数字图像处理
数字图像处理ppt课件

基于特征分类的辨认
总结词
通过提取图像中的特征,利用分类器对特征 进行分类,从而辨认图像的类别。
详细描写
基于特征分类的图像辨认方法是一种常用的 图像辨认方法。它通过提取图像中的特征, 如边缘、角点、纹理等,利用分类器如支持 向量机、神经网络等对特征进行分类,从而 辨认图像的类别。这种方法能够有效地提取 图像中的本质特征,并具有较强的鲁棒性,
纹理特征提取
灰度共生矩阵
通过分析图像中像素灰度值的空间依赖关系,形成共生矩阵,并从中提取出统 计特征,如对照度、能量和相关性等。该方法适用于描写图像的粗糙程度和方 向性。
小波变换
将图像分解成不同频率和方向的小波分量,通过分析小波系数的统计特性来提 取纹理特征。该方法能够有效地表示图像的细节信息和全局结构。
但特征提取和分类器的设计是关键。
基于深度学习的辨认
总结词
利用深度学习算法自动提取图像特征, 并进行分类辨认。
VS
详细描写
基于深度学习的图像辨认方法是目前研究 的热点。它利用深度学习算法如卷积神经 网络(CNN)等自动提取图像的特征, 并进行分类辨认。这种方法能够有效地从 原始图像中提取复杂的特征,并具有较高 的辨认准确率。但需要大量的标注数据进 行训练,且计算复杂度较高。
04
CATALOGUE
特征提取
颜色特征提取
颜色直方图
通过统计图像中不同颜色像素的数量 ,形成颜色直方图作为图像的颜色特 征。该方法简单、有效,适用于不同 光照和视角变化的场景。
颜色矩
利用图像颜色的散布信息,通过计算 一阶矩(均值)、二阶矩(方差)和 三阶矩(偏度)来表示颜色特征。该 方法对颜色突变和噪声不敏锐。
图像辨认
基于模板匹配的辨认
数字图像处理的主要内容

数字图像处理的主要内容
数字图像处理是将原始数字图像经过一系列特定步骤处理达到所需要的修改或
者提取图像相关信息的一种技术。
它包括图像采样、数字图像处理技术、图像参数维度,以及图像状态分析与特征抽取的等多种技术,是计算机视觉技术的一个重要组成部分。
数字图像采样,是将复杂的现实世界的信息片段,利用计算机进行图像编码处理,编码后进行数据采样,将采样结果以图像数据形式表示或显示出来,它通常将摄取到的图像数据编排成一系列矩阵,空间分辨率越高,代表的信息量越大,所采样出的图像就越清晰,通常采用RGB三原色或者灰度级,将原始图像进行信息处理,使图像变换成采样图形序列。
数字图像处理技术,是指对已经采样的图像进行编码与处理,将所采样的图像
数据变换成另一种形式,进行增强、转换、滤波、压缩、边缘检测、分割、提取特征等等,在不同参数精度上都得到所期望的结果。
比如,在处理图像边缘时,利用Robert、Prewitt等运算来实现图像边缘的提取,将图像中非边缘部分消除,是广
泛应用的数字图像处理技术。
图像参数的维度是指它所收集的图像参数的测量方法,其中包括图像尺寸、像
素数、色彩模式、分辨率等。
它可以影响到图像的色彩细节和色调等的变化,也可以用来改变图像的视觉效果,因此,有必要根据图像的数字图像处理要求,首先了解图像参数的维度,以决定有效操作方法。
最后,图像状态分析和特征抽取,即分析图像特征,提取好特征和信息,以用
于一些应用场景或参考,常见的技术有空间和时间域的处理方法,将图像变换成一系列特征向量,以用于特征相似度的评估,以及图像的聚类和分类等,可以用于分析图像的状态和特征,以支撑和管理图像应用中的信息抽取。
数字图像处理的基础知识

数字图像处理的基础知识数字图像处理是一种以计算机为基础的处理图像的技术。
它的核心是数字信号处理技术,其中包括数字滤波、傅里叶变换、数字图像处理等等。
数字图像处理主要是针对图像进行数字信号处理和计算机算法处理,从而得到使图像更加美观、清晰,同时也可对其进行各种分析和处理。
数字图像处理的基础知识包括图像的获取、表示和处理。
在此,我们将分别阐述这些基础知识。
一、图像的获取图像的获取方式有很多种,包括摄影、扫描、数码相机等等。
这些方式都可以将图像转化为数字信号,以便于计算机的处理。
在数字相机中,传感器采集光线信息并将其转化为电信号,再经过模数转换后保存在内存卡中。
