14高中数学解析几何问题的题型与方法

合集下载

高中数学平面解析几何的常见题型及解答方法

高中数学平面解析几何的常见题型及解答方法

高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。

平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。

下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。

一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。

常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。

这里我们以已知直线上的两点,求直线方程为例进行说明。

例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。

解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。

根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。

解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。

3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。

通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。

二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。

常见的题型有直线与圆的切线问题、直线与圆的交点问题等。

这里我们以直线与圆的切线问题为例进行说明。

例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。

解题思路:首先,我们需要确定直线与圆是否有交点。

当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。

当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。

解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。

2.求解二次方程,得到x的值。

解析几何题型及解题方法总结

解析几何题型及解题方法总结

解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。

解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。

2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。

3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。

例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。

线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。

高中数学解析几何解题方法总结

高中数学解析几何解题方法总结

高中数学解析几何解题方法总结老师在讲题的时候,经常如未卜先知一般,就知道已知条件里经常存在着一个自己完全不知道的信息;或者分析着分析着,就突然来句:“这道题可以用反证法/数学归纳法……”解法是很精妙,但换你来做,你就是没有意识到要采用这样的方法。

我也曾经问过老师,为什么你们当时会想到用这种方法?得到的也往往是“不知道”、“题目做多了就明白了”。

高中数学解析几何解题方法我们先来分析一下解析几何高考的命题趋势:(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,占总分值的20%左右。

(2)整体平衡,重点突出:其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既留意全面,更留意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。

近几年新教材高考对解析几何内容的考查主要集中在如下几个类型:① 求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点题目(含切线题目);③与曲线有关的最(极)值题目;④与曲线有关的几何证实(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数目特征;高中数学解析几何解题方法:(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但假如借助于数形结合的思想,就能快速正确的得到答案。

(4)题型新奇,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。

加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。

加大探索性题型的分量。

在近年高考中,对直线与圆内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:①与本章概念(倾斜角、斜率、夹角、间隔、平行与垂直、线性规划等)有关的题目;②对痴光目(包括关于点对称,关于直线对称)要熟记解法;③与圆的位置有关的题目,其常规方法是研究圆心到直线的间隔.以及其他“标准件”类型的基础题。

高考解析几何题

高考解析几何题

高考解析几何题高考解析几何题的解题技巧与方法解析几何作为高中数学的重要组成部分,在高考数学试题中占有不可忽视的地位。

它主要研究图形的几何性质与代数表达式之间的联系,通过坐标系将几何问题转化为代数问题进行求解。

本文将从几个方面探讨高考解析几何题的解题技巧与方法,帮助考生在面对这类题目时能够更加得心应手。

一、掌握基本概念和公式解析几何的基本概念包括点、线、面的位置关系,以及圆、椭圆、双曲线、抛物线等圆锥曲线的性质。

熟练掌握这些概念及其相关公式是解题的基础。

例如,直线的方程有一般式、点斜式、两点式等,每种形式都有其适用的场合。

圆的标准方程、椭圆的焦点性质等,都需要考生牢记于心。

二、培养图形的直观感知能力解析几何题目往往需要考生能够在脑海中构建出题目所描述的图形,并能够对图形进行操作和变换。

因此,培养良好的图形直观感知能力对于解题至关重要。

考生可以通过多做练习题、观察生活中的几何图形等方式来提高这方面的能力。

三、运用代数方法解决问题解析几何的特点就是将几何问题转化为代数问题。

因此,考生需要掌握如何通过代数运算来求解几何问题。

例如,通过联立方程组求交点,利用向量方法求解角度和距离,或者运用坐标变换简化问题等。

这些方法都需要考生在解题时灵活运用。

四、注意解题步骤的条理性在高考中,解析几何题目往往步骤较多,需要考生条理清晰地进行解题。

首先,要仔细审题,弄清楚题目的要求和所给条件;其次,要合理规划解题步骤,避免在解题过程中出现混乱;最后,要仔细检查,确保每一步的计算都是正确的。

五、总结常见题型和解题模板高考解析几何题目虽然千变万化,但总有规律可循。

考生可以通过总结历年高考题,找出常见的题型和解题模板。

例如,直线与圆的位置关系、动点轨迹问题、最值问题等,都有其特定的解题思路和方法。

掌握这些模板,可以帮助考生在面对新题目时能够迅速找到解题的切入点。

六、提高解题速度和准确性高考是一场与时间赛跑的考试,提高解题速度和准确性是提高分数的关键。

高考数学解析几何9种题型的解题技巧!

