超声波扫描显微镜工作原理

超声波扫描显微镜工作原理
超声波扫描显微镜工作原理

超声波扫描显微镜工作原理

超声波扫描显微镜,英文是:Scanning Acoustic Microscope,简称SAM,由于它的主要工作模式是C模式,因此也简称:C-SAM。现在做失效分析的实验室里,这个设备直接被通称为C-SAM,就像X射线透射机被通称为X-Ray一样。

超声波扫描显微镜有两种工作模式:基于超声波脉冲反射和透射模式工作的。反射模式是主要的工作模式,它的特点是分辨率高,对待测样品厚度的没有限制。透射模式只在半导体企业中用作器件

筛选。

超声显微镜的核心就是带压电陶瓷的微波

链,压电陶瓷在射频信号发生的激励下,产生短

的声脉冲,随后这些声脉冲被声透镜聚焦在一起,

超声波扫描显微镜的这个带压电陶瓷的部件叫

换能器,英文是:Transducer。换能器既能把电

信号转换成声波信号,又能把从待测样品反射或

透射回来的声波信号转换成电信号,送回系统进

行处理。

换能器负责将电磁脉冲转换成声脉冲,离开

换能器后,声波被声透镜通过耦合介质(一般是

去离子水或无水酒精等)聚焦在样品上。耦合介

质是为了防止超声波信号快速衰减,因为超声波

信号在一些稀疏介质中传播是,会快速衰减。样品置于耦合介质中,只要声波信号在样品表面或者内部遇到声波阻抗介面(如遇到孔隙、气泡、裂纹等),就会发生反射。

换能器接收到反射信号后,会将其转换成电脉冲,超声波信号转换成电脉冲后表征为256级灰度值。每只换能器都有其特定的超声波频率,凯斯安公司可以针对用户的需要特别配置。这个过程就是超声波扫描显微镜反射工作模式的基本过程。

另一种超声显微镜的工作模式叫透射模式。透射扫描时,样品下方要安装另外一只换能器,这只换能器会接收所有完全穿透样品的超声波信号。根据接收的信号就能还原出各种超声波C扫图像。

超声波显微镜在失效分析中的应用

?晶圆面处分层缺陷

?锡球、晶圆、或填胶中的开裂

?晶圆的倾斜

?各种可能之孔洞(晶圆接合面、锡球、填胶…等)

超声波显微镜的在失效分析中的优势

?非破坏性、无损检测材料或IC芯片内部结构

?可分层扫描、多层扫描

?实施、直观的图像及分析

?缺陷的测量及缺陷面积和数量统计

?可显示材料内部的三维图像

?对人体是没有伤害的

?可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞等)

超声波扫描显微镜的应用领域

?半导体电子行业:半导体晶圆片、封装器件、大功率器件IGBT、红外器件、光电传感器件、SMT贴片器件、MEMS等;

?材料行业:复合材料、镀膜、电镀、注塑、合金、超导材料、陶瓷、金属焊接、摩擦界面等;

?生物医学:活体细胞动态研究、骨骼、血管的研究等.

《扫描探针显微镜》讲义

《扫描探针显微镜》讲义 2007/11/13 丁喜冬 目次 一扫描探针显微镜(SPM)概述 二扫描力显微镜(SFM)概述 三SFM中的力及其检测技术 四几种常见的SPM 五商品化的SPM仪器的例子 六SPM的应用举例 参考文献: (1)白春礼、田芳、罗克著,扫描力显微术,科学出版社,2000 (2)白春礼编著,扫描隧道显微术及其应用,上海科学技术出版社,1992.10 (3)G..Binning,C.F.Quate,Ch.Gerber. Phys.Rev.Lett 56,930(1986) (4)J. K. H. Ho¨rber1 and M. J. Miles,Scanning Probe Evolution in Biology,Volume302, Science, 7.Nov 2003 (5)Werner A.Hofer, Adam S.Foster, Alexander L.Shluger, Theories of scanning probe microscopes at the atomic scale, Reviews of Modern Physics, V olume75, October 2003.

