第三章-机器人运动学
第三章机器人运动学

第三章机器人运动学机器人运动学是研究机器人如何在二维或三维空间中进行运动的学科。
它涉及到机器人的轨迹规划、运动控制和路径规划等重要内容。
本章将介绍机器人运动学的基本概念和常用模型,帮助读者全面了解机器人的运动规律和控制原理。
1. 机器人运动学的基本概念机器人运动学是研究机器人位置和姿态变化的学科,包括正运动学和逆运动学两个方面。
正运动学研究机器人的末端执行器的位置和姿态如何由关节变量确定;逆运动学则研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值。
机器人的运动学建模一般采用DH(Denavit-Hartenberg)参数表示方法。
DH 参数是由Denavit和Hartenberg提出的一种机器人坐标系的选择和旋转轴的确定方法。
通过定义一系列关节坐标系,建立起机器人的坐标系链,并确定各个关节的旋转轴和约定的方向,可以方便地描述机器人的运动学特性。
2. 机器人正运动学机器人正运动学是研究机器人末端执行器位置和姿态如何由关节变量确定的问题。
在机器人的正运动学中,常用的方法有几何法和代数法。
2.1 几何法几何法是一种较为直观的方法,通过对机器人各个关节坐标系的位置和旋转进行推导,得到机器人末端执行器的位置和姿态。
几何法适用于无约束和无外力干扰的情况,可以简单快速地推导出机器人的正运动学方程。
2.2 代数法代数法是一种基于运动学链的代数运算的方法,通过DH参数建立起机器人的坐标系链,并通过矩阵运算推导出机器人的正运动学方程。
代数法在机器人正运动学的推导和计算过程中更具有普适性和灵活性。
3. 机器人逆运动学机器人逆运动学是研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值的问题。
机器人逆运动学在机器人运动规划和路径控制中起到重要的作用。
机器人逆运动学的求解一般采用迭代方法,通过迭代计算来逼近解析解,实现对机器人关节变量的求解。
逆运动学的求解过程中可能会出现奇异点和多解的情况,需要通过约束条件和优化方法来处理。
第3章 机器人运动

3 齐次坐标变换 3.1齐次坐标变换 3.1齐次坐标变换 假设机器人手部拿一个钻头在 工件上实施钻孔作业,已知钻 头中心P点相对于手腕中心的 位置,求P点相对于基座的位 置。
x i o
zb kb yb jb o, ib xb P
z
k
j
y
分别在基座和手部设置为固定坐标系和动坐标系, 如图所示。
P点 相对于固定坐标系
1 4 0 −3 0 7 0 1
T中第一列的三个元素(0,1,0)T表示活动坐标系的u轴与 固定坐标系三个坐标轴之间的投影,故u轴平行于y轴;T中第 二列的三个元素(0,0,1)T表示活动坐标系的v轴与固定坐 标系三个坐标轴之间的投影,故v轴平行于z轴;T中第三列的 三个元素(1,0,0)T表示活动坐标系的w轴与固定坐标系三 个坐标轴之间的投影,故轴w平行于x轴;T中第四列的三个元 素(4,-3,7)T表示活动坐标系的原点与固定坐标系原点之 间的距离。
b
3.3.2 举例 ⋅ i i
z kb k o, xb i o xi y j y j
1 0 0 R = 0 1 0 0 0 1
所以
x0 X 0 = y0 z0
0 0 1 0 0 1 0 0
1 0 A = Trans( x0 , y0 , z0 ) = 0 0
上面所述的坐标变换每步都是相对于固定坐标系进行的,也可以 相对于动坐标系进行变换: 坐标系 {o , : u , v, w} 初始与固定坐标系 {o:x, y, z} 相重合,首先相对于固定坐标系平移
4i − 3 j + 7 k ;然后绕活动系的v轴旋转900;最后绕w轴旋转900。
变换的几何表示如图所示。这是合成变换矩阵为
机器人学-第3章_机器人运动学

o
X
由(3-1)式可得运动学约束条件,x&sinq y&cosq 0 平面轮式移动机器人
