数字图像处理整理经典

合集下载

dip管理经典做法

dip管理经典做法

dip管理经典做法DIP(Digital Image Processing,数字图像处理)是一种广泛应用于计算机视觉和图像处理领域的技术方法。

它涵盖了许多经典的管理做法,以下是10个不包含网络地址、数学公式或计算公式的介绍:1. 图像采集与预处理:DIP中的第一步是采集图像,并对其进行预处理。

预处理包括去噪、增强、平滑和调整图像的亮度和对比度等。

2. 图像分割:图像分割是将图像划分为不同的区域或物体的过程。

常用的方法有阈值分割、边缘检测和区域生长等。

3. 特征提取:特征提取是从图像中抽取有用信息的过程,用于后续的分析和分类。

常用的特征包括纹理、形状和颜色等。

4. 图像变换:图像变换是将图像从一个域转换到另一个域的过程。

常用的变换包括傅里叶变换、小波变换和离散余弦变换等。

5. 图像恢复与重建:图像恢复与重建是通过图像处理技术来修复受损的图像或生成缺失的图像。

常用的方法有去模糊、去噪和插值等。

6. 图像压缩与编码:图像压缩与编码是将图像数据进行压缩和编码以减少存储空间和传输带宽的过程。

常用的方法有无损压缩和有损压缩等。

7. 图像识别与分类:图像识别与分类是通过图像处理技术来自动识别和分类图像中的物体或场景。

常用的方法有模板匹配、神经网络和支持向量机等。

8. 图像检索与索引:图像检索与索引是通过图像特征来检索和索引图像数据库中的图像。

常用的方法有基于内容的图像检索和基于标签的图像检索等。

9. 图像分析与理解:图像分析与理解是对图像内容进行分析和理解的过程。

常用的方法有目标检测、目标跟踪和场景理解等。

10. 图像处理系统与应用:图像处理系统与应用是将图像处理技术应用于实际问题的过程。

常见的应用包括医学影像处理、遥感图像处理和安防监控等。

以上是DIP中的一些经典管理做法,它们涵盖了图像处理的各个方面。

通过合理应用这些方法,可以处理和分析图像数据,从而提取有用的信息并解决实际问题。

数字图像处理领域的二十四个典型算法

数字图像处理领域的二十四个典型算法

数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。

图像处理是信号处理在图像域上的⼀个应⽤。

⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。

本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。

由于篇幅所限,只给出某⼀算法的主体代码。

ok,请细看。

⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。

灰度分为256阶。

所以,⽤灰度表⽰的图像称作灰度图。

程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。

这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理知识点总结

数字图像处理知识点总结

定小于任何其他排列形式.
矢量量化原理
第7章
矢量量化的编码就是根据一定的失真测度 在码书搜索出与输入矢量失真最小的码字的索引。
用Canny算子进行边缘检测的主要步骤
① 用高斯滤波器平滑图像 第9章
② 计算滤波后图像梯度的幅值和方向
③ 对梯度幅值应用非极大值抑制,其过程为找处图像梯度中的局 部极大值点,把其它非局部极大值点置零以得到得到细化的边 缘 ④ 用双阈值算法检测和连接边缘,使用两个阈值T1和T2(T1>T2), T1用来找到每条线段,T2用来在这些线段的两个方向上延伸寻 找边缘的断裂处,并连接这些边缘。
背景差分法 如何利用多幅运动图像构造一个 第9章 基准图像
• 找出多幅对应像素点灰度值变化在一定阈值范围内的部 分为基准图像,可通过检测图像序列相邻两帧之间的变 化,保留对应像素点灰度值变化在一定阈值范围内的部 分,再与下一帧的图像对比,重复上述过程,最终取得 基准图像。
• I=imread(‘原图像名.tif’); % 读入原图像,tif格式 • whos I • imshow(I) % 显示图像I的基本信息 % 显示图像
自动阈值 迭代式阈值选择算法的基本思想
第9章
• 开始时选择一个阈值作为初始估计值,然后按某种策略 不断地改进这一估计值,直到满足给定的准则为止。在 迭代过程中,关键之处在于选择什么样的阈值改进策略, 好的阈值的改进策略应该具备两个特征,一是能够快速 收敛,二是在每一个迭代过程中,新产生阈值优于上一 次的阈值。
• title(‘原图像’);
• %对原图像进行屏幕控制;显示直方图均衡化后 的图像 • figure;imshow(J); • %给直方图均衡化后的图像加标题名 • title(‘直方图均衡化后的图像’) ;