而在扫描仪中,可以通过光线照射样品,然后采集样品的反射信息,保存成数字图像的形式。
二、图像的表示图像可以用矩阵的形式进行表示,其中每个矩阵的元素都对应图像中的一个像素点。
这个像素值可以代表颜色、灰度和亮度等信息。
将图像信息存储成数字矩阵的方式称为栅格画。
在黑白影像中,每个像素点只有黑和白两种颜色,每个像素点都用1或0表示。
在彩色图像中,每个像素中则由红绿蓝三原色按一定比例混合而成的颜色值来表示,并用数值表示。
这些数值也可以是整数或浮点数等形式。
另外,还有图像的压缩技术。
图像压缩通常包括有损压缩和无损压缩。
有损压缩会使压缩的图像失去一些细节,但能帮助减少图像的尺寸。
无损压缩则不会丢失图像的任何信息。
常见的无损压缩格式为PNG、BMP、TIFF等,常见的有损压缩格式为JPEG、GIF等。
三、图像的处理图像的处理包括预处理、增强、分割、检测和识别等等。
其中预处理指图像的去噪、灰度平衡、色彩校正等,以利用后续处理。
增强指通过调整图像的对比度、亮度等等,使图像更加清晰、唯美。
分割技术可以将图像分为多个区域,每个区域有独特的特征。
例如,我们可以用分割技术将人体和背景分开。
检测技术用于在图像中找到我们感兴趣的点,例如在医学图像中检测肿瘤。
识别技术允许计算机对图像中的对象进行分类,例如人脸识别技术和指纹识别技术等等。
数字图像处理技术解析

数字图像处理技术解析第一章:数字图像处理基础知识数字图像处理是一门研究如何处理和操作数字图像的学科。
数字图像是离散的表示了光的强度和颜色分布的连续图像。
数字图像处理技术可以应用于许多领域,如医学影像、机器视觉、遥感图像等。
1.1 数字图像表示与存储数字图像可以使用像素(pixel)来表示,每个像素包含一定数量的位元(bit),用于表示图像的灰度值或颜色信息。
常见的像素表示方法有灰度图像和彩色图像。
在计算机中,数字图像可以以不同的方式进行存储,如位图存储、压缩存储等。
1.2 数字图像处理的基本操作数字图像处理的基本操作包括图像增强、图像恢复、图像压缩和图像分割等。
图像增强可以改善图像的质量,使其更适于人眼观察或用于其他应用。
图像恢复是指通过去除图像中的噪声、模糊等不良因素,使图像恢复到原始清晰状态。
图像压缩可以减少图像的存储空间和传输带宽。
图像分割是将图像分成几个具有独立特征的区域,用于目标检测、目标跟踪等应用。
第二章:数字图像增强技术数字图像增强技术可以提高图像的质量和信息内容,使其更适合进行后续处理或人眼观察。
常用的图像增强方法包括灰度变换、直方图均衡化和空域滤波等。
2.1 灰度变换灰度变换是通过对图像的灰度值进行变换,来改变图像的对比度和亮度。
常见的灰度变换方法包括线性变换、非线性变换和直方图匹配等。
线性变换通过对灰度值进行线性和平移变换,可改变图像的对比度和亮度。
非线性变换使用非线性函数对灰度值进行变换,如对数变换、反转变换等。
直方图匹配是将图像的直方图变换为期望直方图,以达到对比度和亮度的调整。
2.2 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过对图像的直方图进行变换,使得图像的灰度分布更加均匀。
直方图均衡化可以增加图像的对比度,使得图像细节更加清晰。
该方法适用于灰度图像和彩色图像。
2.3 空域滤波空域滤波是一种基于像素的图像处理方法,通过对图像的局部像素进行加权平均或非线性操作,来改变图像的特征。
数字图像处理技术

数字图像处理技术数字图像处理技术是一种针对数字图像进行处理和分析的技术。
随着计算机技术的不断发展和普及,数字图像处理技术在图像处理领域中扮演着越来越重要的角色。
本文将详细介绍数字图像处理技术的概念、原理、应用及未来发展方向。
概念数字图像处理技术是指利用计算机对数字图像进行处理和分析的技术。
数字图像是通过像素表示的图像,而像素是图像最小的单元,每个像素都有其特定的数值表示颜色和亮度。
数字图像处理技术可以对图像进行各种操作,如增强图像的质量、提取图像特征、恢复图像信息等。
原理数字图像处理技术的原理主要包括图像获取、图像预处理、图像增强、图像分割、特征提取和图像识别等基本步骤。