是所谓的“非完整约束”。物理含义是,机器人不能沿轮轴线方向横移。
设轮距为D,轮半径为r,两轮独立驱动时轮子转速wL,wR 则
v
r 2
wR
wL
,
w
r D
wR
wL
(3-2)
1
v
r 2
wR
wL
,
w
r D
wR
wL
q2 L1
定义参考坐标系{0},它固定在基座上,当第一
个关节变量(q1)为0时坐标系{1}与坐标系{0}重合
,因此建立参考坐标系{0}如图所示,Z0轴与关节1 的轴线重合且垂直于机械臂所在平面。
q1
平面3R机械臂
由于机械臂位于一个平面上,因此所有Z轴相互平
X3
行,且连杆偏距d和连杆转角均为0。该机械臂的DH
动距离分别为lR = rR和lL = rL,
机器人移动距离
l=(lR+lL)/2
方位角变化
q =(lR-lL)/D。
第n步机器人位姿可以按下面公式更新:
qn qn1 q
xn
xn1
l
cos qn1
q
/
2
yn
yn1
l
sin qn1
q
/
2
若已知机器人的初始位姿,根据该递推公式可以确定任意时刻机器
人位姿,比较简单,但因积累误差大,所以长时间不可靠。
相邻连杆间坐标变换公式
建立 {P}、{Q}和{R}3个中间坐标系, 其中{i}和{i-1}是固定在连杆 i 和 i-1 上的固 连坐标系,如图3-13所示。
机器人学第3章 机器人运动学

(3.46)
如果已知一个表示任意旋转的齐次变换,那么就能够 确定其等价欧拉角。
3.2 机械手运动方程的求解
21
3.2.2 滚、仰、偏变换解
直接从显式方程来求解用滚动、俯仰和偏转表示的变 换方程。 RPY变换各角如下:
atan2(n y , n x ) 180 atan2(n z , cn x sn y ) atan2( sa x ca y , so x co y )
0
T6 0T1 (1 )1T2 (2 )2T3 (3 )3T4 (4 )4T5 (5 )5T6 (6 )
3.1 机器人运动方向的表示
5
3.1.1 运动姿态和方向角
用横滚、俯仰和偏转角表示运动姿态 另一种常用的旋转集合是横滚(roll)、俯仰(pitch) 和偏转(yaw)。
图3.3 用横滚、俯仰和偏转表示机械手运动姿态
3.1 机器人运动方向的表示 6
3.1.1 运动姿态和方向角
对于旋转次序,规定:
1
(3.16)
3.1 机器人运动方向的表示
15
3.1.3 连杆变换矩阵及其乘积
如果机械手与参考坐标系的相对关系是由变换 Z 来 表示的,而且机械手与其端部工具的关系由变换 E 表示,那么此工具端部对参考坐标系的位置和方向 可由变换 X 表示如下:
可求得:
X ZT6 E
T6 Z 1 XE 1
(3.52)
3.2 机械手运动方程的求解
22
3.2.3 球面变换解
把求解滚、仰和偏变换方程的技术用于球面坐标表示 的运动方程。 球面变换的解为:
atan2( p y , p x ), 180 atan2(cp x sp y , p z )
第三章_机器人运动学

举例(example)
• 一个差动驱动机器人(针对图3.3所示机器人) 将滚动约束和滑动约束方程联合起来可得到式:
J1 ( s ) J C ( ) R( ) I 2 1 s 0
由于小脚轮无动力,并可在任何方向自由运动,因此可忽略第三个接触点。 其余两个轮不可操纵,因此 J1 ( s ) 和 C1 ( s ) 分别简化为
• 瞬时转动中心 ICR (instantaneous center of rotation) 在任何给定时刻,轮子必定沿着半径为 R的某个圆瞬时的运动,使得那个圆的中心 处在零运动直线上,该中心称为瞬时转动 中心。它可以位于沿零运动直线的任何地 方。
•
要使机器人运动存在一个单独的解,必须有 一个单独的ICR,即所有的零运动直线在一个单 独点相交。 • ICR的几何特性显示了机器人的活动性是机 器人运动上的独立约束数目的函数而不是轮子数 目的函数。 • 独立的滑动约束的数目可用 C1 (s ) 的秩来描述
.
