新利息理论教案第2章
第二章_利息的度量

根据实际利率的定义,我们可知它与积累函数之间
的关系。
A(n)- A(n-1) In in = = n≥1(2.3.1) A(n-1) A(n-1)
特别地当n=1时, I1 ka(1)-ka(0) i1= = =a(1)-1=i (2.3.2) A( 0) ka(0) 1、当利率以单利计息时,2.3.1式可表示 in =
指将本期利息转入下期本金(俗称“利滚利”),下期
按 本利和总额计息的计息方式。
复利计算的本利和公式的推导 第1年本利和: Fl=P十Pi=P(1+i) 第2年本利和: F2=P(1+i)十P(1+i)i=P(1+i)2 第3年本利和: F3=P(1+i)2+P(1+i)2i=P(1+i)3 式中,P为本金;i为复利利率。 复利本利和公式为: 推出
2008-1-1 2008-12-31
5
二、积累函数
单位积累函数 设一个单位的本金投资,我们定义该项投资在时刻
t(t≥0)的积累值为单位积累函数,用a(t)表示。 1、当t=0时,即投资初始时刻, a(0)=1。 2、 一般情况下,a(t)为单调递增函数。 3、若a(t)为常数,则利息为零。 思考:如果在t=0、1、2、…等时刻观察积累函数 a(t)的取值,由此得到一系列积累值a(0)=1、a(1)、 等,那么在时刻0、1、2、…之间,积累函数a(t)的 取值如何变化的?
4
5、利率(Rate of Interest):单位时间,单位
本金所获得的利息,一般用利息与本金的百分数比 率表示。一般情况下,如无说明通常指的是年利率, 用字母i表示。 6、积累值(Accumulated Value):投资开始一段 时间后,回收的资金总和。又可称终值。 例2.1.1 甲向乙借款100元,从2008年1月1日起, 到2008年12月31日归还,且归还时一次性支付利息 10元。 110元 100元 乙的投资
利息理论——课件

27
定义 A(t)=k×a(t)称为金额函数,它给出 原始投资为k时在时刻t>=0的积累值。 记从投资之日算起第n个时期所得到的利息金额为 In.则 In=A(n)-A(n-1) 注 设t为从投资之日算起的时间,用来度量时间的 单位称为“度量时期”或“时期”,最常用的时期 为一年 以I(t)表示t时刻的利息额,则I(t)=A(t)-A(0)
14
利率决定利率
• 1、凯恩斯流动偏好模型 假定资产有货币(收益率0),债券(收益率i) 总资产=货币总量+债券总量 • :货币需求曲线,当利率升高时----债 券价格下降----债券需求升高-----货币需求下 Md 降(eg:利率升高,储蓄增加,消费减少)
15
• 当 (均衡利率)时, ,货币需求<供 Md Ms i1 i0 给,人们用多余的货币购买债券,债券价 格升高-----债券收益率(利率)下降 • 当时, ,货币需求>供给,人们用卖 Md Ms i1 i0 债券,债券价格下降-----债券收益率(利率) 升高
复利
定义 复利指前期赚取的利息在后期会赚取附加 利息的计息方式。复利的积累函数是的积累函数 是 a(t)=(1+i)t 对整数t0
复利的直观表述:1元本金经过时期t+s后的累积 值等于将1元本金经过t后的累积值再投资s期所形 成的累积值
40
定义 利息就是掌握和运用他人资金所付的代价或转 让货币使用权所得的报酬。 利息的计算与积累函数的形式、利息的计息次数有关。
§2.1积累函数与贴现
一般地,一笔金融业务可看成是投资一定数量的钱款 以产生利息,初始投资的金额称为本金,而过一段时 间后收回的总金额称为积累值。 积累值=本金+利息
2 利息理论

反过来,在1100元的基础上减少100元成为一年前的 价值1000元,其中减少的100元是贴现额。
利息率=利息100元与本金1000元之比=10%
贴现率=贴现额100元与累积额11000元之比=9.1%
18
利率和贴现率的关系
a(1) 1 (1 i) 1 i d i a(1) 1 i 1 i
0.05884
4
0.05870
6
0.05855
12
0.05841
∞
0.05827
i
(m)
0.06000
26
名义贴现率:一年结算多次的规定的年贴现率。
以 d ( m ) 表示,m表示结算次数,
1 d [1
d
(m)
m
(m)
]
m
d m d 1 [1 ] m
27
