)过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于C (x 1,y 1),D (x 2,y 2),则①焦半径|CF |=x 1+p2;②弦长|CD |=x 1+x 2+p ;③x 1x 2=p 24,y 1y 2=-p 2.[应用8] 已知抛物线的方程为y 2=2px (p >0),过抛物线上一点M (p ,2p )和抛物线的焦点F 作直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( ) A .1∶ 2 B .1∶ 3 C.1∶2 D .1∶3[答案] C6.函数与导数1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数,列不等式时,应列出所有的不等式,不应遗漏.对抽象函数,只要对应关系相同,括号里整体的取值范围就完全相同. [应用1] 函数f (x )=11-x +lg(1+x )的定义域是________.[答案] (-1,1)∪(1,+∞)2.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.[应用2] 已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .⎝⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12D.⎝ ⎛⎭⎪⎫0,12[答案] C3.求函数最值(值域)常用的方法.(1)单调性法:适合于已知或能判断单调性的函数. (2)图象法:适合于已知或易作出图象的函数. (3)基本不等式法:特别适合于分式结构或两元的函数. (4)导数法:适合于可导函数. (5)换元法(特别注意新元的范围). (6)分离常数法:适合于一次分式.[应用3] 函数y =2x2x +1(x ≥0)的值域为________.[答案] ⎣⎢⎡⎭⎪⎫12,1 4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.[应用4] f (x )=-x2|x 2-2|-2是________函数.(填“奇”“偶”或“非奇非偶”).[答案] 偶 5.函数奇偶性的性质.(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. (2)若f (x )为偶函数,则f (-x )=f (x )=f (|x |).(3)若奇函数f (x )的定义域中含有0,则必有f (0)=0.“f (0)=0”是“f (x )为奇函数”的既不充分也不必要条件.[应用5] 设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为 ( )A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数 [答案] D6.判断函数单调性的常用方法.(1)能画出图象的,一般用数形结合法去观察.(2)由基本初等函数通过加减运算或复合而成的函数,常转化为基本初等函数单调性判断问题.(3)对于解析式较复杂的,一般用导数. (4)对于抽象函数,一般用定义法.[应用6] 函数y =|log 2|x -1||的递增区间是________. [答案] [0,1),[2,+∞)7.有关函数周期的几种情况必须熟记:(1)f (x )=f (x +a )(a >0),则f (x )的周期T =a ;(2)f (x +a )=1f x(f (x )≠0)或f (x +a )=-f (x ),则f (x )的周期T =2a .[应用7] 设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝ ⎛⎭⎪⎫52=________.[答案] -18.函数图象的几种常见变换.(1)平移变换:左右平移——“左加右减”(注意是针对x 而言);上下平移——“上加下减”.(2)翻折变换:f (x )→|f (x )|;f (x )→f (|x |).(3)对称变换:①证明函数图象的对称性,即证图象上任意点关于对称中心(轴)的对称点仍在图象上;②函数y =f (x )与y =-f (-x )的图象关于原点成中心对称;③函数y =f (x )与y =f (-x )的图象关于直线x =0(y 轴)对称;函数y =f (x )与函数y =-f (x )的图象关于直线y =0(x 轴)对称.[应用8] 函数y =3xx -1的对称中心是________. [答案] (1,3)9.如何求方程根的个数或范围.求f (x )=g (x )根的个数时,可在同一坐标系中作出函数y =f (x )和y =g (x )的图象,看它们交点的个数;求方程根(函数零点)的范围,可利用图象观察或零点存在性定理. [应用9] 函数f (x )=ln(x +1)-2x的零点所在的大致区间是 ( )A .(0,1)B .(1,2) C.(2,e) D .(3,4)[答案] B 10.二次函数问题.(1)处理二次函数的问题勿忘数形结合.二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.(2)若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[应用10] 若关于x 的方程ax 2-x +1=0至少有一个正根,则a 的取值范围为________. [答案] ⎝ ⎛⎦⎥⎤-∞,1411.利用导数研究函数单调性的步骤.(1)确定函数y =f (x )的定义域. (2)求导数y ′=f ′(x ).(3)解方程f ′(x )=0在定义域内的所有实根.(4)将函数y =f (x )的间断点(即函数无定义点)的横坐标和各个实数根按从小到大的顺序排列起来,分成若干个小区间.(5)确定f ′(x )在各个小区间内的符号,由此确定每个区间的单调性. 特别提醒:(1)多个单调区间不能用“∪”连接;(2)f (x )为减函数时f ′(x )≤0恒成立,但要验证f ′(x )是否恒等于0.[应用11] 函数f (x )=ax 3-2x 2+x -1在R 上是增函数,则a 的取值范围是________.[答案] ⎣⎢⎡⎭⎪⎫43,+∞ 12.导数为零的点并不一定是极值点,例如:函数f (x )=x 3,有f ′(0)=0,但x =0不是极值点.[应用12] 函数f (x )=14x 4-13x 3的极值点是________.[答案] x =113.利用导数解决不等式问题的思想.(1)证明不等式f (x )<g (x ),可构造函数h (x )=f (x )-g (x ),再证明h (x )max <0. (2)不等式恒成立问题可利用分离参数法或直接求含参数的函数的最值.[应用13] 已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.[答案] ⎣⎢⎡⎭⎪⎫43,+∞7.集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[应用1] 已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则实数a =________. [答案] 02.