一扫描探针显微镜(SPM)概述 1、发展背景 1982年,国际商用机器公司(IBM)苏黎世实验室的宾尼(Binning)和罗雷尔(Rohrer)及其同事们研制成功了世界上第一台新型的表面分析仪器——扫描隧道显微镜(Scanning Tunning Microscope, STM)。宾尼和罗雷尔因此而获得1986年的诺贝尔物理学奖。它的出现,使人类第一次能够实时的观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,被国际科技界公认为80年代十大科技成就之一。随后,STM仪器本身及其相关仪器获得了蓬勃发展,诞生了一系列在工作模式、组成模式及主要性能与STM相似的显微仪器,用来获取STM无法获取的各种信息。这些仪器目前统称为扫描探针显微镜(Scanning Probe Microscope, SPM)。这些仪器的共同特点是:采用尖锐的探针在样品表面扫描的方法来获取样品表面的一些性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同。这些仪器的发明,使人们跨入了原子和分子世界,成为人们认识微观世界的有力工具,在科技和工业方面已经、并且必将继续产生深刻的影响,在材料科学、微电子学、物理、化学、生物学等领域有着重大的意义和广阔的应用前景。 2、SPM的种类 扫描探针显微镜(SPM)家族中目前有近20个成员。由于其技术还在不断发展之中,所以其成员将继续增加。按照工作原理,大致可以分为:与隧道效应有关的显微镜、扫描力显微镜、扫描离子电导显微镜、扫描热显微镜等几类。与隧道效应有关的显微镜是基于量子隧道效应工作的。STM是SPM家族的第一个成员,也是与隧道效应有关的显微镜的典型代表。其成员还包括扫描噪声显微镜(SNM)、扫描隧道电位仪(STP)、弹道电子发射显微镜(BEEM)、光子扫描隧道显微镜(PSTM)等。扫描力显微镜(Scanning Force Microscope,SFM)通过检测探针与样品之间的相互作用力而成像,除了宾尼等人于1986年发明的原子力显微镜(Atomic Force Microscope,AFM)外,应用较广的还有:磁力显微镜(MFM)、静电力显微镜(EFM)、摩擦力显微镜(LFM)、化学力显微镜(CFM)等。 3、SPM的工作原理 扫描探针显微镜采用尖锐的探针在样品表面扫描的方法来获取样品表面的电、磁、声、光、热等物理的或化学的性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同,即各种扫描探针显微镜除了探针部分外,工作原理是基本一样的。 4、SPM的应用前景 SPM具有的原子和分子尺度上的探测材料性质的能力,因此,SPM无论在基础项目研究还是在技术领域的应用都具有独一无二的优势。目前,SPM已广泛应用于材料科学、物理、化学、生命科学等科研领域,取得了许多重要的研究成果,并推动着这些学科向前发展,出现了一系列新的交叉学科。另外,扫描探针显微镜的应用已不仅仅局限于基础研究方面,它已迅速向工业应用领域扩展。 图1-1 SPM的分类 图1-2 SPM的工作原理

超声波扫描显微镜SAM与X-RAY的区别

超声波扫描显微镜SAM与X-RAY的区别 在同一实验室内,SAM与X-ray是相互补充的方法手段。它们主要的区别在于展现样品的特性不同。X-ray能观察样品的内部,主要是基于材料密度的差异。密集的金属材料比陶瓷和塑料等材料对于X射线有较大的不透过性和较小的穿透深度。 X-ray对于分层的空气不是非常的敏感,裂纹和虚焊是不能被观察到的,除非材料有足够的物理上的分离。X-ray射线成像操作采用的是穿透模式,得到整个样品厚度的一个合成图像。在较长的检查期间内,如果半导体设备放置在离X-ray射线源比较近的地方可能会产生损坏或随机的电子错误。 超声波能穿透密集的和疏松的固体材料,但它对于内部存在的空气层非常的敏感,空气层能阻断超声波的传输。确定焊接层、粘接层、填充层、涂镀层、结合层的完整是SAM独特的性能。SAM可以分层的展现样品内部的一层一层的图像。 基于反射回波模式产生的图像只需要通过样品的表面(反射扫描模式),而穿透模式需要通过样品的两个表面(类似X-ray)(透射扫描模式)。并且SAM使用的超声波频率是高于MHz,而不同于超声波清洗设备使用的KHz的频率。这个范围的超声波不会引起气穴现象,它不能清洗和搅动易碎的组件,因此对于检测的组件并没有任何的损坏。