.
.
.
(1)
• 其次,计算在YR 方向的贡献
由于没有一个轮子可以提供侧向运动, 所以沿YR 方向的速度总是零。 • 最后,计算旋转角速度分量。可独立的计 算各轮的贡献,且只要简单相加即可。 . .
r 1 r 2 1 2 2l 2l
(2)
ห้องสมุดไป่ตู้
• 联合式(1)和式(2)得到差动驱动机器人的 运动学模型如式(3)所示:
x I y
• 为了根据分量的移动描述机器人的移动, 需要将全局参考架下的移动映射到局部参 考框架下的运动。该运动可由正交旋转矩 阵来完成:
举例(example)
机器人技术基础课件第三章-机器人运动学精选全文完整版

如此类推,对于六连杆机器人,有下列矩阵:
06T 01T 12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T 23T 34T 45T 56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
一个六连杆机械手可具有六个自由度,每个连杆含 有一个自由度,并能在其运动范围内任意定位与定向。 其中三个自由度用于规定位置,而另外三个自由度用 来规定姿态。
8
3.1.1 连杆坐标系
机械手的运动方向
机器人手部的位置和姿态也可以
用固连于手部的坐标系{B}的位姿
来表示
关节轴为ZB, ZB轴的单位方向 矢量α称为接近矢量,指向朝外。
(1) 坐标系{i-1}绕xi-1轴转角αi-1,使Zi-1与Zi平行,算子为Rot(x, αi-1) ; (2) 沿Xi-1轴平移ai-1,使Zi-1和Zi共线, 算子为Trans(ai-1,0,0); (3)绕Zi轴转角θi; 使得使Xi-1与Xi平行, 算子为Rot(z,θi);
(4) 沿Zi轴平移di。使得i-1系和i系重合, 算子为Trans(0,0,di)。
3.2.1 机器人正运动学方程
连杆 i 1
2
3
连杆长 度ai-1
0
a0
a1
连杆偏距 di 0
0
d2
连杆扭角 αi-1 00
00
-900
关节角 θi
θ1(00) θ2(00) θ3(00)
3.2.1 机器人正运动学方程
该3自由度机器人的运动学方程为:
第3章工业机器人运动学和动力学概要

第3章工业机器人运动学和动力学机器人操作臂可看成一个开式运动链,它是由一系列连杆通过转动或移动关节串联而成。
开链的一端固定在基座上,另一端是自由的,安装着工具,用以操作物体,完成各种作业。
关节由驱动器驱动,关节的相对运动导致连杆的运动,使手爪到达所需的位姿。
在轨迹规划时,最感兴趣的是末端执行器相对于固定参考系的空间描述。
为了研究机器人各连杆之间的位移关系,可在每个连杆上固接一个坐标系,然后描述这些坐标系之间的关系。
Denavit和Hartenberg提出一种通用方法,用一个4*4的齐次变换矩阵描述相邻两连杆的空间关系,从而推导出“手爪坐标系”相对于“参考系”的等价齐次变换矩阵,建立出操作臂的运动方程。
称之为D-H矩阵法。
3.1 工业机器人的运动学教学时数:4学时教学目标:理解工业机器人的位姿描述和齐次变换;掌握齐次坐标和齐次变换矩阵的运算;理解连杆参数、连杆变换和运动学方程的求解;教学重点:掌握齐次变换及运动学方程的求解教学难点:齐次变换及运算教学方法:讲授教学步骤:齐次变换有较直观的几何意义,而且可描述各杆件之间的关系,所以常用于解决运动学问题。
已知关节运动学参数,求出末端执行器运动学参数是工业机器人正向运动学问题的求解;反之,是工业机器人逆向运动学问题的求解。
3.1.1 工业机器人位姿描述1.点的位置描述在选定的指教坐标系{A}中,空间任一点P的位置可用3*1的位置矢量表示,其左上标代表选定的参考坐标系。