1.图像获取:通过相机或扫描仪等设备获取数字图像,将图像转换为数字信号。
2.图像预处理:对原始图像进行去噪、几何校正、尺度变换等预处理操作,以提高后续处理的效果。
3.图像增强:通过直方图均衡化、滤波等方法增强图像的对比度、亮度等特征。
4.图像分割:将图像分割成若干个区域或对象,以便更好地分析和处理图像。
5.特征提取:提取图像中的特征信息,如颜色、纹理、形状等,为图像识别和分类提供依据。
6.图像识别:利用机器学习、深度学习等算法对图像进行分类、识别和分析。
应用数字图像处理技术在各个领域都有广泛的应用,如医疗影像分析、无人驾驶、安防监控、智能交通等。
以下列举一些典型的应用场景:•医疗影像分析:利用数字图像处理技术分析医学影像,辅助医生进行疾病诊断和治疗。
•安防监控:通过视频监控系统、人脸识别技术等实现对安全领域的监控和警报。
•智能交通:通过交通监控系统、车辆识别技术等提高交通管理效率和道路安全。
未来发展数字图像处理技术在人工智能、物联网等新兴技术的推动下不断发展和创新,未来的发展方向主要包括以下几个方面:1.深度学习在图像处理中的应用:深度学习技术在图像分类、目标检测等方面取得重大突破,将在数字图像处理领域得到更广泛的应用。
2.虚拟现实与增强现实:数字图像处理技术将与虚拟现实、增强现实技术结合,实现更加沉浸式的用户体验。
数字图像处理技术

数字图像处理技术数字图像处理技术是一种利用计算机对图像进行处理和分析的技术。
随着计算机技术和图像采集设备的不断发展,数字图像处理技术已经广泛应用于影像处理、医学图像分析、机器视觉、模式识别等领域。
本文将重点介绍数字图像处理技术的基本原理、常见的图像处理方法和应用领域。
一、数字图像处理技术的基本原理数字图像处理是在计算机中对图像进行数值计算和变换的过程。
图像是由像素组成的二维数组,每个像素包含了图像中某一点的亮度或颜色信息。
数字图像处理技术主要包括如下几个基本步骤:1. 图像采集:利用摄像机、扫描仪等设备将实际场景或纸质图像转换成数字图像。
2. 图像预处理:对采集到的图像进行预处理,包括图像增强、去噪、几何校正等操作,以提高图像质量。
3. 图像变换:通过一系列的数值计算和变换,改变图像的亮度、对比度、颜色等特征,以满足特定的需求。
4. 图像分析:对图像进行特征提取、目标检测、模式识别等操作,以获取图像中的各种信息。
5. 图像展示:将处理后的图像显示在计算机屏幕上或输出到打印机、投影仪等设备上,以便人们观看和分析。
二、常见的图像处理方法1. 图像增强:通过调整图像的亮度、对比度、颜色等参数,使图像更清晰、更鲜艳。
2. 图像滤波:利用滤波器对图像进行低通滤波、高通滤波、中值滤波等操作,以去除噪声、平滑图像或增强边缘。
3. 图像分割:将图像分成若干个区域,以便更好地分析和识别图像中的目标。
4. 特征提取:从图像中提取出与目标相关的特征,如纹理特征、形状特征、颜色特征等。
5. 目标检测:利用机器学习、模式识别等方法,从图像中检测和识别出目标,如人脸、车辆等。
三、数字图像处理技术的应用领域数字图像处理技术在很多领域都有广泛的应用,以下列举几个主要的应用领域:1. 影像处理:数字图像处理技术可以应用于电影特效、动画制作、数字摄影等领域,提高影像的质量和逼真度。
2. 医学图像分析:数字图像处理技术可以应用于医学影像的分析、诊断和治疗,如CT扫描、核磁共振等。
数字图像处理

第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。
二、数字图像处理的目的1、提高图像的视觉质量。
2、提取图像中的特征信息。
3、对图像数据进行变换、编码和压缩。
三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。
细节越多,采样间隔应越小。
把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。
一般,灰度图像的像素值量化后用一个字节(8bit)来表示。
二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。