B超(B型超声传导技术和超声图像诊断技术)和X光有什么区别 x射线无法穿透金属,因为金属对其有强烈的吸收。骨骼含有大量的钙(一种金属),能够吸收x射线。金属之所以能吸收x射线,是因为x射线的光波能量足够激发金属离子的内层轨道上的电子,该电子被激发时,就吸收x射线的光波能量,并发生跃迁,此时的x射线转化为电离能,并保持在电子内。普通光的光波能量远远低于x射线,无法激发元素的电子,会被以光能的形式反射回来和以热能的形式吸收并弥漫的散发开来。x射线照射在非金属上,也会激发其内层轨道上的电子,但非金属元素的电子发生跃迁所需的能量很低,即使

超声波切割机工作原理

超声波切割机工作原理标准化管理部编码-[99968T-6889628-J68568-1689N]

超声波切割机 一、概述超声波切割机的原理与传统意义上的切割完全不同。它是利用超声波的能量,将被切割材料的局部加热熔化,从而达到切割材料的目的。所以超声波切割不需要锋利的刃口,也不需要很大的压力,不会造成被切割材料的崩边、破损。同时,由于切割刀在做超声波振动,摩擦阻力特别小,被切割材料不易粘在刀片上。这对粘性和弹性材料、冰冻材料,如食品,橡胶等,或不便加压力的物体切割,特别有效。超声波切割还有一个很大的优点,就是它在切割的同时,在切割部位有熔合作用。切割部位被完美地封边了,可防止被切割材料组织的松散(如纺织材料飞边)。超声波切割机的用途还可以扩展,如挖孔,铲挖,刮漆,雕刻,分条等等。 二、基本结构和特点超声波切割机是利用波能量进行切割加工的一类设备,它最大的特点是切割不用刃口。或者说,不用传统意义上的刃口。传统的切割是利用带有锋利刃口的刀具,压向被切割材料。此压力集中在刃口处,压强就非常大,超过了被切割材料的剪切强度,材料的分子结合被拉开,就被割断了。由于材料是被强大的压强硬性拉开的,所以切割刀具刃口就应该非常锋利,材料本身还要承受比较大的压力。对软性、有弹性的材料切割效果不好,对粘性材料困难更大。基本构成是超声波换能器、变幅杆、切割刀(工具头),驱动电源。超声波驱动电源将市电转换成

高频高电压交流电流,输给超声波换能器。超声波换能器其实就相当于一个能量转换器件,它能将输入的电能转换成机械能,即超声波。其表现形式是换能器在纵向作来回伸缩运动。伸缩运动的频率等同于驱动电源供出的高频交流电流频率。变幅杆的作用一是固定整个超声波振动系统,二是将换能器的输出振幅放大。切割刀(工具头)一方面进一步放大振幅,聚焦超声波。另一方面是输出超声波,利用切割刀的类似刃口,将超声波能量集中输入到被切割材料的切割部位。该部位在巨大超声波能量的作用下,瞬间软化、熔化,强度大大下降。此时,只要施加很小的切割力,就可达到切割材料的目的。类似于常规切割,所需要的基本的构件是切刀和砧板,超声波切割机也由有两种基本结构。根据超声波施加位置的不同,我们不妨可以把它分成超声波切刀式切割机和超声波砧板式切割机。超声波切刀式切割机是直接将超声波能量加载到切刀上,切刀就变成一把带有超声波的切刀。在切割材料时,材料主要是被超声波能量软化和熔化的,切刀的刃口只是起到切缝定位、超声波能量输出、分隔材料的作用。这种切割方式适用于粗、厚、长等不方便设置砧板的材料的切割。超音波切割机适用于:如炼胶机输出的生胶分切、管子切割、冻肉、糖果、巧克力切割、印刷线路板、工业、首饰业、塑料制品加工、食品加工、印刷工业、汽车工业天然纤维分割(可分细线路)、合成纤维深挖(多层电路切断)、塑料外壳加工、薄的人造树脂括漆(适合大面积)所有型式的纸张和底胶片原产地(中国)或手持式切割机等等。完。

