高中数学论文
数学高中小论文(精选10篇)

数学高中小论文(精选10篇)在社会的各个领域,大家都有写论文的经历,对论文很是熟悉吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。
那么,怎么去写论文呢?牛牛范文为您精心收集了10篇数学高中小论文,希望能为您的思路提供一些参考。
高中数学论文篇一一、高中数学高效课堂的内涵高中数学教学中高效课堂的构建是指教师运用高效的教学策略与教学方式、方法,引导学生自主发现问题、探究问题、解决问题,以高效率的课堂教学实现课堂教学目标,培养学生的数学素养。
在高中数学高效课堂教学过程中要创设一种民主、和谐、宽松的教学氛围,要培养学生形成正确的数学学习态度,形成高效的数学学习习惯。
在数学教学中,教师要善于发现不同学生自身的特点与学习情况,采用灵活多变的教学手段,以高效教学方法的创新促进教学效率的有效提升,以高中数学高效课堂教学的实现促进高中生数学能力的提升。
二、高中数学高效课堂建设的原则1、短时高效是高效课堂建设的基本原则在高中数学课堂教学的实施过程中,一节数学课的教学时间是非常有限的,教师在一节课中所能利用的教学时间也是非常有限的,同时在一节课中学生的学习时间也并不多,在这样短时间的课堂教学实施过程中,要想最大限度地实现课堂教学目标,就需要以高效的教学方式和教学手段,实现课堂教学的高效。
从这个角度来说,短时高效是高中数学高效课堂建设的一项基本原则。
2、要充分发挥教师在教学中的主导作用尽管新课程教学理念更加重视学生在教学实施中的主体性发挥,但是在高中数学教学中要实现课堂教学的高效,就必须充分重视教师在教学中的主导地位。
发挥教师在课堂教学中的主导性,只有教师在高中数学教学中的教学能力、教学水平得到提升,高中数学高效课堂的建设才能够得到根本的保障,因此,在高中数学教学中,要实现高效课堂就要充分发挥教师在课堂教学中的主导作用。
三、高中数学高效课堂建设的途径1、激发学生的学习兴趣2、教学中要高度重视基本的知识、技能和方法近些年来,考试的内容发生了变化,变得越来越灵活,考试的新变化,让一些教师在高中数学教学中更多地重视一些难度相对较大的综合试题,这样的教学倾向势必造成教师对数学基本知识、技能、方法的忽略,这对于高效课堂的实现是极其不利的。
高中数学论文范文参考(热门46篇)

高中数学论文范文参考(热门46篇)
数学的学习以实际的`训练和测试居多,在此过程中,很多学生能够
通过训练发现自己的很多问题,并以错题的形式进行记录。
在二次函数的
学习过程中,这一方法也同样适用,尤其是在基本初等函数及函数的应用
这两个章节的训练中,学生学习的不足会由于知识点复杂,学习不到位而
表露出来,教师应当充分督促学生做好错题记录,并附上相关的知识点,
利用错题再测的方式定期检查学生对于错题集的应用情况。
传统的教学观点对于数学的认识在于其严密的逻辑结构和实际解题方
法的掌握,但在二次方程的学习中,背诵或记忆这个适合于传统文科学习
的方法也同样适用于二次方程。
在二次方程的学习中,有很多经典的知识
点或解题方法,可让学生作为模板来应用于实际的解题中,将解题规范化,避免失去分数。
例如,二次函数y=ax2+bx+c(a>0)图象与零点关系,学
生可以通过合理记忆,在以后的解题时将统计的表格应用于解题的实际步
骤中,一方面保证自己在判断的时候不会遗漏相关知识点,另一方面,解
题的严谨性也减少了失分的可能,对于学生在二次方程学习方面的提高有
极大帮助。
高中数学二次函数的学习与初中方程学习有很大差别,难度也有所提高,因而对于教学方法的研究更为重要。
教师在实际的二次函数教学中,
要帮助学生从概念入手,清楚掌握二次函数的基本定义;同时利用数形结