高考数学解析几何9种题型的解题技巧!

解析几何命题趋向:
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属容易题,对称问题常以填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题。

考点透视
一.直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
二.圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.。

高中数学各块重点知识《解析几何》

高中数学各块重点知识《解析几何》

高中数学各块重点知识、方法、题型
§9.解析几何
1.直线方程:方向向量、法向量、直线方程的点方向式、点法向式、点斜式、一般式;
2.直线的倾斜角与斜率的关系及其计算;
3.两条直线的位置关系:(1)平行的充要条件(2)重合的充要条件(3)相交的充要条件(4)用斜率研究的位置关系;
4.两条直线的夹角:(1)平行、重合的夹角(2)夹角的定义(3)夹角计算公式(4)方向向量与夹角关系(5)两条直线的垂直问题(6)用夹角公式注意问题:斜率不存在、角平分线情况的多解问题;
5.点到直线距离:(1)公式(2)两条平行直线的距离公式(3)直线的同侧点与异侧点的特征;
6.对称点问题:直线上一点到两点距离之和最小值、距离之差的最值、光线问题、用对称研究角平分线问题;
7.曲线与方程:(1)曲线与方程的关系(2)研究曲线方程的步骤(3)研究曲线方程的本质:求出动点坐标满足的关系式;
8.曲线的交点:(1)求曲线的交点(2)数形结合(3)消参法研究曲线方程;
9.圆的方程:(1)标准方程(2)一般式方程(3)点与圆的位置关系(4)直线与圆的位置关系(5)有关的计算以及数形结合;。

解析几何的常见题型解题方法

解析几何的常见题型解题方法

解析几何的常见题型解题方法几何学是数学的一个分支,研究与形状、大小、位置等相关的问题。

在解析几何中,常见的题型包括直线方程、平面方程、距离公式、中点公式、向量运算等。

本文将从这些常见题型出发,介绍解析几何的解题方法。

1. 直线方程直线方程是解析几何中常见的题型之一。

一条直线可以用斜率截距法、两点法或点斜式等多种方式表示。

例如,已知直线过点A(2,3)且斜率为2,求直线的方程。

解法如下:首先,利用点斜式可以得到直线的方程为y-3=2(x-2)。

进一步化简,得到直线方程为y=2x-1。

2. 平面方程平面方程是解析几何中另一个常见的题型。

平面可以用点法、法向量法或截距法表示。

例如,已知平面过点A(2,3,4)、B(1,2,3)和C(3,4,5),求平面的方程。

解法如下:首先,利用两个向量来确定平面的法向量。

设AB和AC两向量,则平面的法向量可以通过叉积运算得到。

即AB×AC=(-1,1,1)。

进一步,利用点法可得平面的方程为-1(x-2)+1(y-3)+1(z-4)=0。

化简可得-x+y+z-5=0,即平面的方程为x-y-z+5=0。

3. 距离公式在解析几何中,我们常需要计算两点之间的距离。

两点间的距离可以通过距离公式来计算。

例如,已知点A(2,3)和点B(4,5),求AB两点间的距离。

解法如下:根据距离公式,AB的距离可以表示为√[(x2-x1)²+(y2-y1)²]。

带入坐标可得√[(4-2)²+(5-3)²],化简后得√8。

因此,点A(2,3)和点B(4,5)之间的距离为√8。

4. 中点公式中点公式是解析几何中常见的一个定理,用来求线段的中点坐标。

例如,已知线段AB的两个端点A(2,3)和B(4,5),求线段AB的中点坐标。

解法如下:根据中点公式,线段AB的中点坐标可以表示为[(x1+x2)/2,(y1+y2)/2]。

带入坐标可得[(2+4)/2, (3+5)/2],化简后得(3,4)。

高中数学解解析几何中的位置关系问题的方法与思路整理

高中数学解解析几何中的位置关系问题的方法与思路整理

高中数学解解析几何中的位置关系问题的方法与思路整理高中数学解析几何中的位置关系问题的方法与思路整理解析几何是高中数学中的一门重要学科,它研究的是几何图形与代数方程之间的关系。

