空调用离心式制冷压缩机的知识应用

合集下载

离心式制冷压缩机的工作原理及其结构简介

离心式制冷压缩机的工作原理及其结构简介

离心式制冷压缩机的工作原理及其结构简介中图分类号:th 文献标识码:a 文章编号:1007-0745(2012)12-0271-01摘要:随着社会经济的逐步发展,人们对于物质生活水平的要求也在逐步提高,比如对食物保鲜、延时保存等方面的需求越来越高,特别是在大型超市、仓库中,冷冻技术是制约其发展的一个关键点,但是一般的制冷方式很难满足这些较高的要求。

离心式制冷压缩机以其机组的重量及尺寸较小、占地面积小、运行费用低、耗功低、高效率受到了广泛的推荐。

本文笔者就离心式制冷压缩机的工作原理及其结构进行简单的介绍,旨在为其推广、普及贡献一份自己的力量。

关键词:离心式制冷压缩机工作原理结构简介一、离心式制冷压缩机的工作原理离心式制冷压缩机有单级、双级和多级等多种结构型式。

单级压缩机主要由吸气室、叶轮、扩压器、蜗壳等组成。

对于多级压缩机,还设有弯道和回流器等部件。

一个工作叶轮和与其相配合的固定元件(如吸气室、扩压器、弯道、回流器或蜗壳等)就组成压缩机的一个级。

多级离心式制冷压缩机的主轴上设置着几个叶轮串联工作,以达到较高的压力比。

为了节省压缩功耗和不使排气温度过高,级数较多的离心式制。

单级离心式制冷压缩机的工作原理如下:压缩机叶轮旋转时,制冷剂气体由吸气室通过进口可调导流叶片进入叶轮流道,在叶轮叶片的推动下气体随着叶轮一起旋转。

由于离心力的作用,气体沿着叶轮流道径向流动并离开叶轮,同时,叶轮进口处形成低压,气体由吸气管不断吸入。

在此过程中,叶轮对气体做功,使其动能和压力能增加,气体的压力和流速得到提高。

接着,气体以高速进入截面逐渐扩大的扩压器和蜗壳,流速逐渐下降,大部分气体动能转变为压力能,压力进一步提高,然后再引出压缩机外。

对于多级离心式制冷压缩机,为了使制冷剂气体压力继续提高,则利用弯道和回流器再将气体引入下一级叶轮进行压缩。

二、离心式制冷压缩机的主要零部件的结构与作用由于使用场合的蒸发温度、制冷剂的不同,离心式制冷压缩机的缸数,段数和级数相差很大,总体结构上也有差异,但其基本组成零部件不会改变。