合的方法及尝试教学法,指引启发学生直观的掌握知识点,自主探寻相关
规律,牢牢记忆二次函数的知识;最后通过实际训练及错题集的应用,帮
助学生加强二次函数知识的复习,提高学习效果,为学生在高中数学学习
方面打好基础。
高中数学论文范文

高中数学论文范文论文既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。
接下来店铺为你整理了高中数学论文范文,一起来看看吧。
高中数学论文范文篇一:高中数学教学破解概念解决对策一、高中数学概念化教学的现状一直以来,教师受到应试教育的制约和影响,数学教学重点的教学方式就是题海战术,从未重视过对数学概念的深入解读,导致学生难以将概念有机的运用到解题过程中,造成两者的脱节。
在很多老师的眼中,数学概念仅仅是一个学术名词,只要对概念进行解释,学生强制性记忆,就算完成了概念教学的工作。
完全没有认识到:在数学领域中,作为一种学术观念而存在的概念的真实意义,并且概念也是一种利用数学①方式进行解决问题的方法。
教师自认为完成概念教学工作后,让学生马不停蹄的开始解题,使得学生对数学概念的印象模棱两可,无法对概念进行一个全面、深刻、透彻的理解,直接导致学生很难将概念在具体的解题过程中熟练的应用,最终造成数学学习上的舍本逐末、本末倒置。
二、高中数学概念教学的对策1.科学铺垫,循序渐进教师在教授高中数学知识前,应积极引导学生回顾初中阶段所学习的知识内容,学生温故初中知识的基础的同时,自然平稳过渡到高中阶段数学知识的学习。
在这一阶段的教学实践中,难点和重点内容,教师不能急功近利、急于求成,要始终遵循“以生为本”的原则,通过循循善诱、循序渐进的方式,贴近学生思维最近发展区域,让学生在分析,思考,探究中对知识的掌握。
比如,在对函数中的值域和最值问题进行讲解时,教师应秉持先易后难、层层推进的教学原则,先讲解一些难度不大一次函数的值域和二次函数的最值。
再讲解一些配方法、单调性法等一些求最值或者值域的方式,在这个循序渐进的过②程中逐渐清除学生的畏难心理。
2.深刻认知概念产生的过程在教学过程中引入数学概念,应该以客观条件为基础,创造建设具体的环境情景,提出具体的问题。
列举一些能够直接反映概念内涵并可以将概念形象、直观体现出来的具体例子,让学生通过具体的事例加深对概念的理解,从心里对抽象的概念形成一个感官上的认识,通过大量材料的阅读,透过对材料的研究了解到深处的本质内容。
高中数学论文获奖范文(推荐36篇)

高中数学论文获奖范文(推荐36篇)高中数学的教学目的是使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和技能,培养学生的运算能力。
《立体几何》作为高中数学的重要组成部分,既是教学中的重点,又是教学中的难点。
一、上好第一堂课,激发学生学习《立体几何》这门课的兴趣浓厚的学习兴趣不仅可以使学生积极主动地从事学习活动,而且学习起来还会心情愉快,能够做到全神贯注,长期坚持从而形成一种终身的学习习惯。
另外,学生在学习立体几何之前,对立体几何普遍有一种畏惧心理。
所以立体几何的第一堂课是否能抓住学生,调动学生的学习积极性,激发学生学习立体几何的兴趣,非常关键。
二、帮助学生建立空间概念学生由于受学平面几何的思维定势的影响,在学习立体几何时,要建立起空间概念,有一定的困难,只有尽早解决这个问题。
才能学好立体几何。
1.识图与画图在开始学习立体几何时,要让学生特别注意空间图形在平面内的画法,切不可把虚线再当作平面图形中的辅助线,要把平面图形中的角、线段与空间实例相对照。
2.亲自动手,制作模型在解决有些问题时,可以把一些元素用实物来表示。
对于一些折叠图形问题,学生不妨动手自己折一折,观察分析位置关系的变化,这样就容易看清元素间的位置关系。