哈工大数字图像处理知识点总结

哈工大数字图像处理知识点总结

1. 引言1.1图像的概念图像:是对客观存在的物体的一种相似性的、生动性的模仿或描述,是一种不完全的、不精确的,但在某种意义上是适当的表示。

也是对客观存在的物体的某种属性的描述。

(非所见即所得,对事物不能完全描述)1.2数字图像的起源与应用1.3 数字图像处理的概念●图像的类型:从图像生成角度:物理图像(可见图像(光学图像)、不可见图像(红外)、数学图像等)从照明角度:多光谱图像(特指不可见光谱)和单光谱图像(激光);从人眼视觉特点上:可见图像、不可见图像。

从波段多少分为:单波段(每点只有一亮度值)、多波段(每点不只一特性如红绿蓝光谱图像)和超波段图像。

从图像空间坐标和明暗程度的连续性:模拟图像、数字图像(空间坐标和灰度均不连续,用离散的数字表示)。

●图像的表现形式●图像的属性:构成数字图像的要素,灰度坐标图像的属性:1.对比度:灰度差别 0~255(256个灰度级)2. 灰度分辨力:适于人眼3.空间分辨力:越高越好4.放大率对比度与灰度的关系:量化?灰度量化最高、最暗差值尽可能大。

减少灰度级一般会提高图像的对比度。

构成数字图像的要素:地址(坐标)和灰度值●数字图像的处理概念及三种分类:处理\分析\理解操作对象:狭义数字图像处理:图像——图像图像分析:图像——数据(特征值)图像理解:数据——概念狭义图像处理强调图像之间进行变换,指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析是对图像中感兴趣的目标进行检测的测量,从而建立对图像的描述,是从图像到数值或符号的过程。

经分割和特征提取,把原来以像素构成的图像转变成比较简洁的非图像形式的描述。

图像理解研究图像中各目标的性质和它们之前的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,人而指导和规划行动●数字图像的运算形式:全局、局部、点,串行、并行全局:快速傅立叶变换局部:点运算:对于一幅输入图像,经过点运算产生一幅输出图像,后者的每个像素的灰度值仅由相应输入像素的值决定(对比度增强,对比度拉伸,灰度变换)串行:后一像素输出结果依赖于前面像素处理的结果,并且只能依次处理各像素而不能同时对各像素进行相同处理的一种处理形式。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

F (u,v)
F *(u, v)
f ( x ,y ) ☆ h ( x ,y ) i f f t c o n j F ( u , v ) H ( u , v )
h(x,y):CD 周期延拓
PAC1
h:
PQ
QBD1
DFT
H (u,v)
F*(u,v)H(u,v)
IDFT
R(x,y):PQ
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
图像变换通常是一种二维正交变换。
一般要求: 1. 正交变换必须是可逆的; 2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图像能量将集中分布在低频率 成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
4.11 二维DFT的实现
沿着f(x,y)的一行所进 行的傅里叶变换。
F (u ,v ) F ( u , v ) (4 .6 1 9 )
复习:当两个复数实部相等,虚部互为相 反数时,这两个复数叫做互为共轭复数.
4.6
二维离散傅里叶变换的性质
其他性质:
✓尺度变换〔缩放〕及线性性
a f( x ,y ) a F ( u ,v ) f( a x ,b y ) 1 F ( u a ,v b ) |a b |
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。

(1)处理精度高,再现性好。

(2)易于控制处理效果。

(3)处理的多样性。

(4)图像数据量庞大。

(5)图像处理技术综合性强。

*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

图像增强不存在通用理论。

图像增强的方法:空间域方法和变换域方法。

*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。

*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。

对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。

*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。

*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。

直方图均衡化变换函数必须为严格单调递增函数。

直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。

获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。

*平滑滤波器用于模糊处理和减小噪声。

平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。

优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。

负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。

1.数字图像:一幅图像f(x,y),当x,y和幅值f为有限的离散数值时,称该图像为数字图像。

图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。

数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。

图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

无损压缩:可精确无误的从压缩数据中恢复出原始数据。

灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。

或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。

细化:提取线宽为一个像元大小的中心线的操作。

8、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。

9、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。

10、像素的邻域: 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。

即{(x=p,y=q)}p、q为任意整数。

像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 11、灰度直方图:以灰度值为自变量,灰度值概率函数得到的曲线就是灰度直方图。