超声波换能器工作原理

2、超声波换能器的工作原理 (1) 超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压 电陶瓷式。电源输出到 超声波发生器,再到超声波换能器,一般还要经过 超声波导出、接收 装置就可以产生超声波了。 (2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出 电缆,其特征在于它还包括阵列接收器, 它由引出电缆、换能器、金属圆环、橡胶垫圈组成。 (3) 超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料 的压电效应将电信号转换为机械振动 ?超声波换能器是一种能量转换器件,它的功能是将输 入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。 超声波换能器的种类:可分为压电换能器、 夹心换能器、柱型换能器、倒喇叭型换能器等等。 40kHZ 超声波发射/接收电路综述 40kHZ 超声波发射电路 ⑴ 10kHz 因声波发射器]1 ) 40kHZ 超声波发射电路之一,由 F1~F3三门振荡器在F3的输出为40kHZ 方波,工作 频率主 要由C1、R1和RP 决定,用RP 可调电阻来调节频率。 F3的输出激励换能器 T40-16 的一端和反向器 F4, F4输出激励换能器 T40-16的另一端,因此,加入 F4使激励电压提高 了一倍。电容 C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器 F1~F4用CC4069 六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用 9V 叠层电池。测量F3 输出频率应为40kHZ ± 2kHZ 否则应调节 RR 发射超声波信号大于 8m 。 40kHZ 超声波发射电路 ⑵ 1615? F 100 — ^500 T40-16

原子力显微镜的原理及使用

原子力显微镜的原理及使用 通过近代物理实验课的学习,了解了许多仪器的工作原理以及使用方法,对今后的科研学习有很大的 帮助。其中原子力显微镜就是其中之一,对于做材料方面的专业来说,原子力显微镜在表征物质的表面结 构及性质起着重要的作用。前段时间我们利用AFM对用RF磁控溅射制备的PZT薄膜进行了表征,通过对AFM的使用并查找相关文献,使我对原子力显微镜有了更加深刻的认识。 原子力显微镜,英文:Atomic Force Microscope ,简写: AFM。是一种利用原子,分子间的相互作用力来观察物体表面微观 形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操 控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样 品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描 样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品 表面的形貌或原子成分。 它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运 动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控 制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电 流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针 尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分 辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。 一、仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置 检测部分、反馈系统。 1、力检测部分 在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品 的特性,以及操作模式的不同,而选择不同类型的探针。 2、位置检测部分 在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量 的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作 信号处理。 3、反馈系统 在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作 反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针 尖保持一定的作用力。 AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料, 当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与 所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分 别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面 扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。 原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动, 再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测 器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性 以影像的方式给呈现出来。 二、工作原理: 将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于 针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬 臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法

超声波扫描显微镜工作原理

超声波扫描显微镜工作原理 超声波扫描显微镜,英文是:Scanning Acoustic Microscope,简称SAM,由于它的主要工作模式是C模式,因此也简称:C-SAM。现在做失效分析的实验室里,这个设备直接被通称为C-SAM,就像X射线透射机被通称为X-Ray一样。 超声波扫描显微镜有两种工作模式:基于超声波脉冲反射和透射模式工作的。反射模式是主要的工作模式,它的特点是分辨率高,对待测样品厚度的没有限制。透射模式只在半导体企业中用作器件 筛选。 超声显微镜的核心就是带压电陶瓷的微波 链,压电陶瓷在射频信号发生的激励下,产生短 的声脉冲,随后这些声脉冲被声透镜聚焦在一起, 超声波扫描显微镜的这个带压电陶瓷的部件叫 换能器,英文是:Transducer。换能器既能把电 信号转换成声波信号,又能把从待测样品反射或 透射回来的声波信号转换成电信号,送回系统进 行处理。 换能器负责将电磁脉冲转换成声脉冲,离开 换能器后,声波被声透镜通过耦合介质(一般是 去离子水或无水酒精等)聚焦在样品上。耦合介 质是为了防止超声波信号快速衰减,因为超声波 信号在一些稀疏介质中传播是,会快速衰减。样品置于耦合介质中,只要声波信号在样品表面或者内部遇到声波阻抗介面(如遇到孔隙、气泡、裂纹等),就会发生反射。 换能器接收到反射信号后,会将其转换成电脉冲,超声波信号转换成电脉冲后表征为256级灰度值。每只换能器都有其特定的超声波频率,凯斯安公司可以针对用户的需要特别配置。这个过程就是超声波扫描显微镜反射工作模式的基本过程。 另一种超声显微镜的工作模式叫透射模式。透射扫描时,样品下方要安装另外一只换能器,这只换能器会接收所有完全穿透样品的超声波信号。根据接收的信号就能还原出各种超声波C扫图像。 超声波显微镜在失效分析中的应用 ?晶圆面处分层缺陷 ?锡球、晶圆、或填胶中的开裂 ?晶圆的倾斜 ?各种可能之孔洞(晶圆接合面、锡球、填胶…等)