三、培养学生空间想象的能力在立体几何教学中,空间想象能力是重要的数学能力之一,也是一种基本的数学能力。
它强调对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想象出直观的形象,立体几何承担着培养学生空间想象能力的独特功能。
1.教会学生看空间几何体立体几何的概念教学要从实例引入,对图形的观察、分析来抓住它们的本质特征,抽象出数学概念。
2.重视画图基本功的训练画出正确图形,是学生解决立体几何问题的前提和基础,画图基本功的训练,应贯穿在立体几何教学的全过程。
(1)教师利用教具、实物,让学生观察,分析抽象出概念后,然后画出相应概念的直观图。
(2)边说边画,让学生看到教师画图的过程,或者让学生在练习本上与教师同步绘制,那种把图形事先画在小黑板上的作法,在教学很长一段时间内是不宜使用的。
高中数学的小论文

高中数学的小论文数学教学需要讲究方法和技巧,掌握好答题技巧有助于考生在高考中节约时间并且取得更高的分数。
下面是查字典范文网小编为大家整理的关于数学教学的论文,希望对大家有所帮助!高中数学的小论文篇一一、教师要做到精讲,需要解决的问题精讲的过程要努力做到“四精”:内容精简、语言精练、方法精湛、突破精准。
内容精简是重点,教师要正确理解教材意图,准确把握知识主线,结合学情适当调整和精减教学内容。
教师的教学语言要通俗易懂,启发性强;形象生动,趣味性强;节奏明快,感染力强;条理清晰,逻辑性强。
通常一节课,精讲用时一般不宜超过15分钟,如果用时过多则势必影响学生自主性的发挥和巩固练习。
对于学生自己可以解决的问题坚决不讲,可以让学生自己发言,代替老师讲;对于需要教师点拨才能突破的问题,只进行点拨,剩下的留给学生思考讨论,在有学生突破了后再请学生讲;对于学生没有办法突破的问题,教师要精心准备,认真备课,做到讲解条理清晰,思路明确,最终突破难点;这样的老师,才是我们所倡导的智慧型教师。
二、精讲的基本策略1.研究教材,明确精讲内容。
教学大纲和苏教版课本是教学的主要依据,教师要想明确精讲的内容,首先需要准确理解教材的安排,能够把握知识主干,在教材整体结构的指引下,结合本校实际情况,综合考虑文化知识的发展趋势,科学技术的最新成就,对教学内容作相应的不重合修改。
只有这样才能保证教给学生科学的、先进的内容;其次需要通过挖掘教材中的知识内涵,数学学科的特点,寻找教育的切入点,让精讲的内容与学生的学习目标和培养目标融为一体。
2.精选教学方法,设计精讲思路。
教师通过备课———备教材,备学生,也备自己,精心选取教学方法,选择合适的教学方法,让“讲”的效果能够最大限度地得到发挥。
设计精讲思路要符合学生的心理特点和人的认知规律,需要从学生知识的“最近发展区”出发,不仅要对教学内容的重点和难点进行有效整合,而且要抓住学生主体,让学生的心理系统与知识体系的逻辑结构不冲突,体现出数学课堂教学的内在逻辑,才能讲出高效。
高中数学课堂教学论文6篇

高中数学课堂教学论文6篇第一篇一、研究性学习的含义研究性学习是一种不局限于单纯知识的传授,而是鼓励学生主动参与到学习中,使各方面能力得到广泛提高的一种学习方式.具体是指教师设计一种可以引导学生主动探索的学习情境,学生从探索中学会收集信息、分析问题,使自身的探索能力、发现和解决问题的能力都得到有效地锻炼,这也正是研究性学习的基本目标.研究性学习的学习载体是生活中的各种课题或项目,它是一种学生独立自主地进行研究并获得相应知识的学习方式.研究性学习与综合课程和学科教学都存在着差别,一方面,它不是活动课程,也不是一般的活动,因为研究性学习并不是由多个学科构成的课程,而且它是由学生自主参与进行科学研究的活动.