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =f (x )}——函数的定义域;{y |y =f (x )}——函数的值域;{(x ,y )|y =f (x )}——函 数图象上的点集. [应用2] 已知集合M ={y |y =x 2+1,x ∈R },N ={y |y =x +1,x ∈R },则M ∩N 等于( ) A .(0,1),(1,2) B .{(0,1),(1,2)} C .{y |y =1,或y =2} D .{y |y ≥1} [答案] D3.在解决集合间的关系和集合的运算时,不能忽略空集的情况.[应用3] 已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是 ________. [答案] (-∞,4]4.注重数形结合在集合问题中的应用,列举法常借助Venn 图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[应用4] 已知全集I =R ,集合A ={x |y =1-x },集合B ={x |0≤x ≤2},则(∁I A )∪B 等于( ) A .[1,+∞) D .(1,+∞) C .[0,+∞) D .(0,+∞)[答案] C5.命题“若p ,则q ”的否命题是“若綈p ,则綈q ”,而此命题的否定(非命题)是“若p ,则綈q ”.[应用5] 已知实数a ,b ,若|a |+|b |=0,则a =b .该命题的否命题和命题的否定分别是____________________________________________________________. [答案] 否命题:已知实数a ,b ,若|a |+|b |≠0,则a ≠b ;命题的否定:已知实数a ,b ,若|a |+|b |=0,则a ≠b6.根据集合间的关系,判定充要条件,若A ⊆B ,则x ∈A 是x ∈B 的充分条件;若A B ,则x ∈A 是x ∈B 的充分不必要条件. [应用6] 已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是 ( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1][答案] B7.全称命题的否定是特称命题,特称命题的否定是全称命题;对命题进行否定时要正确对判断词进行否定,如“>”的否定是“≤”,“都”的否定是“不都”. [应用7] 命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 [答案] D8.求参数范围时,要根据条件进行等价转化,注意范围的临界值能否取到,也可与补集思想联合使用.[应用8] 已知命题p :∃x 0∈R ,ax 20+x 0+12≤0.若命题p 是假命题,则实数a 的取值范围是________.[答案] ⎝ ⎛⎭⎪⎫12,+∞ 8.推理与证明、复数、算法1.归纳推理和类比推理.共同点:两种推理的结论都有待于证明.不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理. [应用1] (1)若数列{a n }是等差数列,b n =a 1+a 2+…+a nn,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,{d n }也是等比数列,则{d n }的表达式应为( ) A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n =n c n 1+c n 2+…+c n nD .d n =n c 1·c 2·…·c n(2)若数列{a n }的通项公式为a n =1n +2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________.[答案] (1)D (2)n +22n +22.证明方法:综合法由因导果,分析法执果索因.反证法是常用的间接证明方法,利用反证法证明问题时一定要理解结论的含义,正确进行反设.[应用2] 用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设________________________________________________________.[答案] 三角形三个内角都大于60°3.复数的概念.对于复数a +b i(a ,b ∈R ),a 叫做实部,b 叫做虚部;当且仅当b =0时,复数a +b i(a ,b ∈R )是实数a ;当b ≠0时,复数a +b i 叫做虚数;当a =0且b ≠0时,复数a +b i 叫做纯虚数.[应用3] 若复数z =lg(m 2-m -2)+i·lg(m 2+3m +3)为实数,则实数m 的值为________.[答案] -24.复数的运算法则与实数运算法则相同,主要是除法法则的运用,另外复数中的几个常用结论应记熟:(1)(1±i)2=±2i;(2)1+i 1-i =i ;1-i 1+i=-i ;(3)i 4n =1;i 4n +1=i ;i 4n +2=-1;i 4n +3=-i ;i 4n +i 4n +1+i 4n +2+i 4n +3=0;(4)设ω=-12±32i ,则ω0=1;ω2=ω;ω3=1;1+ω+ω2=0. [应用4] 已知复数z =1-3i 3+i,z 是z 的共轭复数,则|z |=________. [答案] 15.(1)循环结构中几个常用变量:①计数变量:用来记录某个事件发生的次数,如i =i +1.②累加变量:用来计算数据之和,如s =s +i .③累乘变量:用来计算数据之积,如p =p ×i .(2)处理循环结构的框图问题,关键是理解认清终止循环结构的条件及循环次数.[应用5] (2016·衡水中学七调改编)执行如图6的程序框图,输出S 的值为________.[答案] 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1 函数与导数一、函数1.函数的三要素是什么?定义域、值域和对应关系是函数的三要素,是一个整体,研究函数问题时必须“定义域优先”. 2.求函数的定义域应注意什么?求函数的定义域时,若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组).在实际问题中,除要考虑解析式有意义外,还要使实际问题有意义.已知f (x )的定义域是[a ,b ],求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ].3.判断函数的单调性有哪些方法?单调性是函数在其定义域上的局部性质.常见判定方法:①定义法,取值、作差、变形、定号,其中变形是关键,常用的方法有通分、配方、因式分解;②图象法;③复合函数的单调性遵循“同增异减”的原则;④导数法.4.函数的奇偶性有什么特征?奇偶性的特征及常用结论:①若f (x )是奇函数,0在其定义域内,则f (0)=0.②f (x )是偶函数⇔f (x )的图象关于y 轴对称;f (x )是奇函数⇔f (x )的图象关于原点对称.