离心式制冷机工作原理

离心式制冷机工作原理

离心式制冷机工作原理离心式制冷机是一种广泛应用于空调、制冷等系统中的机械设备,它通过循环物质的吸收和排放热量来实现制冷的目的。

离心式制冷机的工作原理主要包括压缩、冷凝、膨胀和蒸发四个过程。

首先,在压缩过程中,制冷剂从蒸发器中吸收低温低压的热量,并由压缩机将制冷剂压缩成高温高压气体。

这一过程需要耗费机械能,也是整个制冷循环中能耗最大的环节。

压缩机是离心式制冷机的核心部件,通过旋转齿轮或涡轮将制冷剂压缩,并将制冷剂传送到下一个环节。

接下来,高温高压的制冷剂进入冷凝器,通过与环境进行热交换,将热量传递给外界环境并冷凝成高压液体。

冷凝器通常由密排管或板式换热器组成,利用传热导管和内外热交换管道的热传导和对流传热过程,将制冷剂的温度降低。

然后,高压液体的制冷剂通过膨胀阀进入膨胀装置,这个阀门可以调节制冷剂流量,并减小制冷剂的压力。

在膨胀过程中,制冷剂从高压流体转化为低压流态,温度和压力也相应降低。

这一过程是制冷机实现制冷效果的关键。

最后,低温低压的制冷剂进入蒸发器,在与外部环境进行热交换的同时,从环境中吸收热量并蒸发成低温低压的气体。

蒸发器通常由一系列薄管或板式换热器组成,通过增大与环境的接触面积,提高热交换效率。

制冷剂的蒸发过程需要吸收热量,因此使周围空气或物体温度降低,实现了制冷效果。

整个循环中,制冷剂从蒸发器到压缩机再到冷凝器再到膨胀装置,不断循环流动,完成热量的吸收、传递和排放,从而实现制冷目的。

制冷机通过机械能驱动,循环使用制冷剂,通过改变制冷剂的温度和压力,使得热量从低温环境被吸收,传递到高温环境中,从而起到降低温度的作用。

离心式制冷机相较于其他制冷设备具有一些显著的优点,例如具有更高的制冷效率、较长的使用寿命和较小的体积。

它不仅在家庭空调、商业建筑和工业制冷领域广泛应用,还被用于科学实验室、食品加工和医疗设备等领域,为人们提供了舒适和便利的工作和生活环境。

离心式制冷压缩机结构

离心式制冷压缩机结构

离心式制冷压缩机结构离心式制冷压缩机是一种常见的制冷设备,广泛应用于工业、商业和家用领域。

它采用离心式压缩机的结构,具有高效、稳定的特点。

本文将从离心式制冷压缩机的结构、工作原理和应用领域三个方面进行介绍。

一、离心式制冷压缩机的结构离心式制冷压缩机主要由压缩机本体、电动机、冷凝器、膨胀阀和蒸发器等组成。

其中,压缩机本体是离心式制冷压缩机的核心部件,负责将低温低压的气体吸入,压缩成高温高压的气体,然后通过冷凝器散热,使气体冷却并变为液体。

离心式制冷压缩机的电动机负责带动压缩机本体的运转,提供所需的动力。

冷凝器是将高温高压的气体冷却成液体的部件,通过散热器散热,使气体冷却并凝结成液体。

膨胀阀负责控制制冷剂的流量,使其在通过蒸发器时发生蒸发,吸收热量从而降低温度。

蒸发器则是制冷系统中的换热器,通过与空气或水接触,将制冷剂的热量传递给外界。

二、离心式制冷压缩机的工作原理离心式制冷压缩机的工作原理是基于离心力的作用。

当电动机启动后,通过带动压缩机本体的转子高速旋转,使气体在离心力的作用下被压缩。

离心力使气体向外扩散,增加了气体的压力和温度。

随后,高温高压的气体进入冷凝器,通过与外界的换热器接触,使气体冷却并凝结成液体。

冷凝后的液体制冷剂通过膨胀阀控制流量,进入蒸发器。

在蒸发器中,制冷剂发生蒸发,吸收外界的热量,从而降低温度。

蒸发后的制冷剂再次进入压缩机本体,循环往复进行制冷过程。

三、离心式制冷压缩机的应用领域离心式制冷压缩机由于其高效、稳定的特点,在各个领域都有广泛的应用。

在工业领域,离心式制冷压缩机常用于大型制冷设备,如冷库、冷藏车等。

它可以快速降低温度,确保冷藏食品的质量和安全。

在商业领域,离心式制冷压缩机常用于商业中央空调系统。

它可以满足大面积空间的冷却需求,提供舒适的室内环境。

在家用领域,离心式制冷压缩机广泛应用于家用空调和冰箱等家电产品。

它具有高效节能、制冷效果好的特点,可以满足人们对于舒适生活和食品储存的需求。

离心式制冷压缩机结构

离心式制冷压缩机结构

离心式制冷压缩机结构首先,离心式制冷压缩机的进气口是从外部吸入制冷剂的通道。

制冷剂经过进气口进入离心轮。

离心轮是离心式制冷压缩机的关键组成部分。

它由一个或多个叶片组成,固定在驱动轴上。

当驱动轴旋转时,离心轮叶片受到离心力的作用,从而产生高速旋转。

制冷剂被离心力推到离心轮外缘。

接下来,制冷剂通过扩压器进入压缩室。

扩压器的作用是将制冷剂的压力降低,从而使其状态发生变化。

在压缩室内,制冷剂被进一步压缩,温度也随之升高。

然后,压缩后的高温高压制冷剂通过出气口排出。

出气口通向冷凝器,将制冷剂释放出来,并在此过程中散热。

散热器是一个类似于散热片的装置,通过自然对流或强制对流实现散热。

散热后的制冷剂再次进入进气口循环。

最后,离心式制冷压缩机由电机驱动。