另一方面,它不是单纯的学科教学,因为研究性学习是一种鼓励学生主动参加实践,如收集资料、选题、调查等,提高自身能力的学习方式,不再只是对学生进行单纯的知识的灌输.通过这种学习方式,学生不仅可以牢固掌握所学知识,还可以学会如何灵活地运用这些知识.二、高中数学课堂研究性学习的必要性传统的教学模式下,教师机械地传授数学的相关知识,学生被动地接受知识,似懂非懂,死记硬背,教与学都围绕成绩展开,以提高教学成绩为宗旨,为学习而学习,忽视了教学的真正意义.研究性学习模式的出现,对高中数学传统教学和学习模式来说可谓是一场深刻的变革,该模式为学生创立了有助于其发挥主体能动性,表现自身创造力的学习情景,使学生积极、主动地参与到对数学的研究中,独立探索,感受探索过程带来的成功与挫折,不仅有助于提高学生应对问题和解决问题的能力,还有助于培养学生的创造力和实践力.由此可见,研究性学习模式是对高中数学的学习是相当必要的,教师的任务不仅仅是继续地传授知识,提高成绩,更重要的是为学生创造一个自由发展、独立探索的平台,引导学生不断提高自身能力,让学生真正体验到学习数学的魅力.三、在高中数学教学中开展研究性学习的建议1.重视学生对研究性学习模式兴趣的培养兴趣是做任何事的基础,没有兴趣,也就谈不上效率.尤其在数学的学习中,高中数学本身就是一门枯燥无味、入门困难的学科,是一门需要将理论知识应用到具体实践中的学科,因此,培养学习数学的浓厚兴趣不仅可以使教师的教学事半功倍,还能使学生真正的会学数学,学会数学.传统的教学模式重视对知识的无条件灌输,学生变成被动地接受者,事实上,学生是学习中的主体,是积极的探究者.教师要做的正是扭转局面、改变现状,为学生设计一种吸引学生主动探究的情境,引导学生独立探索,而不是一味地传授已有的知识,使学生体会到探索中的乐趣,激发学生强烈的求知欲,为高中数学的学习增添色彩.2.注重培养学生的团队合作精神研究性学习方式不仅重视学生的独立学习能力的培养,还重视学生之间的团队合作能力.传统的教学模式下,教师倡导学生独立思考问题和完成作业,完全忽视学生间的合作.培养学生的合作能力迫在眉睫.在课程设计中,教师可以多为学生设计一些形象有趣、需要团队合作才能完成的小游戏或任务,既有竞争、,又有合作,使学生分组合作、互帮互助,在轻松的氛围中完成任务.学生可以通过合作学习对方的长处、弥补自身的不足,取得高质量的教学成果.3.提高学生发现问题的敏感度问题是一切活动的起源,有问题,才有交流,才能进步.传统的教学模式下,教师机械地传授问题和答案,忽视了对学生自主发现问题和解决问题能力的培养.事实上,高中数学的学习就是一个发现问题、理解问题、解决问题的过程,问题和情境是共存的.因此,在数学教学过程中,教师要注重创造一个存在冲突的教学情境,使学生产生问题意识,激发学生认识问题的欲望,带着问题去学习理论知识,将理论与问题相结合.学生为解决问题,就会调动所学的知识和已有的经验,从自己的观点出发真正地理解数学,掌握数学,并实现对数学知识的灵活运用,从中体会到学习数学的乐趣.综上所述,研究性学习模式对高中数学的学习是至关重要的,要想把这种学习方式贯彻实施好,需要教师和学生的共同努力.首先需要教师真正理解研究性学习的含义和重要性,设计一种适合学生自主学习、自主探索的情景;其次,教师要提高自身对问题的敏感度,并鼓励学生善于发现问题和解决问题,培养学生积极的学习态度;最后,教师要完善自身的知识结构,提高知识素养,以便更好的引导学生提高自身的能力.第二篇1、引言高中数学是全国高中生必修的一门学科,也是让很多高中生头疼不已的一门学科。
高中学生数学教学论文10篇【论文】

高中学生数学教学论文10篇第一篇:高中数学情境教学分析一、情境教学在高中数学教学中的应用1.设置问题情境提问是数学教学中必要的交流方式,也是教师了解学生掌握情况的必要手段。