③奇函数在对称(关于原点对称)的单调区间内有相同的单调性;偶函数在对称(关于原点对称)的单调区间内有相反的单调性.④若f (x+a )为奇函数,则f (x )的图象关于点(a ,0)对称;若f (x+a )为偶函数,则f (x )的图象关于直线x=a 对称.5.指数函数、对数函数的图象与性质有哪些?指数函数与对数函数的图象和性质:指数函数y=a x对数函数y=log a x图象性质当0<a<1时,函数在R 上单调递减; 当a>1时,函数在R 上单调递增 当0<a<1时,函数在(0,+∞)上单调递减; 当a>1时,函数在(0,+∞)上单调递增0<a<1, 当x>0时,0<y<1; 当x<0时,y>10<a<1, 当x>1时,y<0; 当0<x<1时,y>0a>1,当x>0时,y>1; 当x<0时,0<y<1 a>1,当x>1时,y>0; 当0<x<1时,y<06.函数图象的推导应注意哪些?探寻函数图象与解析式之间的对应关系的方法:(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性方面,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.(2)知式选图:①从函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从函数的奇偶性,判断图象的对称性;④从函数的周期性,判断图象的循环往复.7.确定函数零点的常用方法有哪些?函数零点个数的判断方法:(1)直接法:令f (x )=0,则方程解的个数为函数零点的个数.(2)零点存在性定理:利用该定理不仅要求曲线f (x )在[a ,b ]上是连续的,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个函数的图象,然后通过数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.二、导数1.如何利用导数的方法研究函数的单调性?利用导数研究函数的单调性有什么应用? 在某个区间(a ,b )内,如果f'(x )>0(f'(x )<0),那么函数y=f (x )在这个区间内单调递增(单调递减).利用导数研究函数单调性的应用:(1)利用导数判断函数的图象.(2)利用导数解不等式.(3)求参数的取值范围:①y=f (x )在(a ,b )上单调,则(a ,b )是相应单调区间的子集.②若函数单调递增,则f'(x )≥0;若函数单调递减,则f'(x )≤0.2.如何判断函数的极值?如何确定函数的最值?当f'(x 0)=0时,若在x 0附近左侧f'(x )>0,右侧f'(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f'(x )<0,右侧f'(x )>0,则f (x 0)为函数f (x )的极小值.将函数y=f (x )在[a ,b ]上的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.3.利用导数可以解决哪些不等式问题? (1)利用导数证明不等式:证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果能证明F (x )在(a ,b )上的最大值小于0,那么可以证明f (x )<g (x ),x ∈(a ,b ).(2)利用导数解决不等式的“恒成立”与“存在性”问题:①f (x )>g (x )对一切x ∈I 恒成立⇔I 是f (x )>g (x )的解集的子集⇔[f (x )-g (x )]min >0(x ∈I ); ②∃x ∈I ,使f (x )>g (x )成立⇔I 与f (x )>g (x )的解集的交集不是空集⇔[f (x )-g (x )]max >0(x ∈I ); ③对∀x 1,x 2∈I ,f (x 1)≤g (x 2)⇔f (x )max ≤g (x )min ; ④对∀x 1∈I ,∃x 2∈I ,f (x 1)≥g (x 2)⇔f (x )min ≥g (x )min .函数是一条主线,贯穿于整个高中数学,导数是重要的解题工具,是解决函数问题的利器,因此,函数与导数在高考数学中的地位不言而喻.本专题内容也是高考中重要的考点之一,从近年高考的命题情况来看,本专题在高考分值中占20%左右,试题的易、中、难比例相当,选择题、填空题和解答题均有考查.一、选择题和填空题的命题特点(一)考查函数图象的判断及简单应用.试题难度中档,综合考查函数的解析式、定义域、值域及单调性、奇偶性等性质的综合.1.(2018·全国Ⅱ卷·文T3改编)函数f (x )=5x-5-xx 2的图象大致为( ).解析▶∵f(x)的定义域为(-∞,0)∪(0,+∞),且f(-x)=5-x-5x=-f(x),∴f(x)是奇函数,其图象关于原点对称,排除A;x2又当x>0时,5x>1>5-x,∴f(x)>0,排除D;f(2)>1,排除C.故选B.答案▶ B的部分图象大致为().2.(2017·全国Ⅰ卷·文T8改编)函数y=sin2x1+cosx解析▶因为函数为奇函数,所以其图象关于原点对称,所以选项C,D错误;又当x=0时,y=0,所以选项B错误.故选A.答案▶ A(二)考查函数的基本性质及简单应用.试题难度中档,综合考查函数的奇偶性、单调性、周期性及图象的推理能力等.3.(2018年·全国Ⅱ卷·文T12改编)已知f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(2018)=().A.-2018B.0C.2D.50解析▶∵f(x)是奇函数,且f(1-x)=f(1+x),∴f(1-x)=f(1+x)=-f(x-1),f(0)=0,∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),即函数f(x)是周期为4的周期函数.∵f(1)=2,∴f(2)=f(0)=0,f(3)=-f(1)=-2,f(4)=f(0)=0,∴f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,∴f(1)+f(2)+f(3)+…+f(2018)=504[f(1)+f(2)+f(3)+f(4)]+f(2017)+f(2018)=f(1)+f(2)=2+0=2.故选C.答案▶ C(三)考查基本初等函数的性质及应用.试题难度较大,综合考查基本初等函数的性质与图象.4.(2018·全国Ⅲ卷·文T16改编)已知函数f(x)=log2(√1+x2-x)+2,f(a)=3,则f(-a)=.解析▶因为f(x)log=2(√1+x2-x)+2,所以f(x)+f(-x)=log2(√1+x2-x)+2+log2[√1+(-x)2-(-x)]+2=log2(1+x2-x2)+4=4.因为f(a)=3,所以f(-a)=4-f(a)=4-3=1.答案▶ 15.(2018·全国Ⅰ卷·文T13改编)已知函数f(x)=log3(x2+a),若f(2)=1,则a=.解析▶∵f(2)=1,log∴3(4+a)=1,∴4+a=3,∴a=-1.答案▶-16.(2017·全国Ⅱ卷·文T8改编)函数y=ln(-x2+2x+3)的单调递减区间是().A.