2.点的齐次坐标如果用四个数组成4*1列阵表示三维空间直角坐标系{A}中点P,则该列阵称为三维空间点P的齐次坐标,如下:必须注意,齐次坐标的表示不是惟一的。
我们将其各元素同乘一个非零因子后,仍然代表同一点P,即其中:,,。
该列阵也表示P点,齐次坐标的表示不是惟一的。
3.坐标轴方向的描述用i、j、k分别表示直角坐标系中X、Y、Z坐标轴的单位向量,用齐次坐标来描述X、Y、Z轴的方向,则有,,从上可知,我们规定:4*1列阵中第四个元素为零,且,则表示某轴(某矢量)的方向。
第03章 机器人的运动学和动力学

教案首页课程名称农业机器人任课教师李玉柱第3章机器人运动学和动力学计划学时 3教学目的和要求:1.概述,齐次坐标与动系位姿矩阵,了解平移和旋转的齐次变换;2.机器人的运动学方程的建立与求解*;3.机器人的动力学*重点:1.机器人操作机运动学方程的建立及求解;2.工业机器人运动学方程3.机器人动力学难点:1. 机器人动力学方程及雅可比矩阵基本原理思考题:1.简述齐次坐标与动系位姿矩阵基本原理。
2.连杆参数及连杆坐标系如何建立?3.机器人动力学方程及雅可比矩阵基本原理是什么?第3章机器人运动学和动力学教学主要内容:3.2 齐次坐标与动系位姿矩阵3.3 齐次变换3.4 机器操作机运动学方程的建立与求解3.5 机器人运动学方程3.6 机器人动力学本章将主要讨论机器人运动学和动力学基本问题。
先后引入了齐次坐标与动系位姿矩阵、齐次变换,通过对机器人的位姿分析,介绍了机器人运动学方程;在此基础上有对机器人运动学方程进行了较为深入的探讨。
3.1 概述机器人,尤其是关节型机器人最有代表性。
关节型机器人实质上是由一系列关节连接而成的空间连杆开式链机构,要研究关节型机器人,必须对运动学和动力学知识有一个基本的了解。
分析机器人连杆的位置和姿态与关节角之间的关系,理论称为运动学,而研究机器人运动和受力之间的关系的理论则是动力学。
3.2 齐次坐标与动系位姿矩阵3.2.1 点的位置描述在关节型机器人的位姿控制中,首先要精确描述各连杆的位置。
为此,先定义一个固定的坐标系,其原点为机器人处于初始状态的正下方地面上的那个点,如图3-1(a)所示。
记该坐标系为世界坐标系。
在选定的直角坐标系{A}中,空间任一点P的位置可以用3×1的位置向量A P表示,其左上标表示选定的坐标系{A},此时有A P=XYZ P P P ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦式中:P X、P Y、P Z—点P在坐标系{A}中的三个位置坐标分量,如图3-1(b)。
3.2.2 齐次坐标将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即为n维坐标的齐次坐标....。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 2.广义变换矩阵 对旋转关节: Ai Rot( z, i )Trans(0,0, d i )Trans(ai ,0,0) Rot( x, i )
c i s i 0 0 s i c i 1 c i c i 1 s i 1 0 s i s i 1 c i s i 1 c i 1 0 ai 1c i ai 1s i di 1
Sph( , , r ) Rot( z , ) Rot( y, )Trans(0,0, r ) 0 s c s 0 0 c s 0 c 0 0 1 0 0 0 1 0 s 0 c 0 0 0 1 0 0 0 cc s cc rcs sc c s s rs s s 0 c rc 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 r 1
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 1.广义连杆(D-H坐标)