美国Sonoscan超声波扫描成像显微镜

美国Sonoscan超声波扫描成像显微镜 广州南创房工 美国Sonoscan公司提供世界领先的超声波扫描显微镜(Acoustic Microscopes)。美国Sonoscan的产品在30多个国家设立了国外办事处及售后服务中心,并在中国设立了广州南创传感器事业部,为美国Sonoscan提供最佳的服务与解决方案。超声波扫描显微镜(Acoustic Microscopes)是一种非破坏性的检测组件的完整性,内部结构和材料的内部情况的仪器,作为无损检测分析中的一种,它可以实现在不破坏物料电气能和保持结构完整性的前提下对物料进行检测。被广泛的应用在物料检测(IQC)、失效分析(FA)、质量控制(QC)、质量保证及可靠性(QA/REL)、研发(R&D)等领域。 美国Sonoscan超声波扫描成像显微镜 其可以检测: 1.材料内部的晶格结构,杂质颗粒; 2.内部裂纹; 3.分层缺陷; 4.空洞、气泡、空隙等等 在声学显微成像(AMI: Acoustic Micro Imaging)技术应用于内部品质无损检测与分析方面,Sonoscan一直是该行业的权威之一。Sonoscan系统被视为精确基准,通过我们的SonoLab?部门,您可以向我们的声学应用工程师进行咨询,获取专业意见和指导。Sonoscan致力于通过教育项目、客户应用程序评估与新系统开发来实现AMI技术的持续改进。 对AMI技术的专业研究是Sonoscan工作的核心。我们努力提供非凡的数据精确性、出众的图像质量和世界领先的技术。我们在AMI技术方面还拥有多项美国和外国专利。总之,Sonoscan是您最值得信任的伙伴,我们可以为您节省成本并提高效率。 Sonoscan C-SAM D9500是一种新型AMI标准仪器,可以提供出众的精确度和稳定性,适合破损分析、工艺开发以及材料分析与表征。 Sonoscan的优势: 美国Sonoscan超声波扫描成像显微镜 数据精确性:Sonoscan公司的专有信号处理算法可提供极其精确和可靠的评估。使用Sonoscan公司先进的声阻抗极性探测器(AIPD)?,甚至可以检测到仅200埃厚度的分层。此外,根据扫描尺寸与像素密度(分辨率)情况,Sonoscan声像可高达256兆像素。这种卓越的数据精确性正是Sonoscan公司在缺陷检测和诊断(破损分析)领域方面取得突出成就的一个重要原因。精确的数据固然重要,然而利用该数据做出相应决策更加重要。Sonoscan公司拥有先进的工具和技术,能将精确数据迅速转变为可用性信息,同时还具备多种分析功能可以帮助识别各种缺陷,并确定缺陷的严重程度。在AMI成像中,各种彩图显示了详细的分析信息。Sonoscan公司的数字图像分析器(DIA)?采用先进计算方法处理数据,帮助客户建立自动化的接受/拒收标准。 美国Sonoscan超声波扫描成像显微镜 技术领先地位:Sonoscan拥有20多位专业AMI应用工程师,他们可以为客户提

压电式超声波发生器原理

由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人研制上也得到了广泛的应用。下面为大家介绍超声波测距原理是什么。 超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理 压电式超声波发生器实际上是利用电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。这就是所谓的时间差测距法。 超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。 测距的公式表示为:L=C×T 式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。 对于超声波测距精度要求达到1mm时,就必须把超声波传播的环境温度考虑进去。例如当温度0℃时超声波速度是332m/s, 30℃时是350m/s,温度变化引起的超声波速度变化为18m/s。若超声波在30℃的环境下以0℃的声速测量100m距离所引起的测量误差将达到5m,测量1m误差将达到5cm。

扫描探针显微镜(scanning

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介: 该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。 ●分辨率 原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能 样品尺寸:最大可达直径12mm,厚度8mm 扫描范围:125X125μm,垂向1μm ●型号: Veeco NanoScope MultiMode扫描探针显微镜 本次培训着重介绍该设备常用模式:Contact Mode AFM 二、AFM独特的优点归纳如下: (l)具有原子级的超高分辨率。理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。,从而可获得物质表面的原子晶格图像。 (2)可实时获得样品表面的实空间三维图像。既适用于具有周期性结