12.无失真编码:无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。

13.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。

14.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。

15.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。

16.灰度图像:指每个像素的信息由一个量化的灰度级来描述的图像,它只有亮度信息,没有颜色信息。

17.色度:通常把色调和饱和度通称为色度,它表示颜色的类别与深浅程度。

18.图像锐化:是增强图象的边缘或轮廓。

19.直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法20. 数据压缩:指减少表示给定信息量所需的数据量。

像素的邻域:邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。

即{(x=p,y=q)}p、q为任意整数。

像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1),(x,y-1)灰度直方图:灰度直方图是指反映一幅图像各灰度级像元出现的频率。

ﻫ、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。

像素数字图像是由有限的元素组成的,每个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。

4.空间分辨率:是图像中可辨别的最小细节。

灰度级分辨率:是指在灰度级别中可分辨的最小变化。

.取样:数字化坐标值;量化:数字化幅度值。

11:HSI 彩色模型:HSI 颜色模型用H、S、I 三参数描述颜色特性,其中H 定义颜色的波长,称为色调;S 表示颜色的深浅程度,称为饱和度;I 表示强度或亮度。

12:伪彩色:伪彩色图像的每个像素值实际上是一个索引值或代码,该代码值作为色彩查找表CLUT 中某一项的入口地址,根据该地址可查找出包含实际R、G、B 的强度值。

这种用查找映射的方法产生的色彩称为伪彩色。

自适应滤波器:包含有自适应局部噪声消除滤波器和自适应中值滤波器。

随机变量最简单的统计度量是均值和方差。

这些参数是自适应滤波器的基础.。

均值给出了计算均值的区域中灰度平均值的度量,方差给出了这个区域的平均对比度的度量。

简答1、图像复原和图像增强的主要区别是:图像增强主要是一个主观过程,而图像复原主要是一个客观过程;图像增强不考虑图像是如何退化的,而图像复原需知道图像退化的机制和过程等先验知识2.图像减法处理的作用。

两幅图像f(x,y)与h(x,y)的差异表示为g(x,y)=f(x,y)-h(x,y)。

减法处理最主要的作用是增强两幅图像的差异。

12.简述直方图均衡化的基本原理。

直方图均衡化方法的基本思想是,对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。

从而达到清晰图像的目的。

因为灰度分布可在直方图中描述,所以该图像增强方法是基于图像的灰度直方图。

5.什么是直方图均衡化?将原图象的直方图通过变换函数修正为均匀的直方图,然后按均衡直方图修正原图象。

图象均衡化处理后,图象的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图象看起来就更清晰了。

8、图像锐化与图像平滑有何区别与联系?答:区别:图像锐化是用于增强边缘,导致高频分量增强,会使图像清晰;图像平滑用于消除图像噪声,但是也容易引起边缘的模糊。

联系:都属于图像增强,改善图像效果。

17.什么是区域?什么是图像分割?区域可以认为是图像中具有相互连通、一致属性的像素集合。

图像分割时把图像分成互不重叠的区域并提取出感兴趣目标的技术。

5. 什么是中值滤波?中值滤波有何特点中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波能够较好的处理脉冲状噪声,其优点主要在于去除图像噪声的同时,还能保护图像的边缘信息。

1.请简述快速傅里叶变换的原理。

傅里叶变换是复杂的连加运算,计算时间代价很大。

快速傅里叶变换的核心思想是,将原函数分解成一个奇数项和一个偶数项加权和,然后对所分解的奇数项和偶数项再分别分解成其中的奇数项和偶数项的加权和。

这样,通过不断重复两项的加权和来完成原有傅里叶变换的复杂运算,达到较少计算时间代价的目的。

3.DCT变换编码的主要思想是什么?DCT变换编码的思想是利用离散余弦变换对数据信息强度的集中特性,可以将数据中视觉上容易察觉的部分与不容易察觉的部分进行分离,由此可以达到进行有损压缩的目的。