因此,创造科学的设问情境,可以有效地激发学生的求知欲望,从而提高数学教学的质量。
由于数学本身具有较强的抽象性,因此,教师在设置问题情境的时候,要抓住重点,不要过于宽广,要源自生活,这样的设问情境能让学生较快理解,并且能抓住重点。
例如,教师在讲图形平移时,可以让学生做开窗的活动,然后设置问题情境,问学生刚才开窗时窗户的移动属于什么变化。
这样的问题可以提高学生的思考能力,会在潜意识里增强学生的求知欲,同时也可以增强学生的兴趣。
由此可见,设置问题情境对提高学生的积极性具有重要的意义,教师要不断联系生活实际,让学生不断体会到数学在生活中的应用,进而可以有效地提高学生学习数学的求知欲。
2.设置游戏情境游戏是学生都喜欢的活动,无疑能激发学生的兴趣,让学生积极主动参与进来,在高中数学教学中,教师可以适当地引进游戏来增强学生的兴趣,以便让他们主动投入到学习中来。
另外,安排课堂游戏还可以活跃课堂,让学生带着积极愉快的心情学习数学知识。
例如,教师在讲“数学概率问题”的时候,可以带一些形状相同、颜色不同的小球,让学生蒙住眼睛随机抓取,然后让学生分析抓球的概率。
通过数次的实验,可以加强学生的兴趣,提高学生的积极性,让学生在愉快的氛围中学习到有用的数学知识,并且愉快的氛围可以加深学生对知识的牢记程度,进而有效提升数学成绩。
因此,高中数学教师在进行数学教学时,要适当引进学生感兴趣的活动,以有效提升学生的兴趣,从而提高数学教学质量。
3.设置故事情境高中数学教学中,往往教师的教学形式单一,加上数学本身的枯燥,导致学生缺乏学习数学的兴趣,从而在课堂上很难集中注意力听教师讲课,这就难以提高学生的学习效率,因此,教师要从根本出发,设置能够吸引学生的讲课情境,才能有效提高学生学习数学的兴趣,才能从根本上解决学生注意力不集中的问题。
高中数学论文800字三篇

高中数学论文800字三篇第一篇:论数学中的变换思想在解题中的应用摘要变换思想在高中数学解题中具有重要作用,本文通过具体例题分析,探讨了变换思想在函数、几何和代数等领域中的应用,旨在提高学生解决数学问题的能力。
关键词变换思想,解题方法,数学问题,高中教育1. 引言在高中数学教学中,变换思想是一种重要的解题方法。
通过对问题进行合理的变换,可以将复杂问题转化为简单问题,从而提高解题效率。
本文将从函数、几何和代数三个方面,分析变换思想在高中数学解题中的应用。
2. 变换思想在函数解题中的应用函数是高中数学的重要内容之一。
在解决函数问题时,变换思想可以有效地将问题简化。
例如,在求解函数的极值问题时,可以通过换元法将函数转化为简单的一次函数或二次函数,进而求解。
3. 变换思想在几何解题中的应用几何问题是高中数学中的另一个重要部分。
变换思想在几何解题中的应用也十分广泛。
例如,在解决几何证明问题时,可以通过添加辅助线、变换图形位置或形状等方式,将问题转化为已知几何定理或公式,从而简化问题。
4. 变换思想在代数解题中的应用代数问题是高中数学的另一个重要内容。
在解决代数问题时,变换思想同样可以发挥重要作用。
例如,在求解方程组时,可以通过变换方程组的形式,将其转化为已知解法形式的方程组,从而简化问题。
5. 结论变换思想在高中数学解题中具有重要作用。
通过运用变换思想,可以将复杂问题转化为简单问题,提高解题效率。
因此,在日常研究中,学生应加强对变换思想的研究和应用,提高自己的数学解题能力。
第二篇:论高中数学中的分类讨论思想在解题中的应用摘要分类讨论思想是高中数学解题中常用的一种方法。
本文通过对具体例题的分析,探讨了分类讨论思想在数列、函数、几何等领域的应用,以期提高学生解决数学问题的能力。
关键词分类讨论,解题方法,数学问题,高中教育1. 引言在高中数学教学中,分类讨论思想是一种重要的解题方法。