在解析几何中,位置关系问题是一个常见且重要的考点。

本文将介绍解析几何中位置关系问题的解题方法与思路,并通过具体的题目进行分析和说明,以帮助高中学生更好地理解与掌握这一知识点。

一、点与直线的位置关系问题在解析几何中,点与直线的位置关系问题是最基础也是最常见的问题之一。

对于给定的点和直线,我们需要确定它们的位置关系,即点是否在直线上、直线是否经过点等。

下面通过一个具体的例题来说明解决这类问题的方法。

例题:已知点A(2, 3)和直线L:2x - 3y + 6 = 0,判断点A是否在直线L上。

解析:要判断点A是否在直线L上,我们可以将点A的坐标代入直线的方程,如果等式成立,则点A在直线上。

代入A(2, 3)得到2(2) - 3(3) + 6 = 4 - 9 + 6 = 1 ≠ 0,因此点A不在直线L上。

思路:通过将点的坐标代入直线的方程,判断等式是否成立,从而确定点与直线的位置关系。

二、直线与直线的位置关系问题直线与直线的位置关系问题是解析几何中的另一个重要考点。

对于给定的两条直线,我们需要确定它们的位置关系,即两直线是否平行、相交或重合。

下面通过一个具体的例题来说明解决这类问题的方法。

例题:已知直线L1:2x - 3y + 6 = 0和直线L2:4x - 6y + 12 = 0,判断直线L1与直线L2的位置关系。

解析:要判断直线L1与直线L2的位置关系,我们可以比较两直线的斜率和截距。

直线的斜率可以通过将直线的方程转化为斜截式来得到,斜截式的形式为y = kx + b,其中k为斜率,b为截距。

直线的斜率相等,则两直线平行;直线的斜率相等且截距相等,则两直线重合;直线的斜率不相等,则两直线相交。

将直线L1和L2的方程转化为斜截式,得到L1:y = (2/3)x - 2 和 L2:y =(2/3)x - 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14高中数学解析几何问题的题型与方法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第14讲 解析几何问题的题型与方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。

其命题一般紧扣课本,突出重点,全面考查。

选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。

解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量..........的基本方法.....,这一点值得强化。

1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二、近几年高考试题知识点分析2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 (04江苏)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2(04辽宁)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是(A )26 (B )23(C )3 (D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查 例3(04天津文)若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是(A)0k << (B)0k <<(C)0k << (D )05k <<2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4(04江苏)已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.若=,求直线l 的斜率.本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高. 解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x(II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F QF MQ -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m kmMQ QF x m y km +-⨯-=-==-==---当时.于是.0,134422222==+k m m k m m 解得 故直线l 的斜率是0,62±. 例5(04全国文科Ⅰ)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I)由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,(2,).e a a e e e ==<<≠∴>≠+∞即离心率的取值范围为(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6(04全国文科Ⅱ)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OB OA 与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若,求l 在y 轴上截距的变化范围.解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x 设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x OB OA.41143||||),cos(-=⋅=OB OA OB OA 所以与夹角的大小为.41143arccos -π (Ⅱ)由题设AF FB λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ 由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③ 联立①、③解得λ=2x ,依题意有.0>λ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或 当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或 由,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ 直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,① ②01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.三、热点分析与2005年高考预测1.重视与向量的综合在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.例7(02年新课程卷)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足βα+=,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为(A )(x -1)2+(y -2)2=5 (B )3x +2y -11=0 (C )2x -y =0 (D )x +2y -5=0 例8(04辽宁)已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线2.考查直线与圆锥曲线的位置关系几率较高在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大. 3.与数列相综合在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.例9(04年浙江卷)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n ), .2121++++=n n n n y y y a(Ⅰ)求321,,a a a 及n a ;(Ⅱ)证明;,414*+∈-=N n y y nn(Ⅲ)若记,,444*+∈-=N n y y b nn n 证明{}n b 是等比数列.解:(Ⅰ)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+++=n n n y y y , ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++∴{}n a 为常数列.∴.,21*∈==N n a a n (Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又∵2214++++=n n n y y y ,∴.414n n yy -=+(Ⅲ)∵)41()41(44444841n n n n n yy y y b ---=-=+++-)(41444n n y y --=+,41n b -=又∵,041431≠-=-=y y b∴{}n b 是公比为41-的等比数列.4.与导数相综合近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.例10(04年湖南文理科试题)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。

相关文档
最新文档