(-1,1]B.[1,3)C.(-∞,1]D.[1,+∞)解析▶令t=-x2+2x+3,由t>0,求得-1<x<3,故函数的定义域为(-1,3),且y=ln t,故本题为求函数t=-x2+2x+3在定义域内的单调递减区间.利用二次函数的性质求得t=-(x-1)2+4在定义域内的单调递减区间为[1,3),故选B.答案▶ B(四)考查函数零点的判断及应用,同时考查函数与方程的思想、转化思想及数形结合思想,试题难度较大.7.(2017·全国Ⅲ卷·文T12改编)已知函数f(x)=x2-4x+a(10x-2+10-x+2)有唯一零点,则a=().A.4B.3C.2D.-2解析▶函数f(x)有唯一零点等价于方程4x-x2=a(10x-2+10-x+2)有唯一解,等价于函数y=4x-x2的图象与y=a(10x-2+10-x+2)的图象只有一个交点.当a=0时,f(x)=x2-4x,此时函数有两个零点,矛盾;当a<0时,由于y=4x-x2在(-∞,2)上单调递增,在(2,+∞)上单调递减,且y=a(10x-2+10-x+2)在(-∞,2)上单调递增,在(2,+∞)上单调递减,所以函数y=4x-x2的图象的最高点为A(2,4),y=a(10x-2+10-x+2)的图象的最高点为B(2,2a),由于2a<0<4,所以此时函数y=4x-x2的图象与y=a(10x-2+10-x+2)的图象不可能只有1个交点,矛盾;当a>0时,由于y=4x-x2在(-∞,2)上单调递增,在(2,+∞)上单调递减,且y=a(10x-2+10-x+2)在(-∞,2)上单调递减,在(2,+∞)上单调递增,所以函数y=4x-x2的图象的最高点为A(2,4),y=a(10x-2+10-x+2)的图象的最低点为B(2,2a),由题意可知点A与点B重合时满足条件,即2a=4,解得a=2,符合条件.故选C.答案▶ C(五)考查导数的几何意义及简单的导数计算.导数的几何意义一直是高考的热点和重点,试题综合考查导数的计算及直线方程的知识,难度较小.8.(2018·全国Ⅰ卷·文T6改编)设函数f(x)=x3+(a+1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为.解析▶因为函数f(x)是奇函数,所以a+1=0,解得a=-1,所以f(x)=x3-x,f'(x)=3x2-1,所以f'(0)=-1,所以曲线y=f(x)在点(0,0)处的切线方程为y=-x.答案▶y=-x二、解答题的命题特点在全国卷中,函数与导数的综合试题一般为第21题,是全卷的压轴题.试题难度较大,综合性强,主要考查函数单调性的判断,函数零点个数的判断,极(最)值的应用,恒成立问题,不等式的证明等. 1.(2018·全国Ⅰ卷·文T21改编)已知函数f (x )=a e x+ln x+1. (1)设x=2是f (x )的极值点,求a ,并求f (x )的单调区间; (2)证明:当a ≤-1e时,f (x )≤0.解析▶ (1)f (x )的定义域为(0,+∞),f'(x )=ea x+1x.由题设知,f'(2)=0,所以a=-12e 2. 从而f (x )=-12e 2e x+ln x+1, 则f'(x )=-12e 2e x +1x. 当0<x<2时,f'(x )>0;当x>2时,f'(x )<0.所以f (x )在(0,2)上单调递增,在(2,+∞)上单调递减. (2)当a ≤-1e时,f (x )≤-e x e+ln x+1. 设g (x )=-e xe +ln x+1,则g'(x )=-e x e +1x .当0<x<1时,g'(x )>0;当x>1时,g'(x )<0. 所以x=1是g (x )的最大值点. 故当x>0时,g (x )≤g (1)=0. 因此,当a ≤-1e时,f (x )≤0.2.(2017·全国Ⅰ卷·文T21改编)已知函数f (x )=e x(e x-a )-a 2x ,其中参数a ≤0.(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.解析▶ (1)f'(x )=e22x-ea x -a 2=(e2x +a )e (x-a ).①若a=0,则f (x )=e 2x ,其在R 上单调递增. ②若a<0,则由f'(x )=0,得x=ln (-a2).当x ∈(-∞,ln (-a 2))时,f'(x )<0;当x ∈(ln (-a 2),+∞)时,f'(x )>0. 故f (x )在(-∞,ln (-a 2))上单调递减,在(ln (-a 2),+∞)上单调递增. (2)①当a=0时,f (x )=e 2x≥0恒成立.②若a<0,则由(1)得,当x=ln (-a 2)时,f (x )取得最小值,最小值为f (ln (-a 2))=a 2[34-ln (-a2)],故当且仅当a2[34-ln (-a2)]≥0,即a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].1.识别函数图象的常用方法:(1)直接法:直接求出函数的解析式并画出其图象.(2)特例排除法,例如,根据已知函数的图象或已知函数的解析式,取特殊点,判断各选项的图象是否经过该特殊点.(3)性质(单调性、奇偶性、过定点等)验证法.(4)较复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.2.函数性质综合问题的常见类型及解题策略:(1)单调性与奇偶性结合.解决此类问题要注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.3.对于函数零点(方程的根)的确定问题,高考常从以下几个方面进行考查:(1)函数零点值大致所在区间的确定;(2)零点个数的确定;(3)两个函数图象交点的横坐标或有几个交点的确定.解决此类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两边对应的函数类型不同的方程多以数形结合法求解.4.利用导数的几何意义解题主要是利用导数、切点坐标、切线斜率之间的关系来转化,关键是求出切点的坐标.5.利用导数研究函数的单调性:(1)已知函数解析式求单调区间,实质上是求f'(x)>0,f'(x)<0的解集,求单调区间应遵循定义域优先的原则;(2)含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性;(3)注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.6.利用导数研究函数极值、最值的方法:(1)若求极值,则先求方程f'(x)=0的根,再检查f'(x)在方程根的左右函数值的符号;(2)若已知极值大小或存在情况,则转化为已知方程f'(x)=0根的大小或存在情况来求解;(3)求函数f(x)在闭区间[a,b]上的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值.01函数的基本性质与基本初等函数1.函数f(x)=2√1-x+lg(3x+1)的定义域是().A.(-13,1)B.(-13,+∞)C.(-13,13]D.(-∞,-13)解析▶若函数f(x)有意义,则{3x+1>0, 1-x>0,所以-13<x<1,故函数f(x)的定义域为(-13,1).