通过对问题进行合理的分类讨论,可以将复杂问题转化为简单问题,从而提高解题效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学论文
在新课程理念下谈高考数学复习
在新课程理念下谈高考数学复习
早在国家考试中心发布的《2002年高考数学试题评价报告》中就建议:“更加关注高中数学课程改革的进展,了解使用新课程考生的实际情况;汲取新课程中的新思想、新理念,使高考数学科考查更加反映数学教育改革的发展方向.”现在由教育部制订的《普通高中数学课程标准(实验)》已经于2003年颁布,对应的课程教材也已经在广东省高中实行两年,所以在2006年高考数学复习中更应关注新课程的理念。
新课程的基本理念如下:1.构建共同基础,提供发展平台.2.提供多样课程,适应个性选择.3.倡导积极主动、勇于探索的学习方式.4.注重提高学生的数学思维能力.5.发展学生的数学应用意识.6.与时俱进地认识“双基”.7.强调本质,注意适度形式化.8.体现数学的文化价值.9.注重信息技术与数学课程的整合.10.建立合理、科学的评价体系。
我们考察近三年即2003—2005 年的高考数学试题(广东卷),不难发现,不少试题都充分体现了新课程理念,反映了高考对高中课标的有力支持.
例:(2003年广东卷第11题)已知长方形的四个顶点A (0,0)、B (2,0)、C (2,1)和D (0,1),一质点从AB 的中点P 0上的点P 2、P 3和 P 4围是( )
(A ))1,31( (B 分析: tg θ= 1/2, 则P 0, P 1, P 2
与P 0重合, 此时x 4=1;如果tg θ 略小于1/2, 则P 4的横坐标为x 4>1,如图5的虚线所示.可见
tg θ < 1/2.符合题目所给的条件中, 只有(C)满足条件1< x 4<2, 故应该选择(C). 经过计算可
以知道, 当tg θ =2/5时, x 4=2, 可见 tg θ ∈ (2/5,1/2), 从而可知选择(C)是正确的.由上题
可见, 03年试题强调实验尝试, 探索猜想在数学学习中的地位.这也是选择题的应有特点。
从近三年的试题变化我们可以得出结论,采取题海战术、猜题押题等手段来应付高考已经行不通,其结果只会步入“低效率、重负担、低质量”的恶性循环怪圈。
为了达到高考的要求,使学生顺利的通过升学考试,适应大学的学习,我认为应该在高考数学复习中渗透波利亚怎样解题的思想。
乔治·波利亚是美籍匈牙利数学家、教育家、数学解题方法论的开拓者,波利亚致力于解题的研究,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他专门研究了解题的思维过程,并把研究所得写成《怎样解题》一书。
这本书的核心是他分解解题的思维过程得到的一张“怎样解题表”。
在这张包括“弄清问题”、“拟定计划”、“实现计划”和“回顾”四大步骤的解题全过程的解题表中,他把寻找并发现解法的思维过程分解为五条建议和23个具有启发性的问题,它们就好比是寻找和发现解法的思维过程的“慢动作镜头”,使我们对解题的思维过程看得见,摸得着。
我们在高三数学复习的教学中,离不开解题,应该以“怎样解题”为指导研究解题,引导学生掌握“怎样解题”的思维方法。
例:(2004年广东卷第17题)已知角αβγ,,成公比为2的等比数列
([]02απαβγ∈,
),且s i n ,s i n ,s i n 也成等比数列. 求αβγ,,的值. 分析:这道题是解答题的第一题,应该说难度不大,但是由于这道题中既有三角又有数列,属于比较新颖的题目,考生没有见过这种题型,全省平均分只有4.77分(满分12分),比解答题的第二题立体几何6.44分还要低.说明学生习惯于做模仿性的题目,稍微有些变化就不适应.我们来实践一下波利亚的解题表.第一步:弄清问题,我们要求什么?已知条件是什么?本题求角