电机通过驱动轴带动离心轮的旋转,从而使制冷剂被压缩。

离心式制冷压缩机的工作原理是靠离心力将制冷剂压缩。

当制冷剂进入离心轮后,受到离心力的作用而产生高速旋转。

离心轮旋转时会改变制冷剂的动能和压力。

制冷剂经过扩压器进入压缩室,受到进一步压缩。

压缩后的高温高压制冷剂通过出气口排出,再经过冷凝器散热后再次进入进气口循环。

总之,离心式制冷压缩机是一种结构简单、运行稳定的制冷压缩机。

它具有高效率、低噪音等优点,在各种制冷设备中得到广泛应用。

离心式制冷压缩机的结构包括进气口、离心轮、扩压器、压缩室、出气口、散热器和电机。

通过离心力将制冷剂压缩,实现制冷效果。

离心式压缩机的工作原理

离心式压缩机的工作原理

离心式压缩机的工作原理离心式压缩机是一种常见的压缩机类型,广泛应用于空调、制冷、冷冻等领域。

它通过离心力将气体压缩,实现增压和输送。

下面我们将详细介绍离心式压缩机的工作原理。

首先,让我们从离心式压缩机的结构说起。

离心式压缩机通常由电机、离心式压缩机壳体、转子、离心式压缩机叶轮等部件组成。

当电机启动时,驱动转子旋转,离心式压缩机叶轮也随之旋转。

气体被吸入叶轮的中心部分,随着叶轮的高速旋转,气体被离心力甩到叶轮外缘,从而实现气体的压缩。

其次,我们来了解一下离心式压缩机的工作原理。

当离心式压缩机启动后,叶轮开始旋转,气体被吸入并被甩到叶轮外缘。

在这个过程中,气体受到离心力的作用,压力逐渐增大,温度也随之升高。

随着气体在叶轮外缘不断旋转,气体的压力和温度不断增加,最终实现了气体的压缩。

接着,让我们来分析一下离心式压缩机的工作过程。

在离心式压缩机内部,气体经过叶轮的压缩作用后,会进入到离心式压缩机壳体中。

在壳体内部,气体的压力得到进一步增加,同时也会产生热量。

为了保证离心式压缩机的正常工作,通常会设置冷却系统,将气体的温度降低,同时排出多余的热量。

最后,我们来总结一下离心式压缩机的工作原理。

离心式压缩机通过离心力将气体压缩,实现了气体的增压和输送。

在压缩过程中,气体的压力和温度都会逐渐增加,为了保证离心式压缩机的正常工作,通常会设置冷却系统来降低气体的温度。

通过以上介绍,相信大家对离心式压缩机的工作原理有了更深入的了解。

总之,离心式压缩机利用离心力将气体压缩,是一种高效、可靠的压缩机类型。

它在空调、制冷、冷冻等领域有着广泛的应用,对于提高设备效率、节约能源具有重要意义。

希望本文对大家了解离心式压缩机的工作原理有所帮助。

制冷压缩机(往复式、螺杆式、离心式)

制冷压缩机(往复式、螺杆式、离心式)

在制冷系统中,三种常见的制冷压缩机(往复式、螺杆式、离心式)的作用都是将低温物体的热量不断地转移到常温环境介质中,从而到达制冷目的,并且它还提供与蒸发温度与冷凝温度相对应的低压与高压的条件。

根据他们的工作原理的不同,制冷压缩机一般可以分为容积型与速度型。

容积型制冷压缩机包括往复式与螺杆式。

速度型制冷压缩机为离心式。

容积性制冷压缩机的工作原理是用机械的方法使密闭容器的容积变小,使气体压缩而增加气体的压力。

速度性制冷压缩机的工作原理是用机械的方法使流动的获得很高的流速,然后在扩张的通道内使气流的速度减小,使气体的动能转化为压力能,从而到达提高气体压力的目的。

在制冷系统中,因为容积型制冷压缩机与速度型制冷压缩机在工作原理的不同,所以它们在制冷性能上受到的影响也是不同的。

对于容积型制冷压缩机来说,它的制冷性能受到密闭容器的容积的利用率的影响。

因此,如果想提它的制冷性能,就必须充分利用密闭容器的容积的利用率。

对于速度性压缩机来说,它的制冷性能受到气流的速度的影响。

因此,如果想提它的制冷性能,就必须充分提高气流的速度。

在制冷系统中,因为三种常见的制冷压缩机(往复式、螺杆式、离心式)在主要用途上的不同,所以它们的适用温度也是不同的。

往复式制冷压缩机主要适用于家用冰箱,商用冰箱,空调,商用冷藏,办公用冷藏,汽车空调食品工业及其它工业冷冻空调,石油,化工用冷却设备。

它的适用温度为-120度以上,包括单级、双级、复叠。

螺杆式制冷压缩机主要适用于食品及其它工业冷冻空调。

它的适用温度为-80度以上。

离心式制冷压缩机主要适用于石化,纺织等工艺冷却、大型空调。

它的适用温度为-160度以上。

在制冷系统中,因为三种常见的制冷压缩机(往复式、螺杆式、离心式)在适用温度范围的不同,所以它们的单机制冷量也是不同。

在三种常见的制冷压缩机(往复式、螺杆式、离心式)中,单机制冷量最大是离心式制冷压缩机,它的单机制冷量为160至30000千瓦。

空调离心压缩机的使用注意点

空调离心压缩机的使用注意点

空调离心压缩机的使用注意点为了延长离心式压缩机的使用寿命,使用者必须经常注意做好日常维护保养工作,除了对机组各点温度、压力、流量、液位、电气数据及加进的制冷剂做好记录外,以下几点是很重要的:(1)必须保持系统密封。