故选A.答案▶ A2.若函数f (x )={e x -1,x ≤1,5-x 2,x >1,则f (f (2))=( ).A .1B .4C .0D .5-e 2解析▶ 由题意知,f (2)=5-4=1,f (1)e=0=1,所以f (f (2))=1.故选A .答案▶ A3.已知定义在R 上的函数f (x )=2-|x|,记a=f (log 0.53),b=f (log 25),c=f (0),则a 、b 、c 的大小关系是( ).A .a<b<cB .c<b<aC .a<c<bD .b<a<c解析▶ 易知f (x )=2-|x|是偶函数,且在[0,+∞)上单调递减,又f (log 0.53)=f (-log 23)=f (log 23),而log 25>log 23>0,∴f (log 25)<f (log 23)<f (0),即b<a<c.故选D . 答案▶ D4.设偶函数f (x )对任意x ∈R ,都有f (x+3)=-1f(x),且当x ∈[-3,-2]时,f (x )=4x ,则f (2018)= .解析▶ 由条件可得f (x+6)=f (x ), 所以函数f (x )的周期为6,所以f (2018)=f (6×336+2)=f (2)=f (-2)=-8. 答案▶ -8能力1 ▶ 会求函数的定义域及函数值【例1】 (1)函数y=lg(1-x 2)2x 2-3x -2的定义域为( ).A .(-∞,1]B .[-1,1]C .(-1,-12)∪(-12,1) D .[-1,-12)∪(-12,1] (2)设函数f (x )={x 2+x -2,x ≤1,-lgx,x >1,则f (f (-4))= .解析▶ (1)由题意知{1-x 2>0,2x 2-3x -2≠0,即{-1<x <1,x ≠2且x ≠-12.所以函数的定义域为(-1,-12)∪(-12,1). (2)f (f (-4))=f (16-4-2)=f (10)=-1. 答案▶ (1)C (2)-1(1)函数的定义域是使解析式有意义的自变量的集合,求函数定义域只需构建不等式(组)求解即可;(2)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值;(3)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.1.函数y=lg (x-3)+√4-x的定义域为 .解析▶ 由题意知{x -3>0,4-x >0,解得3<x<4,∴函数的定义域为(3,4).答案▶ (3,4)2.已知函数f (x )={2x +1,x ≤1,log 2(x -1),x >1,则f (f (2))= .解析▶ ∵f (2)log=2(2-1)=0,∴f (f (2))=f (0)=20+1=2.答案▶ 23.已知函数f (x )={3x +1,x <1,ax 2-x,x ≥1,若f (f (0))=2,则实数a 的值为 .解析▶ f (0)=30+1=2,f (2)=4a-2,由4a-2=2得a=1.答案▶ 1能力2 ▶ 会利用函数的单调性求参数的值或范围【例2】 (1)若函数f (x )={(a -2)x -1,x ≤1,log a x,x >1在R 上单调递增,则a 的取值范围为( ).A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)(2)已知函数f (x )={x 3,x ≥0,-x 3,x <0,若f (3a-1)≥8f (a ),则a 的取值范围是 .解析▶ (1)∵f (x )在R 上单调递增, ∴{a >1,a -2>0,(a -2)×1-1≤log a 1,∴2<a ≤3,故选C . (2)由题意得函数f (x )为偶函数,且当x<0时,函数单调递减,当x ≥0时,函数单调递增. 原不等式可化为f (|3a-1|)≥f (|2a|),∴|3a-1|≥|2a|,两边平方整理得5a2-6a+1≥0,解得a≤15或a≥1.∴a的取值范围是(-∞,15]∪[1,+∞).答案▶(1)C(2)(-∞,15]∪[1,+∞)(1)对于分段函数的单调性,应考虑各段的单调性,且要注意分界点处的函数值的大小;(2)对于抽象函数不等式,应根据函数的单调性去掉“f”,转化成解不等式,要注意函数定义域的运用.1.设函数f(x)={2x-a,x≤1,log a x,x>1(a>0且a≠1),若f(x)在R上是增函数,则a的取值范围是.解析▶若f(x)在R上是增函数,则有{a>1,2-a≤0,∴a≥2.答案▶[2,+∞)2.已知奇函数f(x)为R上的减函数,若f(3a2)+f(2a-1)≥0,则a的取值范围是.解析▶若f(3a2)+f(2a-1)≥0,则f(3a2)≥-f(2a-1),已知函数f(x)为奇函数,则不等式等价于f(3a2)≥f(-2a+1),又函数f(x)在R上单调递减,则3a2≤-2a+1,即3a2+2a-1≤0,所以a的取值范围是[-1,13].答案▶[-1,13]能力3▶会综合利用函数的基本性质【例3】(1)已知定义在R上的函数f(x)满足:对任意实数x都有f(x+3)=f(x-3),f(-x)=f(x),且当x∈[-3,0]时,f(x)=lo g12(6+x),则f(2018)的值为().A.-3B.-2C.2D.3(2)已知函数f(x)是奇函数,当x>0时,f(x)=a x(a>0且a≠1),且f(lo g124)=-3,则a的值为.解析▶(1)对任意实数x都有f(x+3)=f(x-3),则函数f(x)的周期是6,又f(-x)=f(x),所以函数f(x)为偶函数,则f(2018)=f(2),根据奇偶性得到f(2)=f(-2)=-2.故选B.(2)∵奇函数f(x)满足f(lo g124)=-3,而lo g124=-2<0,∴f(-2)=-3,即f(2)=3.又∵当x>0时,f(x)=a x(a>0且a≠1),∴f(2)=a2=3,解得a=√3.答案▶(1)B(2)√3函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,其中奇偶性多与单调性结合,而周期性多与抽象函数结合,并结合奇偶性求函数值.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律.因此,在解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.1.已知偶函数f(x)在[0,+∞)上单调递增,若f(2)=-2,则满足f(x-1)≥-2的x的取值范围是().A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.[-1,3]D.(-∞,-2]∪[2,+∞)解析▶由题意知偶函数f(x)在[0,+∞)上单调递增,若f(2)=-2,则f(x-1)≥-2⇔f(x-1)≥f(2)⇔f(|x-1|)≥f(2),即|x-1|≥2,解得x≤-1或x≥3.故选B.答案▶ B2.设函数f(x)是以2为周期的奇函数,已知当x∈(0,1)时,f(x)=2x,则f(x)在(2017,2018)上是().A.增函数,且f(x)>0B.减函数,且f(x)<0C.增函数,且f(x)<0D.