名义贴现率和利率、名义利率的关系
五、利息力
利息力:衡量确切时点上利率水平的指标。
(m) i 对于名义利率 ,当结算次数m趋于无穷大时便可 以表示确切时点上的利率水平。
定义利息力δ为,
lim i
m
( m)
d (1+i ) x |x 0 (1+i) ln(1 i) |x0 ln(1 i) dx 1 e . 故, e 1 i,
i(m) m 12% 12 i (1 ) 1 (1 ) 1 12.68% m 12
30
(2)实际贴现率为
d (m) m 10% 4 d 1 (1 ) 1 (1 ) 9.63% m 4
(3)由(1 i)1 1 d , 有
i(m) m d (n) n (1 ) (1 ) m n 12% 12 d (2) 2 (1 ) (1 ) 12 2
第二章 利息理论基础

例1.9近似答案——rule of 72
原理: (1 i ) n 2 n ln(1 i ) ln 2 n ln 2 ln 2 i ln 2 0.08 0.72 i 0.08 ln(1 i ) i ln(1 i ) i ln 1.08 i
0.72 6 0.12 0.72 (2) i i ( 6 ) 12 % n 12 0.06 0.72 (1) i i (12) 2% n 36 0.02 (1) i i (12) 12 % n
例1.2
某人存5000元进入银行,若银行分别以2% 的单利计息、复利计息、单贴现计息、复 贴现计息,问此人第5年末分别能得到多少 积累值?
例1.2答案
(1) 2%单利计息 A(5) 5000 (1 5 2%) 5500 ( 2) 2%复利计息 A(5) 5000 (1 2%)5 5520 (3) 2%单贴现计息 5000 5556 1 5 2% ( 4) 2%复贴现计息 A(5) 5000 A(5) 5531 ( 2% 5 1 )
利息度量二——积累方式不同
线形积累
指数积累
单利
a (t ) 1 it
复利
a (t ) (1 i ) t in i
i in 1 ( n 1)i
单贴现
a
1
复贴现
a 1 (t ) (1 d ) t dn d
(t ) 1 dt d 1 ( n 1) d
d ( 4) 4
1 1
1 d
d
例1.3
1、确定500元以季度转换8%年利率投资5年 的积累值。 2、如以6%年利,按半年为期预付及转换, 到第6年末支付1000元,求其现时值。 3、确定季度转换的名义利率,使其等于月度 转换6%名义贴现率。
新利息理论教案第2章

第 2 章:等额年金第 2.1 节:年金的含义本节内容:一、年金的含义(annuity )年金是指一系列的付款(或收款)。
年金最原始的含义是指一年付款一次,每次支付相等的金额的一系列款项。
但现在被广泛应用到其他更一般的情形,时期和金额都可以变化。
二、年金的分类1、确定年金和风险年金。
2、定期年金和永续年金。
3、多期支付一次、每期支付一次、每期支付多次年金和连续年金。
4、期初付年金和期末付年金。
5、即期年金和延期年金。
6、等额年金和变额年金。
本节重点:年金的定义。
本节难点:年金的分类。
第 2.2 节:年金的现值年金现值是一系列款项在期初的价值。
本节内容:2.2.1 期末付定期年金的现值假设年金支付期限为n 个时期,每个时期末支付1元,那么这种年金就是期末付定期年金。
其现值一般用符号n ia表示。
在不引起混淆的情况下,通常简记为na 。
na的计算过程图(略)一、公式23...n nv v v v a=++++(1)11n nv v v v i--==-二、理解1n n v ia +=三、例题1、现在向银行存入一笔钱,希望在以后的5年中每年末得到4000元,如果年实际利率为8%,现在应该存入多少钱?解:应用期末付年金现值公式:4000 58%a=4000×3.9927=15971说明:58%a的具体数值可以通过年金现值表查到2、一笔年金在20年内每年末支付4,另一笔年金在10年内每年末支付5。
如果年实际利率为i ,则这两笔年金的现值相等。
若另一笔款项n 年内以利率i 投资可以翻番,求n 。
解:201045aa =20101145v v i i--=100.25v =i=0.1486982.2.2 期初付定期年金的现值假设年金支付期限为n 个时期,每个时期初支付1元,那么这种年金就是期初付定期年金。
其现值一般用符号n ia表示。