、伪彩色增强与假彩色增强有何异同点?前者使用的数据是单色波段图像,后者使用的数据是多波段图像伪彩色增强是对一幅灰度图像经过三种变换得到三幅图像,进行彩色合成得到一幅彩色图像;假彩色增强是对一幅彩色图像进行处理得到与原图像不同的彩色图像;主要差异在于处理对象不同。

相同点是利用人眼对彩色的分辨能力高于灰度分辨能力的特点,将目标用人眼敏感的颜色表示。

.什么是逆滤波?如果退化图像有噪声,逆滤波的结果会如何?答:逆滤波是指在频域中,直接用图像除以退化器,进行图象恢复的方法。

如果退化图像有噪声,逆滤波会使噪声放大。

图像锐化滤波的几种方法。

答:(1)直接以梯度值代替;(2)辅以门限判断;(3)给边缘规定一个特定的灰度级;(4)给背景规定灰度级;(5)根据梯度二值化图像。

6、图像增强的目的是什么?答:图像增强目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

7、什么是中值滤波及其它的原理?答:中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值。

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。

、在彩色图像处理中,常使用HSI模型,它适于做图像处理的原因有:1、在HIS模型中亮度分量与色度分量是分开的;2、色调与饱和度的概念与人的感知联系紧密。

11、图像增强时,平滑和锐化有哪些实现方法?平滑的实现方法:邻域平均法,中值滤波,多图像平均法,频域低通滤波法。

锐化的实现方法:微分法,高通滤波法。

16.对于椒盐噪声,为什么中值滤波效果比均值滤波效果好?椒盐噪声是复制近似相等但随机分布在不同的位置上,图像中又干净点也有污染点。

中值滤波是选择适当的点来代替污染点的值,所以处理效果好。

因为噪声的均值不为0,所以均值滤波不能很好地去除噪声。

14、说明一幅灰度图像的直方图分布与对比度之间的关系答:直方图的峰值集中在低端,则图象较暗,反之,图象较亮。

直方图的峰值集中在某个区域,图象昏暗,而图象中物体和背景差别很大的图象,其直方图具有双峰特性,总之直方图分布越均匀,图像对比度越好。

15、简述梯度法与Laplacian算子检测边缘的异同点?梯度算子是利用阶跃边缘灰度变化的一阶导数特性,认为极大值点对应于边缘点;而Laplacian算子检测边缘是利用阶跃边缘灰度变化的二阶导数特性,认为边缘点是零交叉点。

(2分)相同点都能用于检测边缘,且都对噪声敏感。

20.试述图像退化的基本模型,并画出框图且写出数学表达式。

图像复原处理的关键是建立退化模型,原图像f(x,y)是通过一个系统H及加入一来加性噪声n(x,y)而退化成一幅图像g(x ,y)的,如下图所示填空1.图像锐化除了在空间域进行外,也可在频率域进行。

2.对于彩色图像,通常用以区别颜色的特性是色调、饱和度、亮度。

3.依据图像的保真度,图像压缩可分为无损压缩和有损压缩4.存储一幅大小为1024×1024,256个灰度级的图像,需要8M bit。

5、一个基本的数字图像处理系统由图像输入、图像存储、图像输出、图像通信、图像处理和分析5个模块组成。

6、低通滤波法是使高频成分受到抑制而让低频成分顺利通过,从而实现图像平滑。

7、一般来说,采样间距越大,图像数据量少 ,质量差;反之亦然。

8、多年来建立了许多纹理分析法,这些方法大体可分为统计分析法和结构分析法两大类。

9、直方图修正法包括直方图均衡和直方图规定化两种方法。

10、图像压缩系统是有编码器和解码器两个截然不同的结构块组成的。

11、图像处理中常用的两种邻域是4-邻域和8-邻域。

12. 若将一幅灰度图像中的对应直方图中偶数项的像素灰度均用相应的对应直方图中奇数项的像素灰度代替(设灰度级为256),所得到的图像将亮度增加,对比度减少。

13、数字图像处理,即用计算机对图像进行处理。

14、图像数字化过程包括三个步骤:采样、量化和扫描14、图像数字化过程包括三个步骤:采样、量化和扫描15、MPEG4标准主要编码技术有DCT变换、小波变换等16、灰度直方图的横坐标是灰度级,纵坐标是该灰度出现的频率17、数据压缩技术应用了数据固有的冗余性和不相干性,将一个大的数据文件转换成较小的文件。

相关文档
最新文档