减函数,且f(x)>0解析▶∵函数f(x)的周期是2,∴函数f(x)在(2017,2018)上的单调性和(-1,0)上的单调性相同.∵当x∈(0,1)时,f(x)=2x为增函数,函数f(x)为奇函数,∴当x∈(-1,0)时,f(x)为增函数.∵当x∈(0,1)时,f(x)=2x>0,∴当x∈(-1,0)时,f(x)<0,∴当x∈(2017,2018)时,f(x)<0,即f(x)在(2017,2018)上是增函数,且f(x)<0,故选C.答案▶ C能力4▶会借助函数的基本性质解决与基本初等函数有关的问题【例4】(1)若a,b,c满足2a=3,b=log25,3c=2,则().A.c<a<bB.b<c<aC.a<b<cD.c<b<a(2)已知f(x)=x3+3x,a=20.3,b=0.32,c=log20.3,则().A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C .f (c )<f (b )<f (a )D .f (b )<f (a )<f (c ) 解析▶ (1)因为2a=3,3c=2,所以a=log 23,c=log 32.因为y=log 2x ,y=log 3x 是增函数, 所以log 25>log 23>log 22=log 33>log 32, 因此b>a>c ,故选A .(2)由指数函数的性质可得,1<a=20.3<21=2,0<b=0.32<0.30=1,由对数函数的性质可得,c=log 20.3<log 21=0,∴a>b>c.又∵f (x )=x 3+3x 在R 上单调递增,∴f (c )<f (b )<f (a ),故选C .答案▶ (1)A (2)C利用指数函数、对数函数及幂函数的性质比较实数或式子的大小时,一方面要比较两个实数或式子形式的异同;另一方面要注意特殊值的应用,有时候可以借助其“桥梁”作用,来比较大小.1.若x ∈(e -1,1),a=ln x ,b=(12)lnx ,c=e ln x,则( ).A .b>c>aB .c>b>aC .b>a>cD .a>b>c解析▶ e∵-1<x<1,∴-1<ln x<0.∴a=ln x<0,b=(12)lnx>1,c=e ln x =x ∈(e -1,1), ∴b>c>a.故选A .答案▶ A2.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ). A .f (13)<f (2)<f (12) B .f (12)<f (2)<f (13) C .f (12)<f (13)<f (2) D .f (2)<f (12)<f (13) 解析▶ ∵f (2-x )=f (x ),∴函数f (x )图象的对称轴为直线x=1. ∵当x ≥1时,f (x )=ln x ,∴f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增,故当x=1时,函数f (x )有最小值,离x=1越远,函数值越大,故选C .答案▶ C一、选择题1.下列函数中,与函数y=2x -2-x 的定义域、单调性与奇偶性均一致的函数是( ).A .y=sin xB .y=x 3C .y=(12)xD .y=log 2x解析▶ 原函数是定义域为R 的增函数,也是奇函数,所以A 、C 、D 错误,B 正确.故选B . 答案▶ B2.函数f (x )=√-x 2-3x+4lg(x+1)的定义域为( ).A .(-1,0)∪(0,1]B .(-1,1]C .(-4,-1]D .(-4,0)∪(0,1]解析▶ 由题意得{-x 2-3x +4≥0,x +1>0,x +1≠1,解得-1<x ≤1且x ≠0,所以函数f (x )的定义域为(-1,0)∪(0,1]. 故选A . 答案▶ A3.已知函数f (x )是定义域为R 的奇函数,当x ≤0时,f (x )=3x +a ,则f (2)的值为( ).A .89B .19C .-19D .-89解析▶ ∵函数f (x )是定义域为R 的奇函数,∴f (0)=30+a=0,解得a=-1. ∵f (-2)=3-2-1=-89, ∴f (2)=-f (-2)=89.故选A .答案▶ A4.设a=0.23,b=log 0.30.2,c=log 30.2,则a ,b ,c 的大小关系是( ).A .a>b>cB .b>a>cC .b>c>aD .c>b>a解析▶ 因为0<a=0.23<0.20=1,b log=0.30.2log>0.30.3=1,c log=30.2log<31=0,所以b>a>c ,故选B . 答案▶ B5.已知函数f (x )={x -2(x ≤1),lnx(x >1),那么函数f (x )的值域为( ).A .(-∞,-1)∪[0,+∞)B .(-∞,-1]∪(0,+∞)C .[-1,0)D .R解析▶ ∵y=x -2(x ≤1)的值域为(-∞,-1],y=ln x (x>1)的值域为(0,+∞),∴函数f (x )的值域为(-∞,-1]∪(0,+∞).故选B .答案▶ B6.若函数y=√a -a x (a>0且a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ).A .1B .2C .3D .4解析▶ 当x=1时,y=0,则函数在[0,1]上为减函数,故a>1.∴当x=0时,y=1,则√a -1=1,∴a=2.故log a 56+log a 485=log a (56×485)=log 28=3. 答案▶ C7.已知定义在R 上的奇函数f (x ),当x ≥0时,恒有f (x+2)=f (x ),且当x ∈[0,1]时,f (x )=e x -1,则f (-2017)+f (2018)=( ). A .0B .eC .e -1D .1-e解析▶ 由题意可知,函数f (x )是周期为2的奇函数,则f (2018)=f (2018-1009×2)=f (0)e=0-1=0,f (-2017)=-f (2017)=-f (2017-1008×2)=-f (1)=-e (1-1)=1-e ,据此可得f (-2017)+f (2018)=1-e .故选D .答案▶ D8.函数y=f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=(-x+a+1)log 2(x+2)+x+m ,其中a ,m 是常数,且a>0,若f (a )=1,则a-m=( ). A .-5B .5C .-1D .1解析▶ 函数y=f (x )是定义在R 上的奇函数.当x ≥0时,f (x )=(-x+a+1log )2(x+2)+x+m ,由f (0)=0⇒a+1+m=0,f (a )=1log ⇒2(a+2)+a+m=1log ⇒2(a+2)=2⇒a=2得m=-3,故a-m=5,故选B .答案▶ B9.