在不引起混淆的情况下,通常简记为na 。
na的计算过程图(略)一、公式2311...n nv v v v a -=+++++(1)11n nv v v d--==-二、na与na的关系1、(1)n ni a a =+(可用公式展开证明)2、11nn aa -=+ (可用图形讲述)三、例题1、某企业租用了一间仓库,一次性支付50000元的租金后可以使用8年,假设年实际利率为6%,试计算如果每年初支付租金,该仓库的年租金应该为多少?解:设仓库的年租金为A ,可以建立50000=A8a,A=75962.2.3 期末付永续年金的现值永续年金是指无限期支付下去的年金。
利息理论(第二版)

课程简介
•
• 利息理论(又称复利数学),它是以经济理论为基础,
•
应用简单的数学工具给出有关利息和年金的计算方法。 美国耶鲁大学著名经济理论家欧文· 费雪(Irving Fisher) 在1930年出版的《利息理论》(The Theory of Interest) 标志着利息理论学科的诞生。费雪(I.Fisher)在其《利 息理论》中对利息的概念刻划得淋漓尽致。“任何物 品都是不同程度的耐用品,耐用品能在未来某个时段 内提供一连串的服务,而其全部价值的折现之和,构 成这物品的现值”,这个观点解释了人们为什么会悉 心照顾一桶十年后才开的红酒、为什么要盖一所能用 上两百年的房子。 随着社会经济的发展,利息理论已经渗透到保险精算、 财务分析、证券投资、资产定价、金融风险管理等各 个领域。
• 北美精算学会①
代号
Course 1
Course 2 Course 3
课程
精算数学基础(Mathematical Foundations of Actuarial Science)
利息理论、经济学和金融学(Interest Theory, Economics and Finance) 随机精算模型(Actuarical Models)
准精算师考试科目 科目代码 A1 科目 数学 学分 考试时间 备注 3小时
A2 A3 A4
A5 A6 A7
金融数学 精算模型 经济学基础
寿险精算 非寿险精算 会计与财务
3小时 3小时 3小时
3小时 3小时 3小时
A8
精算管理
3小时
中国精算师资格考试(金融数学)
• 考试内容(结构):
A、利息理论 (分数比例约为30%)
世界主要国家的保险精算资格考试
金融学教案第二章 信用、利息与利率

二、信用的产生
产业资本的正常循环包括购买、生产和销售三个环节,在其循 环周转过程中产业资金和社会总资金会存在大量的闲置,而同时社 会再生产过程中又会产生对货币资金大量临时性的要求,产生了两 种情况:一方面是部分单位和个人有闲置的货币资金需要寻找出路; 另一方面是部分单位和个人因临时性需要而急于借入一笔资金。这 就产生了对闲置资金进行调剂使用的可能性和必要性,
二、典型信用工具
信用卡 信用卡是银行或专业公司对具有一定信用的顾客所 发行的一种赋予信用的证书。 需要信用卡的消费者要向银行或专业公司申请,经 过审查合格后取得。 利用信用卡消费者可以在地点消费。实行先消费后 结算。 利用信用卡消费顾客需要支付结算费用和银行利息。
二、典型信用工具
股票 股份公司发给投资者作为投资入股的证书和索取股 息红利的凭证。 股票一经认购,持有者不能以任何理由要求退还股 本,只能通过证券市场将股票转让和出售。 股票有多种分类法,其中最重要的是按股东权利划 分为普通股股票和优先股股票,前者的股息随公司的盈 利而增减,后者的股息率固定。 我国目前的股票按所有者分为国家股、法人股、公 众股;按上市地点或投资者的不同分为A股、B股、H股、 N股等。
将社会资金利润率平均化。 调节宏观经济运行与微观经济运行。 提供和创造信用流通工具。 综合反映国民经济运行状况。
第二节 信用工具
一、信用工具的分类
信用工具亦称融资工具,是资金供给者与资金需求 者之间进行资金融资时所签发的,证明债权或所有权的 各种具有法律效用的凭证。 按融资方式:直接融资信用工具 间接融资信用工具 按可接受性程度:无限可接受信用工具 有限可接受信用工具 按偿还期限长短:短期信用工具 长期信用工具 不定期信用工具
新编利息理论 刘波 课后答案

第一章习题答案1. 设总量函数为A(t) = t2 + 2t + 3 。
试计算累积函数a(t) 和第n 个时段的利息In 。