全为转动关节: Zi坐标轴; Xi坐标轴; Yi坐标轴; 连杆长度ai; 连杆扭角αi; 两连杆距离di; 两杆夹角θi
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 1.广义连杆 全为转动关节: Zi坐标轴:沿着i+1关节的运动轴; Xi坐标轴:沿着Zi和Zi-1的公法线,指向离开Zi-1轴的方向; Yi坐标轴:按右手直角坐标系法则制定; 连杆长度ai; Zi和Zi-1两轴心线的公法线长度; 连杆扭角αi: Zi和Zi-1两轴心线的夹角; 两连杆距离di:相邻两杆三轴心线的两条公法线间的距离; 两杆夹角θi :Xi和Xi-1两坐标轴的夹角;
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 2.广义变换矩阵 建立D-H坐标系后,可通过两个旋转、两个平移建立相邻 连杆i-1和i间的相对关系。 1。绕Zi-1轴转θi角,使Xi-1转到与Xi同一平面内; 2。沿Zi-1轴平移di,把Xi-1移到与Xi同一直线上; 3。沿i轴平移ai-1,把连杆i-1的坐标系移到使其原点与 连杆i的坐标系原点重合的位置; 4。绕Xi-1轴转αi-1角,使Zi-1转到与Zi同一直线上; 这四个齐次变换叫Ai矩阵:
Robotics运动学
3.1 机器人运动方程的表示
3.1.2 运动位置和坐标 2.用球面坐标表示末端运动位置 由于上述两个旋转,使执行器姿态发生变化.为保持姿 态,执行器要绕其自身Y和Z轴反向旋转.
Sph( , , r ) Rot( z , ) Rot( y, )Trans(0,0, r ) Rot( y A , ) Rot( z A , ) 1 0 0 0 0 0 rcs 1 0 rss 0 1 rc 0 0 1
0 0 0 c s s c 1 0 0 0 1 z 0 0 0 0 1 0 0 s 0 rc c 0 rs 0 1 z 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 r 0 0 1 0 0 1
arccos(az ) arccos(ax / s ) arccos(nz / s )
arccos:符号不定; 特殊点不准确; 0或180时,后两式没定义。
Robotics运动学
3.2 机械手运动方程的求解
3.2.1欧拉变换解 2.用显式方程求各角度 Rot( z, ) 1T Rot( y, ) Rot( z, )
3.1.0 A矩阵和T矩阵 机械手可以看成由一系列关节连接起来的连杆组构成. 用A矩阵描述连杆坐标系间相对平移和旋转的齐次变换. A1表示第一连杆对基坐标的位姿 T2 A1 A2 A2表示第二连杆对第一连杆位姿 T6 A1 A2 A3 A4 A5 A6 则第二连杆对基坐标的位姿为
Robotics运动学
Sph( , , r ) Rot( z , ) Rot( y, )Trans(0,0, r ) 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 r 1
Robotics运动学
3.1 机器人运动方程的表示
3.1.2 运动位置和坐标 表示物体的位置:笛卡尔坐标、柱面坐标、球面坐标 1.用柱面坐标表示末端运动位置 沿X平移r,绕Z轴转α,沿Z轴平移z.
Cyl ( z , , r ) Trans(0,0, z ) Rot( z , )Trans(r ,0,0) 1 0 0 0 c s 0 0
(绕原坐标系运动,左乘)
Robotics运动学
3.1 机器人运动方程的表示
3.1.2 运动位置和坐标 2.用球面坐标表示末端运动位置 沿Z平移r,绕Y轴转β,绕Z轴转α.