当运行低压离心式制冷机组时,系统泄漏将导入不凝性气体和水气,影响机件的寿命。

当运行高压离心式制冷机组时,泄漏亦会导致油和制冷剂的损失。

真空泄漏可以通过检查压力和温度是否对应或放气装置的频繁运行来了解。

高压系统的泄漏则可通过吸气压力下降、吸气过热升高等现象来判断制冷剂是否跑掉。

这些泄漏现象必须加以制止以防止零部件的损坏。

(2)遵照制造厂推荐的油过滤器的定期检查和更换,可以了解压缩机润滑系统的状况是否正常。

油过滤器经常阻塞,表明系统污染。

定期将油取样分析含酸量、含水量和杂质等,有助于判断所存在的问题。

(3)运行和安全控制器应定期检查和校准,以保安全。

(4)应遵照制造厂的规定程序,定期检测封闭电动机相间和对地电阻值。

这有助于检测内部电气绝缘是否有损坏,是否有任何漏电现象。

(5)根据水质情况对水冷式油冷却器的水侧进行定期清洗。

任何自动水控制器应进行检查。

(6)对有些压缩机,需要定期对联轴器等其他机外部件进行人工润滑,以及更换机械密封。

原动机和其附属设备都应进行定期保养。

(7)定期进行振动测量和分析了解,找到和发现故障,这些故障包括不平衡、不同心、轴弯曲、轴承损伤、齿轮损坏、机械部位移动和电的不平衡等。

可以不进行拆卸就能在早期发现这些故障苗子,从而避免发生大的、紧急的和费用昂贵的修理。

(8)对于具有内装式润滑系统的装置,在长期停车期间(如冬季),必须采取措施将油加热器长期通电,或者在再启用前更换润滑油。

不同类型的冷源系统的介绍,包括其原理、优缺点和使用场合

不同类型的冷源系统的介绍,包括其原理、优缺点和使用场合

不同类型的冷源系统的介绍,包括其原理、优缺点和使用场合水冷系统是一种常用的空调制冷系统,通过循环水来吸收热量,实现空调和制冷效果。

在水冷系统中,冷源系统是核心部分,它提供冷却水来冷却空调设备或制冷设备。

以下是对不同类型的冷源系统的介绍,包括其原理、优缺点和使用场合:1. 螺杆式冷水机组:原理:通过螺杆压缩机将冷媒气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。

优点:高效、稳定、噪音低。

缺点:设备体积较大、初投资较高。

使用场合:商业建筑、工业厂房等大型空调系统。

2. 离心式冷水机组:原理:通过离心式压缩机将冷媒气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。

优点:高效、运行稳定、适用于大范围负荷变化。

缺点:设备体积较大、噪音较高。

使用场合:商业建筑、工业厂房等大型空调系统。

3. 吸收式冷水机组:原理:利用溶液中溶质和溶剂之间的吸收和解吸作用,通过吸收剂吸收冷凝剂的蒸汽,从而降低冷凝剂的压力和温度,实现制冷效果。

优点:无机械运动部件、节能、环保。

缺点:效率较低、初投资较高。

使用场合:商业建筑、工业厂房等大型制冷系统。

4. 祺块化水冷式冷水机组:原理:利用祺块化技术,将冷媒分散在微小的块状结构中,通过块之间的传热和传质来实现制冷效果。

优点:高效、紧凑、可靠。

缺点:初投资较高。

使用场合:商业建筑、工业厂房等大型空调系统。

5. 涡旋式冷水机组:原理:利用涡旋压缩机的离心力将气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。

优点:高效、运行稳定、噪音低。

缺点:初投资较高。

使用场合:商业建筑、工业厂房等大型空调系统。

6. 活塞式冷水机组:原理:通过活塞式压缩机将冷媒气体压缩,产生高压高温的气体,然后通过冷凝器散热,冷却成液体,再通过膨胀阀降压,形成低温低压的冷媒,从而实现冷却效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空调用离心式制冷压缩机的知识应用
一、概述
空调压缩机原理是借助外力维持制冷剂在制冷系统内的循环,空调压缩机吸进来自蒸发器的低温、低压的制冷剂蒸气。