若函数f (x )、g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ,则( ).A .f (-2)<f (-3)<g (-1)B .g (-1)<f (-3)<f (-2)C .f (-2)<g (-1)<f (-3)D .g (-1)<f (-2)<f (-3)解析▶ 由函数f (x )、g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )e=x,可得f (x )-2g (x )=e -x,解得f (x )=12(e x+e -x),g (x )=14(e x-e -x),可得g (-1)=14(1e -e)<0,f (-2)=12(e -2+e 2)>0,f (-3)=12(e -3+e 3)>0,f (-2)-f (-3)=12(e -1)(e -3-e 2)<0,所以g (-1)<f (-2)<f (-3). 答案▶ D 二、填空题10.设函数f (x )={log 3x,x >0,-2x +1,x ≤0,则f (f (-4))= .解析▶ f (f (-4))=f (9)log=39=2. 答案▶ 211.已知f (x )=ax-log 2(4x +1)是偶函数,则a= .解析▶ ∵f (x )=ax log-2(4x+1)是偶函数,∴f (1)=f (-1),即a-log 2(41+1)=-a-log 2(4-1+1),解得a=1. 答案▶ 112.若函数f (x )={x 2-5x,x ≥0,-x 2+ax,x <0是奇函数,则实数a 的值为 .解析▶ ∵f (x )为奇函数,∴f (-1)=-f (1),即-1-a=4,∴a=-5. 答案▶ -5 三、解答题13.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递减,且f (1)=0,求不等式f (log 4x )+f (lo g 14x )≥0的解集.解析▶ 因为log 14x=log-4x ,而f (x )为偶函数,所以f log (4x )+f log (14x )=2f log (4x ),故原不等式等价于f (log 4x )≥0,也就是f (log 4x )≥f (1), 所以f (|log 4x|)≥f (1),所以|log 4x|≤1, 所以-1≤log 4x ≤1,即14≤x ≤4.02函数的图象与函数的应用1.函数y=(13)|log 3x|的图象是().解析▶ 当x ≥1时,y=(13)|log 3x|=(13)log 3x =1x .当0<x<1时,y=(13)|log 3x|=3log 3x=x.∴y=(13)|log 3x|={1x,x ≥1,x,0<x <1,其图象为选项A 中的图象,故选A .答案▶ A2.函数f (x )=log 2x-1x的零点所在的区间为( ).A .(0,12) B .(12,1) C .(1,2)D .(2,3)解析▶ 函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数.∵f (12)=log 212-112=-1-2=-3<0, f (1)=log 21-11=0-1<0, f (2)=log 22-12=1-12=12>0, f (3)=log 23-13>1-13=23>0, ∴f (1)·f (2)<0,∴函数f (x )=log 2x-1x 的零点在区间(1,2)内,故选C .答案▶ C3.已知函数f (x )={-x 2+4x,x ≤2,log 2x -a,x >2有两个不同的零点,则实数a 的取值范围是( ).A .[-1,0)B .(1,2]C .(1,+∞)D .(2,+∞)解析▶ 当x ≤2时,由-x 2+4x=0,得x=0; 当x>2时,令f (x )=log 2x-a=0,得x=2a.又函数f (x )有两个不同的零点,∴2a >2,解得a>1,故选C .答案▶ C4.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元,设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于().A.6B.7C.8D.7或8解析▶盈利总额为21n-9-[2n+12×n(n-1)×3]=-32n2+412n-9,由于对称轴为直线n=416,所以当n=7时,盈利总额取最大值,故选B.答案▶ B能力1▶会识别函数的图象【例1】函数y=sin x+ln |x|在区间[-3,3]上的图象大致为().解析▶设f(x)=sin x+ln |x|,当x>0时,f(x)=sin x+ln x,则f'(x)=cos x+1x.当x∈(0,1)时,f'(x)>0,即函数f(x)在(0,1)上为单调递增函数,排除B;当x=1时,f(1)=sin 1>0,排除D;因为f(-x)=sin(-x)+ln |-x|=-sin x+ln |x|,所以f(-x)≠±f(x),所以函数f(x)为非奇非偶函数,排除C.故选A.答案▶ A【例2】函数y=sin x(1+cos 2x)在区间[-2,2]上的图象大致为().解析▶ 函数y=sin x (1+cos 2x )的定义域为[-2,2],其关于原点对称,且f (-x )=sin (-x )(1+cos 2x )=-sinx (1+cos 2x )=-f (x ),则f (x )为奇函数,其图象关于原点对称,排除D ;当0<x<1时,y=sin x (1+cos 2x )=2sin x cos 2x>0,排除C ;又2sin x cos 2x=0,可得x=π2或x=-π2或x=0,排除A ,故选B .答案▶ B函数图象的辨识主要从以下几个方面入手:(1)函数图象的对称性;(2)函数图象的单调性;(3)特殊点.1.函数f (x )={2x-1,x ≥0,-x 2-2x,x <0的图象大致是( ).解析▶ 当x ≥0时,f (x )=2x-1,根据指数函数g (x )=2x的图象向下平移一个单位,即可得到函数f (x )的图象.当x<0时,f (x )=-x 2-2x ,根据二次函数的图象与性质,可得到相应的图象.综上,函数f (x )的图象为选项D 中的图象. 答案▶ D 2.函数f (x )=1-x 2e x的图象大致是( ).解析▶因为f(-x)=1-x2e-x 与f(x)=1-x2e x不相等,所以函数f(x)=1-x2e x不是偶函数,其图象不关于y轴对称,所以可排除B,C.代入x=2,得f(x)<0,可排除A.故选D.答案▶ D能力2▶会利用函数图象解决函数的零点问题【例3】已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x∈[-1,0]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-log a(x+2)有4个零点,则实数a的取值范围是().A.(1,5)B.(1,5]C.(5,+∞)D.[5,+∞)解析▶由题意可知函数f(x)是周期为2的偶函数,结合当x∈[-1,0]时,f(x)=x2,绘制函数图象如图所示,函数g(x)有4个零点,则函数f(x)与函数y=log a(x+2)的图象在区间[-1,3]内有4个交点,结合函数图象可得,log a(3+2)≤1,解得a≥5,即实数a的取值范围是[5,+∞).答案▶ D【例4】定义在R上的奇函数f(x),当x≥0时,f(x)={1-2x,x∈[0,1),1-|x-3|,x∈[1,+∞),则关于x的函数F(x)=f(x)-a(0<a<1)的所有零点之和为().A.2a-1B.1-2-aC.