αβγ,,的值,已知角αβγ,,成公比为2的等比数列([]02απαβγ∈,
),且s i n ,s i n ,s i n 也成等比数列. 第二步: 拟定计划, 找出已知与未知的联系.应用等比数列的定义可得β=2α,γ=4α,β
γαβsin sin sin sin = , 为了求角αβγ,,的值,只需解方程βγαβsin sin sin sin =,但这个方程有三个未知数,所以需要消元,得αααα2sin 4sin sin 2sin =.第三步:实现计划,应用三角变换的知
识,1cos 2cos 2sin 4sin sin 2sin 2-=⇒=ααα
ααα,01cos cos 22=--αα即,解得21
cos ,1cos -==αα或;当cos α=1时,sin α=0,等比数列的首项不为零,
cos α=1应舍去,,3
432,]2,0[,21cos παπαπαα==∈-=或时当 所以3
8,34,32πγπβπα===,316,38,34πγπβπα===.第四步:回顾,检查结果并检验其正确性. 在高三复习教学中渗透波利亚怎样解题的思想,不仅提高了解题能力,而且养成了有益的思维习惯,而这是比任何具体的数学知识重要得多的东西。
研究怎样解题也是学生形成理性思维重要途径。
理性思维是一种有明确思维方向,有充分思维依据,有数学思想指导和介入的思维.理性思维包括逻辑推理、演绎证明、归纳抽象、直觉猜想、运算求解等思维.理性思维能力是数学能力的核心,也是考查能力的关键.
近三年试题中,应用题都是两道小题一道大题. 其中有一种是生产、生活实际中产生的数学应用问题,如数学应用的社会性和时代性,俗称真正的应用题;另一种是模拟实际问题的应用题,俗称“包装型”应用题. 应用题主
要考查学生应用所学数学知识和数学思想方法的能力。
能综合应用所学数学知识、思想和方法解决问题,包括
解决在相关学科、生产、生活中的数学问题;能正确、
理解对问题的
陈述;能够对所提供的信息资料进行归纳、整理和分
类,将实际问题抽象为数学问题,并能用
数学语言正确
东O
地表述、说明、建立数学模型,应用相关的数学方法解决问题并加以验证.如2003年广东卷第20题:在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如右图)的东偏南)10
2arccos (=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?
这道关于台风的应用题,突破了以函数或数列作为知识工具的模式,以图形问题为背景,需要综合应用三角函数、不等式、解析几何、列方程等知识和方法,建立数学模型.题目内容新颖,思维能力要求高,可以检测考生理解新事物、新信息的能力,同时也体现出生活中处处存在数学,有利于培养学生用数学的观点观察社会、思考问题,增强应用数学的意识. 与新课程中“应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。
”要求是一致的。
从《普通高中数学课程标准(实验)》中我们可以看到数学应用方面的课程更多了,对学生的应用能力要求更高了,所以我们在高考复习中要有足够的重视。
2006年高考数学虽然考的是原来教学大纲的内容,但是一定会融入新课标的理念,比较注重考查考生的创新意识和动手能力,体现自主学习和主动探究精神,对传统内容的考察,也会设计新的考查形式,编拟新的题型,开发新的背景,这是高考数学复习应关注的.
参考文献
1.《普通高中数学课程标准(实验)》.人民教育出版社,2003
2.《03年高考数学试题和答卷评价》. 华南师范大学数学系 王林全教授.。