解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t2 + 2t + 3)/3 In = A(n) − A(n − 1)= (n2 + 2n + 3) − ((n − 1)2 + 2(n − 1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)Ir(0 < r <n); (2)Ir = 2r(0 < r < n). 解:()n n-1t 11I A (n )A (t)I I I n (n 1)/2t(t 1)/2+=-=+++=+-+・・・(2)1t 11I A (n )A (t) 22nn k k t I ++=+=-==-∑3. 已知累积函数的形式为:2a (t) at b=+。
若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。
解: 由题意得a(0) = 1, a(3) =A(3)/A(0)= 1.72⇒ a = 0.08, b = 1∴ A(5) = 100 A(10) = A(0) ・ a(10) = A(5) ・ a(10)/a(5)= 100 × 3 = 300. 4. 分别对以下两种总量函数计算i5 和i10 :(1) A(t) = 100 + 5t; (2)tA (t) 100(1 0.1)=+.解:(1)i5 =(A(5) − A(4))/A(4)=5120≈ 4.17% i10 =(A(10) − A(9))/A(9)=5145≈ 3.45% (2)i5 =(A(5) − A(4))/A(4)()()()544109109100(1 0.1)100(1 0.1)10%100(1 0.1)100(1 0.1)100(1 0.1)i (A 10A 9)/A 9 10%100(1 0.1)+-+==++-+=-==+5.设()n A 4 1000, i 0.01n==. 试计算A(7) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2 章:等额年金第 2.1 节:年金的含义本节内容:一、年金的含义(annuity )年金是指一系列的付款(或收款)。
年金最原始的含义是指一年付款一次,每次支付相等的金额的一系列款项。
但现在被广泛应用到其他更一般的情形,时期和金额都可以变化。
二、年金的分类1、确定年金和风险年金。
2、定期年金和永续年金。
3、多期支付一次、每期支付一次、每期支付多次年金和连续年金。
4、期初付年金和期末付年金。
5、即期年金和延期年金。
6、等额年金和变额年金。
本节重点:年金的定义。
本节难点:年金的分类。
第 2.2 节:年金的现值年金现值是一系列款项在期初的价值。
本节内容:2.2.1 期末付定期年金的现值假设年金支付期限为n 个时期,每个时期末支付1元,那么这种年金就是期末付定期年金。
其现值一般用符号n i a表示。
在不引起混淆的情况下,通常简记为na 。
na的计算过程图(略)一、公式23...n nv v v v a=++++(1)11n nv v v v i--==-二、理解1n n v ia +=三、例题1、现在向银行存入一笔钱,希望在以后的5年中每年末得到4000元,如果年实际利率为8%,现在应该存入多少钱?解:应用期末付年金现值公式:4000 58%a=4000×3.9927=15971说明:58%a的具体数值可以通过年金现值表查到2、一笔年金在20年内每年末支付4,另一笔年金在10年内每年末支付5。
如果年实际利率为i ,则这两笔年金的现值相等。
若另一笔款项n 年内以利率i 投资可以翻番,求n 。
解:201045aa =20101145v v i i--=100.25v =i=0.1486982.2.2 期初付定期年金的现值假设年金支付期限为n 个时期,每个时期初支付1元,那么这种年金就是期初付定期年金。
其现值一般用符号n i a表示。
在不引起混淆的情况下,通常简记为na 。
na的计算过程图(略)一、公式2311...n nv v v v a -=+++++(1)11n nv v v d--==-二、na与na的关系1、(1)n ni a a =+(可用公式展开证明)2、11nn aa -=+ (可用图形讲述)三、例题1、某企业租用了一间仓库,一次性支付50000元的租金后可以使用8年,假设年实际利率为6%,试计算如果每年初支付租金,该仓库的年租金应该为多少?解:设仓库的年租金为A ,可以建立50000=A8a,A=75962.2.3 期末付永续年金的现值永续年金是指无限期支付下去的年金。