Rot( y, ) 1 Rot( z, ) 1T Rot( z, )
机器人运动学
Kinematics of Robotics
3.1 机器人运动方程的表示
(姿态和方向角\位置和坐标\连杆变换矩阵)
3.2 机械手运动方程的求解
(欧拉变换解/滚仰偏变换解/球面变换解)
3.3 PUMA560机器人运动方程
(运动分析/运动综合)
Robotics 运动学
3.1 机器人运动方程的表示
注意:坐标变换是右乘.即后面的变 换乘在右边.(绕新轴转,连乘)
Robotics运动学
3.1 机器人运动方程的表示
3.1.1 运动姿态和方向角 3.用滚\仰\偏转表示运动姿态 RPY( , , ) Rot( z , ) Rot( y, ) Rot( x, ) 横滚:绕Z轴转φ, c s 0 0 c 0 s 0 1 0 s c 0 0 0 0 c 1 0 0 俯仰:绕Y轴转θ, 0 0 1 0 s 0 c 0 0 s 偏转:绕X轴转ψ. 0 0 0 1 0 0 0 1 0 0 注意:左乘.
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 3.用A矩阵表示T矩阵
i 1
T6 Ai Ai 1 A6
T6:机械手末端对其基座 Z:机械手基座对参考坐标系 E:端部工具对机械手末端 X:端部工具对参考坐标系
X ZT6 E T6 Z 1 XE 1
Robotics运动学
0 s c 0
0 0 0 1
Robotics运动学
3.1 机器人运动方程的表示
3.1.2 运动位置和坐标 1.用柱面坐标表示末端运动位置 由于上述绕Z轴的旋转,使末端执行器的姿态出现变化, 若要执行器姿态不变,则需将其绕执行器Z轴反向旋转.
c s s c Cyl ( z , , r ) 0 0 0 0 1 0 0 rc 0 1 0 rs 0 0 1 z 0 0 0 1 0 rc c( ) s ( ) s ( ) c( ) 0 rs 1 z 0 0 0 1 0 0 0 0 0 0 1 0 0 1
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 1.广义连杆(D-H坐标)
含移动关节: Zi坐标轴; Xi坐标轴; Yi坐标轴; 连杆长度ai=0; 连杆扭角αi; 两连杆距离di; 两杆夹角θi
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 1.广义连杆 含移动关节: Zi坐标轴:沿着i+1关节的运动轴; Xi坐标轴:沿着Zi和Zi-1的公法线,指向离开Zi-1轴的方向; Yi坐标轴:按右手直角坐标系法则制定; 连杆长度ai; Zi和Zi-1两轴心线的公法线长度; 连杆扭角αi: Zi和Zi-1两轴心线的夹角; 两连杆距离di:相邻两杆三轴心线的两条公法线间的距离; 两杆夹角θi :Xi和Xi-1两坐标轴的夹角;
Robotics运动学
3.1 机器人运动方程的表示
3.1.2 运动位置和坐标 2.用球面坐标表示末端运动位置 沿Z平移r,绕Y轴转β,绕Z轴转α.
0 s c s 0 0 c s 0 c 0 0 1 0 0 0 1 0 s 0 c 0 0 0 1 0 0 0 cc s cc rcs sc c s s rs s s 0 c rc 0 0 0 1
3.1 机器人运动方程的表示
3.1.1 运动姿态和方向角 1.运动方向 接近矢量a:夹持器进入物体的方向;Z轴 方向矢量o:指尖互相指向;Y轴 法线矢量n:与o、a组成右手矢量集合;X轴
n oa 0 oo 1 aa 1 oa 1
nx n T T6 y nz 0 ox oy oz 0 ax ay az 0 px py pz 1
Robotics运动学
3.1 机器人运动方程的表示
3.1.1 运动姿态和方向角 2.用旋转序列表示运动姿态 欧拉角:绕Z轴转φ,再绕新Y轴转θ,绕最新Z轴转ψ.
Euler( , , ) Rot( z, ) Rot( y, ) Rot( z, ) 0 0 c 0 0 0 1 0 s 0 1 0 c s s c 0 0 0 0 0 s 0 c s s c 1 0 0 0 c 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
nx n y nz 1 ox oy oz 1 ax ay az 1 p x ccc ss scc ss py pz sc 1 0 ccs sc scs cc ss 0 cs ss c 0 0 0 0 1
(3-24)