-log2(1+a)D.log2(1-a)解析▶当x≥0时,f (x )={1-2x ,x ∈[0,1),x -2,x ∈[1,3),4-x,x ∈[3,+∞),又f (x )是奇函数,画出函数f (x )的图象,由函数f (x )图象和F (x )=0⇒f (x )=a (0<a<1),可知F (x )有五个零点,其中有两个零点关于直线x=-3对称,还有两个零点关于直线x=3对称,所以这四个零点的和为零,第五个零点是直线x=a 与函数y=(12)x -1,x ∈(-1,0]交点的横坐标,即方程a=(12)x -1的解,解得x=-log 2(1+a ),故选C .答案▶ C函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画出这两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.1.定义在R 上的偶函数f (x )满足f (x+1)=-f (x ),当x ∈[0,1]时,f (x )=-2x+1,设函数g (x )=(12)|x -1|(-1<x<3),则函数f (x )与g (x )的图象所有交点的横坐标之和为( ).A .2B .4C .6D .8解析▶ 因为f (x+1)=-f (x ),所以f (x )的周期为2.函数g (x )=(12)|x -1|关于直线x=1对称,作图可得四个交点的横坐标关于直线x=1对称,其和为2×2=4,故选B .答案▶ B2.函数f (x )={ln(-x -1),x <-1,2x +1,x ≥-1,若函数g (x )=f (f (x ))-a 有三个不同的零点,则实数a 的取值范围是( ).A .[0,+∞)B .[0,1]C .(-1,0]D .[-1,+∞)解析▶ 设t=f (x ),则a=f (t ),在同一坐标系内作y=a 与y=f (t )的图象(如图), 当a ≥-1时,两个图象有两个交点,设交点的横坐标分别为t 1,t 2,且t 1<-1,t 2≥-1. 当t 1<-1时,t 1=f (x )有一个解;当t 2≥-1时,t 2=f (x )有两个解. 综上可知,当a ≥-1时,g (x )=f (f (x ))-a 有三个不同的零点.故选D . 答案▶ D能力3 ▶ 会解答函数的实际应用问题【例5】 某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是( ).(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2020年B .2021年C .2022年D .2023年解析▶ 若2018年是第1年,则第n 年科研经费为1300×1.12n.由1300×1.12n>2000,可得lg 1.3+n lg1.12>lg 2,得n×0.05>0.19,n>3.8,n ≥4,即4年后,到2021年科研经费超过2000万元,故选B .答案▶ B与实际应用相结合的问题题型是高考命题的一个方向,解决此类问题的一般程序:读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.在标准状况下,人体血液中氢离子的物质的量浓度(单位:mol/L ,记作c (H +))和氢氧根离子的物质的量浓度(单位:mol/L ,记作c (OH -))的乘积等于常数10-14.已知pH 的定义为pH =-lg c (H +),健康人体血液的pH 保持在7.35~7.45之间,那么健康人体血液中的c(H +)c(OH -)可以为( ).(参考数据:lg 2≈0.30,lg 3≈0.48)A .12B .13C .16D .110解析▶ ∵c H (+)·c OH (-)=10-14,∴c(H +)c(OH -)=c 2(H +)×1014. ∵7.35<-lg c (H +)<7.45, ∴10-7.45<c (H +)<10-7.35, ∴10-0.9<c(H +)c(OH -)=1014·c 2(H +)<10-0.7,10-0.9=1100.9>110,∴排除D 项.∵0.7>lg 3>lg 2,∴100.7>3>2,10-0.7<13<12,∴排除A 、B 项.故选C .答案▶ C一、选择题1.已知方程x 2-3x+1=0的两个根为x 1,x 2,则2x 1·2x 2=( ).A .3B .6C .8D .2解析▶ 由题意得x 1+x 2=3,∴2x 1·2x 2=2x 1+x 2=23=8,故选C . 答案▶ C2.函数f (x )=2x +2x 的零点所在的区间是( ).A .[-2,-1]B .[-1,0]C .[0,1]D .[1,2]解析▶ 因为f (x )是增函数且f (-2)=2-2+2×(-2)<0,f (-1)=2-1+2×(-1)<0,f (0)=20+0>0,所以由零点存在性定理知,函数f (x )的零点在[-1,0]内,故选B .答案▶ B3.函数f (x )=ln (|x|-1)+x 的大致图象为( ).解析▶ 由题意知,|x|-1>0,则x>1或x<-1.当x>1时,f (x )=ln (x-1)+x 为单调递增函数,排除B ,C ;当x=-2时,f (-2)=ln (|-2|-1)-2=-2<0,排除D .故选A .答案▶ A4.已知函数f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (32a-1)≥f (-√3),则a 的最大值是( ). A .1B .12C .14D .34解析▶ 由题意可知,-√3≤32a-1≤√3,解得a ≤34.故选D .答案▶ D5.已知f (x )=e |x-1|,设a=f (35),b=f (54),c=f (2),则a ,b ,c 的大小关系是( ).A .a>b>cB .c>a>bC .b>a>cD .c>b>a解析▶ f (x )e=|x-1|的图象关于直线x=1对称,且f (x )在(1,+∞)上单调递增,又1<54<75<2,∴f (54)<f (75)<f (2),又f (75)=f (35),∴f (54)<f (35)<f (2),故选B .答案▶ B6.设函数f (x )={(x -a)2-1,x ≤1,lnx,x >1,若f (x )≥f (1)恒成立,则实数a 的取值范围为( ).A .[1,2]B .[0,2]C .[1,+∞)D .[2,+∞)解析▶ ∵f (x )={(x -a)2-1,x ≤1,lnx,x >1,且f (x )≥f (1)恒成立,∴f (1)是f (x )的最小值.由二次函数性质可得a ≥1, 由分段函数性质得(1-a )2-1≤ln 1, 解得0≤a ≤2.综上,a 的取值范围为[1,2],故选A . 答案▶ A7.已知函数f (x )={-xx+1,x ∈(-1,0),x,x ∈[0,1],若方程f (x )-mx-m=0有两个不同的实根,则实数m 的取值范围是( ).A .[0,12) B .[12,+∞) C .[0,13) D .(0,12]解析▶ 在同一坐标系内画出y=f (x ),y=mx+m 在(-1,1]上的图象,动直线y=mx+m 过定点(-1,0),观察图象可知,当0<m ≤12时,两图象有两个不同的交点,从而方程f (x )-mx-m=0有两个不同的实根,故选D .。