因此,其现值等于定期年金的现值当支付期限n 趋于无限大时的极限。
若用a ∞表示期末付永续年金的现值,则有1lim n n i a a ∞→∞==2.2.4 期初付永续年金的现值 一、公式若用a∞表示期初付永续年金的现值,则有1lim nn daa ∞→∞==二、a ∞与a ∞的关系 (1)i a a ∞∞=+三、例题1、某企业租用了一间仓库,一次性支付50000元的租金后可以使用8年,假设年实际利率为6%,试计算如果每年初支付租金,该仓库的年租金应该为多少?解:设仓库的年租金为A ,可以建立50000=A8a,A=75962、一笔10000元的贷款,期限为10年。
如果年利率为6%,比较下述三种还款方式,那种支付的利息多。
(1)在10年末一次性偿付所有本息;(2)每年末支付利息,在第10年末再偿付本金;(3)10年内每年末偿付相等的金额,在10年末刚好付清。
解:(1)这笔款项在第10年末的累计值为1010000(10.06)17909+=因此支付的利息总额为:17909-10000=7909元 (2)每年末支付的利息为100000.06600⨯= 因此支付的利息总额为:6000元 (3)设每年末偿付的金额为A 则1010000Aa =A=1359因此支付的利息总额为:135********⨯=3、A 留下一笔十万元遗产。
这笔财产头10年的利息付给收益人B ,第2个10年利息付给收益人C ,此后的均给慈善机构D 。
若此项财产的年实际利率为7%,试确定B 、C 、D 在此项财产中的分额。
解:此项财产实际上为100000×0.007=7000元其末付永续年金。
B :700010a=7000×7.0236=49165C :7000(20a -10a )=700010a 10v =24993 D :7000(a ∞-20a)=7000a ∞20v =25842本节重点:期末付定期年金的现值的计算公式。
本节难点:公式之间的关系。
第 2.3 节:年金的终值定期年金存在终值,而永续年金不存在终值。
本节内容:2.3.1 期末付定期年金的终值 期末付定期年金的终值一般用符号n is表示。
一、公式211(1)(1)...(1)n ni i i s-=+++++++1(1)(1)11(1)n n i i i i-++-==-+二、解释1(1)nni is++=2.3.2 期初付定期年金的终值 期初付定期年金的终值一般用符号n i s表示。
一、公式21(1)(1)...(1)(1)n n ni i i i s-=++++++++(1)(1(1))(1)1(1)11(1)/1n n n i i i i i i i d+-++-+-===-++二、ns与ns的关系1、(1)nni s s=+ (可用公式展开证明)2、11nn s s+=- (可用图形讲述)三、例题1、某人预计在10年后需要40000的资金,为此他打算每年初往一种基金存入一笔钱。
如果基金的年实际利率为6%,那么他每年初应该存入多少钱才能保证在10年末获得40000元。
解:假设每年初存入A 元1040000A s =A=28632、投资者A 和投资者B 在40年间每年末均投资100,从第41年开始,投资者A 每年末抽回X 并持续15年,投资者B 每年末抽回Y 也持续15年。
两项投资在最后一次抽回后的账面余额均为0.已知投资者A 得年利率为8%,投资者B 的年利率为10%,求Y-X 。
解:对于投资者A :400.08150.08100s Xa =得 X=3026.54 对于投资者B :400.1150.1100sYa =得 Y=5818.94 Y-X=2792.40本节重点:期末付定期年金的终值。
本节难点:ns与ns的关系。
第 2.4 节:年金的现值与终值的关系本节内容:2.4.1 年金的现值与终值之间的换算关系(1)n n n i s a =+(1)nnni s a=+2.4.2 年金的现值与终值之间的倒数关系11nnias=+11nnd as=+本节重点:年金的现值与终值之间的换算关系。
本节难点:年金的现值与终值之间的倒数关系。