为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。
对细节化图像,细采样,粗量化,以避免模糊。
三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。
彩色图像的像素值量化后用三个字节(24bit)来表示。
一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。
五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。
六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。
数字图像处理

数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图6蓝色图像灰度化对比
对比如上图像可以发现,此时第三幅的亮度大于第四幅的,而第二幅的亮度依然是三个图像中最大的。这是由于在得到第四幅的方法中,其对于蓝色分量的加权系数是0.11,而第四幅对应的方法二中蓝色分量的系数约为0.33,加之此图像中蓝色分量居多,因而就不难解释如上现象,对于方法一处理后对应像素点的灰度值小于方法三处理后对应点的灰度值,故显示在图像上,第四幅就偏暗,而第二幅取的是最大值,故最终在亮度显示上最亮。
接下来,选取一绿色分量为主的图像进行处理分析,如图5所示。
图5绿色图像灰度化对比
观察如上对比图像结果可以发现,第四幅的亮度明显低于第三幅,而第二幅亮度则为三个处理结果中最大的。稍加分析,不难发现,这是由于在方法一的处理中,其对于绿色分量的加权系数为0.59,而方法二中绿色分量的系数约为0.33,加之上图中物体部分颜色为绿色,故作处理后,方法一所得的灰度值大于方法二处理得到的灰度值,因而在显示上,方法一对应的第四幅较之方法二对应的第三幅更亮;而对于方法三所得的第二幅,因其取的是最大值,故最终的灰度值也最大,所以显示最亮。
其对于不同颜色分量RGB的加权系数不相同,对比方法三中采用的
f(i,j)=(R(i,j)+G(i,j)+B(i,j)) /3 (2-2)
其采用的加权系数约为0.33,且对于RBG三个分量采用统一加权系数,所以,当一幅图像中红色分量居多的时候,由于对于红色分量,公式(2-1)计算结果与公式(2-2)计算结果基本相同,即对应点像素灰度值基本一致,故处理结果在亮度显示上区别不大;而对于绿色分量,公式(2-1)计算结果大于公式(2-2)计算结果,也即处理所得的像素灰度值更大,所以在绿色分量居多的图像中,两者在处理后,方法二所得图像亮度大于方法三处理得到的图像;同理,对于蓝色分量居多的图像,其方法一处理所得的图像在亮度显示上会低于方法二处理得到的图像。
关键词:彩色图像;灰度化;最大值法பைடு நூலகம்加权平均法;平均值法。
1.目的
通过三种方法,实现彩色图像的灰度化处理。
2.理论原理
将彩色图像转化成为灰度图像的过程称为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255个中值可取,这样一个像素点可以有1600多万(255×255×255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其中一个像素点的变化范围为255种,所以在数字图像处理中一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。
3.2加权平均法
根据重要性及其它指标,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对蓝色敏感最低,因此,对RGB三分量进行加权平均能得到较合理的灰度图像。
3.3平均值法
求出每个像素点的R、G、B三个分量的平均值,然后将彩色图像中的这个平均值赋予给这个像素的三个分量。
3.具体过程
采用三种方法,实现对彩色图像的灰度化处理。下面分别对其作具体分析如下:
在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫做灰度值。因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。
2.方法
分别采用了以上三种设计方案,即加权平均法、平均值法和最大值法,实现了彩色图像的灰度化处理。
3.1最大值法
将彩色图像中的三分量亮度的最大值作为灰度图的灰度值。
通选课《数字图像的基本处理》课程论文
2011-2012学年度第二学期
彩色图像的灰度化
年级:2010级专业:航空机械工程班级:10航空一班学号:100403021039姓名:李祖亮
摘要:所谓灰度色,就是指纯白、纯黑以及两者中的一系列从黑到白的过渡色。而图像灰度化是指只含亮度信息, 不含色彩信息的图像,广泛应用于图像模式识别、 图像分割、 图像增强等数字图像处理的各个领域。设计通过最大值法、加权平均法、平均值法这三种方法,实现了彩色图像的灰度化处理,并对它们进行了对比分析。
3.举例分析比较
对应如上三种方法,对此图灰度化可分别得到如图1,2和3。
图1采用最大值法的灰度图
图2采用加权平均法之灰度图像
图3采用平均值法之灰度图像
通过上面4副图片可发现,以三种方法得到的处理结果并不完全相同,这是由于不同的处理方法对于灰度值的选取不同,其转化是依据亮度方程f(i,j)=0.30R(i,j)+0.59G(i,j)+0.11B(i,j))来实现的,即依据人眼对不同颜色的敏感度不同,对RGB分量以不同系数的加权平均,得到较为合理的灰度化结果。而采用方法二处理是对RGB三个分量取简单的平均,从而得到对应灰度值,而方法三则是直接取用RGB分量中最大值作为灰度值输出。
参考文献
[1]张强,王正林. 精通MATLAB数字图像处理[M]. 电子工业出版社,2009.6.
[2]朱晓荣.数字图像处理及其应用研究[D].河海大学;2001年
[3]潘建江.数字图像分割及变形技术研究[D].浙江大学,2004年
根据上文分析,不难解释在图像1, 2和3之间显示不同的问题。由于原图是彩图,其包含了红、绿、蓝以及这三者组合得到的其他颜色分量,故在最终显示上,对于方法一,由于它只是简单的选取三个分量中的最大值作为灰度值输出,故图1的亮度最大。由方法二所得的图2可在对比方法三所得的图3时,有些部分偏亮,而有些部分则偏暗,这都是由于两种方法中对不RGB三个不同分量的加权平均系数不一致而造成的。
采用的三种不同方法对同一彩色图像的灰度化处理结果不相同,究其原因是由于它们在对同一像素点的灰度值确定上采取的手段不一。对于方法一,其对灰度值的选取上取的是最大值,故在最终显示上也最亮。
对于方法二,其转换公式为
f(i,j)=0.30R(i,j)+0.59G(i,j)+0.11B(i,j)) (2-1)
方法一:最大值法
将彩色图像中的R、G、B三个分量中亮度的最大值作为灰度图的灰度值。
f(i,j)=max(R(i,j),G(i,j),B(i,j))(1-1)
方法二:加权平均法
根据重要性及其它指标,将R、G、B三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感度最高,对蓝色敏感度最低。因此,我们可以按下式(1-1),对RGB三分量进行加权平均能得到较合理的灰度图像。
为作进一步说明问题,可以分别选用红色图,绿色图以及蓝色图用如上方法处理后来进一步比较说明。
首先,选用以红色分量较多的图像进行处理,如图4所示。
图4红色图像灰度化对比
观察如上对比结果可以发现,对于加权平均法和平均值法处理得到的结果,两图中红色分量灰度化之后基本没有区别,这是由于采用加权平均法对红色分量R的加权系数为0.30,而采用简单平均法的红色分量系数为0.33,故两者对于红色分量的处理结果区别不大,而对于第二幅图,其采用最大值法,故在亮度现实上明显大于前面二者。
f(i,j)=0.30R(i,j)+0.59G(i,j)+0.11B(i,j)) (1-2)
方法三:平均值法
将彩色图像中的R、G、B三个分量的亮度求简单的平均值,将得到均值作为灰度值输出而得到灰度图。其表达式见下式(1-2):
f(i,j)=(R(i,j)+G(i,j)+B(i,j)) /3 (1-3)