空调压缩机压缩制冷剂蒸气使其温度和压力升高,并将空调压缩机的制冷剂蒸气送往冷凝器,在热量吸收和开释的过程中,空调压缩机就实现了热交换。

离心式压缩机根据压缩机中安装的工作轮数目的多少,分为单级式和多级式。

假如只有一个工作轮,就称为单级离心式压缩机,假如是由几个工作轮串联而组成,就称为多级离心式压缩机。

在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。

二、空调用离心式制冷压缩机的结构图
空调用单级离心式制冷压缩机的构造主要由工作轮、主轴、扩压器和蜗壳等所组成(图1)。

三、空调用离心式制冷压缩机的工作原理
压缩机工作时制冷剂蒸汽由吸气口轴向进进吸气室2,并在吸气室2的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进进高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,由于只有通过工作轮才能将能量传给汽体)。

汽体在叶片作用下,一边随着工作轮3作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压活动,从而使汽体的压力和速度都得到进步。

由工作轮3出来的汽体再进进截面积逐渐扩大的扩压器5(由于汽体从工作轮3流出时具有较高的流速,扩压器5便把动能部分地转化为压力能,从而进步汽体的压力)。

汽体流过扩压器5时速度减小,而压力则进一步进步。

经扩压器5后汽体汇集到蜗壳4中,再经排气口引
导至中间冷却器或冷凝器中。

完成吸气一压缩一排气过程。

四、空调用压缩机优先选用离心式压缩机的原因
离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列特点:
1. 单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。

2. 由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操纵简单、维护用度低。

3. 工作轮和机壳之间没有摩擦,无需润滑。

故制冷剂蒸汽与润滑油不接触,从而进步了蒸发器和冷凝器的传热性能。

4. 能经济方便的调节制冷量且调节的范围较大。

5. 对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。

6. 由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25"30万大卡/时以上。

如制冷量太少,则要求流量小,流道窄,从而使活动阻力大,效率低。

但近年来经过精益求精,用于空调的离心式制冷压缩机,单机制冷量可以小到lO万大卡/时左右。

五、空调用离心式制冷压缩机的制冷量调节
离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的同一系统。

制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。

但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用
户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,即改变压缩机及换热器参数可对机组的制冷量进行调节,为防止发生喘振,还必须有防喘振措施。

1. 离心式制冷机组制冷量的调节方法
离心式制冷机组制冷量的调节方法有:进汽节流调节、采用可调节进口导流叶片调节、改变压缩机转速、改变换热器参数,其中最常用的是采用可调节进口导流叶片调节和进汽节流两种调节方法。

1.1 进汽节流调节
就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。

即在蒸发器和压缩机的连接管路上安装一节流阀,通过改变节流阀的开度,负气流通过节流阀时产生压力损失,从而改变压缩机的特性曲线,达到调节制冷量的目的。

这种调节方法简单,但压力损失大,不经济。

1.2 采用可调节进口导流叶片调节
在叶轮进口前装有可转动的进口导流叶片,导流叶片转动时,进进叶轮的汽流产生预定方向的旋绕,即进口汽流产生所谓的预旋。

利用进汽预旋,在转速不变的情况下改变压缩机的特性曲线,从而实现机组制冷量的调节。

离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进进叶轮的速度方向(C1U)和流量V。

但流量V必须控制在稳定工作范围内,以免效率下降。

2. 改变压缩机转速
用汽轮机或可变转速的电动机拖动时,可改变压缩机的转速进行调节,这种调节方法最经济。

每个压缩机转速12(n ,n。

,n。

)有不同的温度曲线工作点将随之改变,从而达到调节机组制冷量的目的。

3. 改变换热器参数
当改变冷凝器冷却水流量时,可以得到不同的冷凝器特性曲线,从而可使工作点移动,达到调节制冷量的目的。

4. 防喘振调节
通过喘振保护线来控制热气旁通阀的开启或封闭,使机组阔别喘振点,达到保护的目的。

六、空调用离心式制冷压缩机过热
正常的空调压缩机的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。

但是在实际使用中,会产生发热现象。

1. 空调压缩机常见的过热原因
由于超范围使用、电源不正常、电机过热、制冷液泄漏、冷凝压力太高等引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见。

2. 空调压缩机过热的危害
1. 假如长时间空调压缩机过热,不仅会降低电机尽缘性能和可靠性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。

润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的尽缘性能。

酸化润滑油还会引起镀铜现象。

2. 由于空调压缩机过热,就会磨损压缩机的配件,磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。

漆包线尽缘层被腐蚀后就可能出现一些微小的裸露点,很轻易引起局部放电。

假如金属粒形成导电回路,立即会短路或击穿,烧毁电机。

相关文档
最新文档