第 2.5 节:年金在任意时点上的值本节内容:2.5.1年金在支付期开始前任意时点上的值 一、延期m 个时期的期末付定期年金的现值|nm a。
|(1)m m n n n m i v a a a -=+=|nm nm m a aa +=-二、延期m 个时期的期末付永续年金的现值|m a∞|m m v ia∞=三、期初付延期年金的现值的计算(略) 四、例题2.5.2 年金在支付期内任意时点上的值2.5.3年金在支付期结束后任意时点上的值本节重点:延期m 个时期的期末付定期年金的现值|n m a 。
本节难点:延期m 个时期的期末付定期年金的现值|nm a。
第2.6节:可变利率的年金的现值与终值本节内容:2.6.1 每笔款项都以其支付时的利率计算2.6.2 每笔款项经历哪个时期,就以哪个时期的利率计算本节重点: 本节难点:补充:一、非标准时期与利率 二、非复利年金补充概念:一、利息结转周期和年金支付周期周期是一个时间的概念。
利息结转周期是指结转一次利息所需要的时间长度;年金支付周期是指支付一次年金所需要的时间长度。
二、利息结转周期和年金支付周期不相等时的的利息问题。
具体计算有两种思路。
第2.7节 每个利息接转周期支付m 次的年金(每年支付m 次年金) 本节内容:一、此类问题的直接计算例:一笔50000元的贷款,计划在今后的5年内按月偿还,如果年实际利率为6.09%,试计算每月末的付款金额。
解:月实际利率112(10.0609)10.0049386+-=假设每月末的付款金额为X ,则有 600.004938650000Xa =X=965 二、新公式n 表示利息结转次数,m 表示每个利息结转周期包含的支付次数,mn 表示年金的支付次数,i 表示每个利息结转周期的实际利率。
2.7.1 期末付年金一、n 表示利息结转次数,m 表示每个利息结转周期包含的支付次数,i 表示每个利息结转周期的实际利率,在每个支付周期末付款1/m 元,每个利息结转周期的付款是1元,那么该年金的现值为:121()1(...)n m n mm m na v v v v m-=++++ ()()1n m m n v ia i i-==二、相应的,在每个支付周期末付款1/m 元,那么该年金的终值为()()(1)m n m n ns i a =+()m n i s i=三、例题1、投资者在每月末向某基金存入100元,如果基金的年实际利率为5%,试计算该投资者在第5年末的累计值是多少?解:m=12,i=5%,每年支付的总额为1200元。
(12)(12)5512001200i s s i==6781.372、有一笔3000万元的贷款将在今后的5年内每半年末等额偿还一次,若贷款的年利率为5%,计算每半年末的付款额R 应该为多少。
解:每年付款总额为2R ,(2)523000Ra =R=342.24万元2.7.2 期初付年金一、n 表示利息结转次数,m 表示每个利息结转周期包含的支付次数,i 表示每个利息结转周期的实际利率,在每个支付周期初付款1/m 元,每个利息结转周期的付款是1元,那么该年金的现值为:121()1(1...)n m m m m na v v v m-=++++ ()()1n m m n v da d d-== 二、相应的,在每个支付周期初付款1/m 元,那么该年金的终值为()()(1)m n m n n s i a =+()m n d s d=三、转换关系 1()()(1)m m mn n a i a =+1()()(1)m m mnn s i s =+四、例题例、一笔50000元的贷款,计划在今后的5年内按月偿还,如果年实际利率为6019%,试计算每月初的付款金额。
解:设每月初的付款金额为X ,那么全年付款总额为12X ,因此有(12)50.06095000012Xa =X=960元2.7.3 永续年金一、m 表示每个利息结转周期包含的支付次数,i 表示每个利息结转周期的实际利率,在每个支付周期末付款1/m 元的永续年金现值为:12()1(...)m mm a v v m∞=++ ()1m i =二、同理,在每个支付周期初付款1/m 元的永续年金现值为:()m a∞()1m d=三、转换关系 1()()(1)m m ma i a ∞∞=+本节重点:121()1(...)n m n m m m na v v v v m -=++++()()1nm m n v ia i i-==的推导。