构的表面,又适用于非周期性表面结构的检测。 (3)可以观察到单个原子层的局部表面性质。直接检测表面缺陷、表面重构、表面吸附形态和位置。 (4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。 三、AFM的基本原理: AFM基于微探针与样品之间的原子力作用机制。以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。原子力变化的梯度约为10-13N/nm。原子力虽然很微弱,但是足以推动极为灵敏的微悬臂并使之偏转一定的角度。因此,微悬臂的偏转量与探针一样品间距成对应关系,在对样品进行XY扫描时,检测这一偏转量,即可获得样品表面的微观形貌。

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

扫描探针显微镜原理及其应用-精工

扫描探针显微镜原理及其应用

扫描探针显微镜的历史 General term of a type microscope, which performs surface form observation in minute domain by detecting the physics properties between probe and sample . STM (1981 invention 1987 utilization) AFM (1986 invention 1990 utilization) DFM (Dynamic Force Mode )FFM (Friction Force Microscope)MFM (Magnetic Force Microscope)VE-AFM (Viscoelasticity AFM)KFM (Surface potential)SNOM Probe Sample surface physical interaction

10 mm 10μm 10 nm 10 nm 10 mm X,Y resolution/m 10μm Z r e s o l u t i o n /m SEM Optical Microscope 10 pm SPM TEM 扫描探针显微镜与其他显微镜在分辨能力上的比较 0.2nm 800μm 15μm Reference :NIKKEI MICRDEVICES 86.11

High Resolution in 3D image Atomic Image (HOPG)STM(~2nm□) Magnet-Optical Disk MFM(10μm□) Lung cancer cell among culture solution DFM(100μm□) AFM Lithography by oxidization with elec. field Vector Scan(1μm□) ~ In Air ,High Vacuum ,Liquid ,Heat ,Cool ,Magnetic Field 扫描探针显微镜的优势 Observation?Analysis ?Processing Topography & Physical property Measurement in various environment Before After

超声扫描仪原理

HS Jang
Scanning Acoustic Microscope(SAM) Scanning Acoustic Microscope(SAM) 超声波扫描显微镜 超声波扫描显微镜
H.S. Jang
1

HS Jang
What is Ultrasonics ? What is Ultrasonics ? 是超声 什么是超声波 是超声 什么是超声波
?
Sound waves which have a frequency over 20kHz. 频率超过20Khz的声波 率超过 的 (Audible frequency: 16Hz - 20kHz) (人耳能听到的声音频率为:16Hz-20kHz) 人耳能听到的声 人耳能
16Hz - 20,000Hz
?
The sound waves which can not be heard by the human ear. 超声波是人耳听不到的 波是人耳听
2

HS Jang
Types of Ultrasonic Waves Types of Ultrasonic Waves 超声波的波形 超声波的波形
1. Shear Wave(横波) 横
1) The vibration direction and propagation direction are perpendicular. 振幅方向和传 振幅方向和传播方向是垂直的 2) Transmission in liquid or air is impossible.
Vibration
在液体和空气中无法传 在液体和空气中无法传播
Propagation
3

超声波焊接机的工作原理

精心整理超声波焊接机的工作原理 超音波焊接机的工作原理是:? 是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。根据产品的外观来设计模具的大小、形状。? 超声波塑料焊接 1 2 一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。 3、超声波发生器 (1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。 (2)功率在500W以上的超声波塑料焊接机所用发生器采用自激式功率振荡器,也具有一定的频率跟踪能力。 4、超声波焊接机使用的声学系统,主要是有换能器和工具头构成的。 一、打开电源无显示? 二、原因:保险丝熔断?

三、解决方法:? 四、1、?检查功率管是否短路? 五、2、?更换保险丝? 六、 七、二、超声波测试无电流显示? 八、原因: 九、1、?功率管烧毁? 十、2、?高压电容烧毁? 十一、3、继电器控制线路部分有故障? 十二、解决方法:更换相关烧毁零件? 十三、 十四、 十五、 十六、 十七、 十八、 十九、 二十、 二十一、 二十二、 二十三、 二十四、 二十五、 二十六、 二十七、 二十八、 二十九、 三十、 三十一、 三十二、 三十三、 三十四、 三十五、 三十六、 三十七、 三十八、 三十九、解决方法: 四十、1、?将急停开关复位? 四十一、2、?检测使两个触发开关能同时触发? 四十二、3、?检测程序板排除故障,一般为IC问题? 四十三、 四十四、六、触发触发开关后,超声时间非常长或者保压时间非常长? 四十五、原因:焊接时间或保压时间波段开关断路? 四十六、解决方法:调整波段开关触点,使之接触良好? 四十七、 四十八、七、触发触发开关后,超声波不能触发? 四十九、原因:

超声波扫描

超声波扫描(C-SAM): 介绍Introduce: 超声波显微镜(SAT)是Scanning Acoustic Tomography 的简称,又称为SAM (Scanning Acoustic Microscope)。此检测为应用超声波与不同密度材料的反射速率及能量不同的特性来进行分析。 原理Principle: 利用纯水当介质传输超声波信号,当讯号遇到不同材料的界面时会部分反射及穿透,此种发射回波强度会因为材料密度不同而有所差异,扫描声学显微镜就是利用此特性,来检验材料内部的缺陷并依所接收的信号变化将之成像。 检测项目(Test items): 1.一般用于封装內部介面是否有分层(Delaminaiton) 或裂縫(Crack),SAM原理上可以检测到0.13 μm的微小缺陷。 2.塑料封装IC的结构分析IC package level structure analysis 3.PCBA板上IC的质量分析IC package quality on PCBA level 4.PCB/IC的基材结构分析PCB/IC substrate structure analysis 5.晶片结构分析Wafer level structure analysis 6.WLCSP结构分析WLCSP structure analysis 7.CMOS结构分析CMOS structure analysis 检测模式Test Mode: 常用的几种模式及图解 A-scan (超声波信号) B-scan (二维反射式剖面检测/图像) C-scan (二维反射式平面检测/图像) Through-scan (穿透式检测/ 图像) 高频探头及作用High frequency transducers and function: 不同的样品其需要的检测探头不同,我们拥有从低频15 Mhz至高频110 Mhz及更高階的超高频探头。探头应用transducers application: 15 Mhz – DIP , PLCC , TO, QFP 35 Mhz – BGA , SOP8 , QFP , SOT223 , TO252 50 Mhz – QFN , TQFP, DFN 75 Mhz – TSSOP , Flash 110 Mhz –Wafer , Flip chip UHF – CMOS , WLCSP

超声波原理

超声波原理: 超声波清洗是基於空化作用,即在清洗液中无数气泡快速形成并迅速内爆。由此产生的冲击将浸没在清洗液中的工件内外表面的污物剥落下来。随着超声频率的提高,气泡数量增加而爆破冲击力减弱,因此,高频超声特别适用於小颗粒污垢的清洗而不破环其工件表面。 空化泡的扩大以及爆裂(内爆) 气泡是在液体中施加高频(超声频率)、高强度的声波而产生的。因此,任何超声清洗系统都必须具备三个基本元件:盛放清洗液的槽、将电能转化为机械能的换能器以及产生高频电信号的超声波发生器。 换能器和发生器: 超声清洗系统最重要的部分是换能器。现存两种换能器,一种是磁力换能器,由镍或镍合金制成;一种压电换能器,由锆钛酸铅或其他陶瓷制成。将压电材料放入电压变化的电场中时,它会发生变形,这就是所谓的'压电效应'。相对来说,磁力换能器是用会在变化的磁场中发生变形的材料制成的。 无论使用何种换能器,通常最基本的因素为其产生的空化效应的强度。超声波和其它声波一样,是一系列的压力点,即一种压缩和膨胀交替的波(如下图示)。如果声能足够强,液体在波的膨胀阶段被推

开,由此产生气泡;而在波的压缩阶段,这些气泡就在液体中瞬间爆裂或内爆,产生一种非常有效的冲击力,特别适用於清洗。这个过程被称做空化作用 声波的压缩和膨胀 从理论上分析,爆裂的空化泡会产生超过10,000 psi的压力和20,000 °F (11,000 °C) 的高温,并在其爆裂的瞬间冲击波会迅速向外辐射。单个空化泡所释放的能量很小,但每秒钟内有几百万的空化泡同时爆裂,累计起来的效果将是非常强烈的,产生的强大的冲击力将工件表面的污物剥落,这就是所有超声清洗的特点。 如果超声能量足够大,空化现象会在清洗液各处产生,所以超声波能够有效清洗微小的裂缝和孔。空化作用也促进了化学反应并加速了表面膜的溶解。 然而只有在某区域的液体压力低於该气泡内气体压力时才会在该区

扫描电子显微镜的结构原理

实验一扫描电子显微镜的结构原理及图像衬度观察 一、实验目的 1.了解扫描电镜的基本结构和工作原理。 2.通过实际样品观察与分析,明确扫描电镜的用途。 二、基本结构与工作原理简介 扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。图5-1是扫描电镜主机构造示意图。试验时将根据实际设备具体介绍。这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。但在有些情况下需对样品进行必要的处理。 (1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 (2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 (3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。 2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

Sonoscan超声扫描检测设备

Sonoscan超声扫描检测设备 广州南创房工 美国Sonoscan公司提供世界领先的超声波扫描显微镜(Acoustic Microscopes)。美国Sonoscan的产品在30多个国家设立了国外办事处及售后服务中心,并在中国设立了广州南创传感器事业部,为美国Sonoscan提供最佳的服务与解决方案。超声波扫描显微镜(Acoustic Microscopes)是一种非破坏性的检测组件的完整性,内部结构和材料的内部情况的仪器,作为无损检测分析中的一种,它可以实现在不破坏物料电气能和保持结构完整性的前提下对物料进行检测。被广泛的应用在物料检测(IQC)、失效分析(FA)、质量控制(QC)、质量保证及可靠性(QA/REL)、研发(R&D)等领域。 Sonoscan的优势: Sonoscan超声扫描检测设备数据精确性:Sonoscan公司的专有信号处理算法可提供极其精确和可靠的评估。使用Sonoscan公司先进的声阻抗极性探测器(AIPD)?,甚至可以检测到仅200埃厚度的分层。此外,根据扫描尺寸与像素密度(分辨率)情况,Sonoscan声像可高达256兆像素。这种卓越的数据精确性正是Sonoscan公司在缺陷检测和诊断(破损分析)领域方面取得突出成就的一个重要原因。精确的数据固然重要,然而利用该数据做出相应决策更加重要。Sonoscan 公司拥有先进的工具和技术,能将精确数据迅速转变为可用性信息,同时还具备多种分析功能可以帮助识别各种缺陷,并确定缺陷的严重程度。在AMI成像中,各种彩图显示了详细的分析信息。Sonoscan公司的数字图像分析器(DIA)?采用先进计算方法处理数据,帮助客户建立自动化的接受/拒收标准。 Sonoscan超声扫描检测设备图像质量:声学显微镜的图像质量主要取决于成像透镜。因为传感器/透镜是非常重要的元件,所以Sonoscan公司在我们自己的实验室生产该类元件。实际上,Sonoscan是唯一一家设有传感器/透镜研发实验室和制造厂的AMI公司。其他AMI设备所使用的市场上可以买到的普通传感器无法达到Sonoscan独特和专有的标准。Sonoscan传感器专为AMI分析而开发,可以提供最大的分辨率和穿透性。Sonoscan提供最多元化的超高频传感器,有标准件也可根据您需要特别定制。同时我们还提供技术服务,可根据您特定应用为您优化分辨率和对比度。Sonoscan所有透镜都经过传感器校准来验证分辨率,以确保性能最佳。Sonoscan超高频传感器可以提供高达7微米的分辨率。右侧的图像可以证明Sonoscan传感器的极佳分辨率。 Sonoscan超声扫描检测设备技术领先地位:Sonoscan拥有20多位专业AMI应用工程师,他们可以为客户提供高效精确的服务。通过我们的SonoLab?部门,客户可以在兼容性与筛分项目上进行咨询,从而获取专业意见和指导。我们还可以作为独立的第三方提供质量审核服务。Sonoscan工程师与科研人员在声学显微成像领域发表过300多篇论著。此外,我们多位技术人员在国家以及国际座谈会、研讨会和展览会中频繁发表演讲。论著与演讲主题涉及多个方面,包括电子学、合成物、陶瓷、聚合物、缺陷分析、包装、质量管理与安全性等。我们对专业技术活动的参与可以保证我们位于创新的最前沿,可以使我们更好地服务于客户,并确保我们对各个市场与应用领域的需要做出最快的响应。

相关文档
最新文档