抽样定理

合集下载

抽样定理

抽样定理

离散序列x[k]频谱与抽样间隔T之间的关系
sam 2m
X ( j) 1
混叠 (aliasing)

m 0 m
X (e jW )
X [ j( sam )] ...
1 T
X ( j)
X [ j( sam )] ...
sam
samm
0
m sam
sam
为什么进行信号抽样
输入 x(t)
x[k] 离散 y[k]
A/D
系统
D/A
用数字方式处理模拟信号
输出 y(t)
离散信号与系统的主要优点:
(1) 信号稳定性好: 数据用二进制表示,受外界影响小。 (2) 信号可靠性高: 存储无损耗,传输抗干扰。 (3) 信号处理简便: 信号压缩,信号编码,信号加密等 (4) 系统精度高: 可通过增加字长提高系统的精度。 (5) 系统灵活性强: 改变系统的系数使系统完成不同功能。
连续时间信号的时域抽样
什么是信号抽样 为什么进行抽样 抽样定理的理论推导 抽样定理内容 抽样定理的应用
5 非周期信号的频域分析 p 1
什么是信号抽样
5 非周期信号的频域分析 p 2
什么是信号抽样
5 非周期信号的频域分析 p 3
[x,Fs,Bits]=wavread(‘myhreat’); play(x) Fs=22,050 ; Bits=16
5 非周期信号的频域分析 p 5
如何进行信号抽样
5 非周期信号的频域分析 p 6
如何进行信号抽样
x[k ] x(t ) t kT
如何选取抽样间隔T?
5 非周期信号的频域分析 p 7
信号抽样的理论推导
x(t) tkT x[k ]

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。

实验器材:
示波器、函数信号发生器、导线、面包板。

实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。

2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。

5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。

6.将采样频率设置为30kHz,并观察波形。

7.继续提高采样频率直至可清晰观察到原始信号的波形。

实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。

在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。

实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。

在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。

通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。

通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。

抽样定理

抽样定理

抽样定理定义:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以1/2 f h的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续的全部信息。

抽样定理在实际应用中应注意在抽样前后模拟信号进行滤波,把高于二分之一抽样频率的频率滤掉。

这是抽样中必不可少的步骤。

07年的抽样定理:设时间连续信号f(t),其最高截止频率为f m ,如果用时间间隔为T<=1/2f m的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

什么是A/D转换和D/A转换?什么是A/D转换和D/A转换?一。

什么是a/d.d/a转换:随着数字技术,特别是信息技术的飞速发展与普及,在现代控制。

通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。

由于系统的实际对象往往都是一些模拟量(如温度。

压力。

位移。

图像等),要使计算机或数字仪表能识别。

处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析。

处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。

这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路-模数和数模转换器。

将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br>为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。

转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。

抽样定理

抽样定理

抽样定理是通信理论中的一个重要定理,它是模拟信号数字化的理论基础,包括时域抽样定理和频域抽样定理。

抽样定理,也称为香农采样定律和奈奎斯特采样定律,是信息论特别是通信和信号处理中的重要基础结论。

E.T.惠特克(统计理论发表于1915年),克劳德·香农和哈里·奈奎斯特对此做出了重要贡献。

此外,V。

A. Kotelnikov也对该定理做出了重要贡献。

采样是将信号(即空间中的连续函数)转换为数字序列(即空间中的离散函数)。

采样后的离散信号通过保持器后,获得具有零阶保持器特性的阶跃信号。

如果信号受频带限制,并且采样频率高于信号最高频率的两倍,则可以从采样样本中完全重建原始连续信号。

限带信号转换的速度受到其最高频率分量的限制,也就是说,其在离散时间采样和表达信号细节的能力非常有限。

抽样定理意味着,如果信号带宽小于奈奎斯特频率(即采样频率的一半),那么这些离散采样点就可以完全代表原始信号。

高于或处于奈奎斯特频率的频率分量将导致混叠。

大多数应用都需要避免混叠,混叠的严重程度与这些混叠频率分量的相对强度有关。

采样过程中应遵循的定律也称为抽样定理和抽样定理。

抽样定理解释了采样频率和信号频谱之间的关系,这是连续信号离散化的基本基础。

抽样定理最早是由美国电信工程师H. Nyquist于1928年提出的,因此被称为Nyquist抽样定理。

1933年,苏联工程师科特尔尼科夫首次严格地通过公式表达了这一原理,因此在苏联文学中被称为科特尔尼科夫抽样定理。

1948年,信息理论的创始人C.E. Shannon 清楚地解释了这一原理,并将其正式引用为一个定理,因此在许多文献中也称为Shannon抽样定理。

抽样定理有很多表达式,但是最基本的表达式是时域抽样定理和频域抽样定理。

抽样定理广泛应用于数字遥测系统,时分遥测系统,信息处理,数字通信和采样控制理论中。

nyquist抽样定理

nyquist抽样定理

nyquist抽样定理
纳奎斯特抽样定理,又称纳奎斯特采样定理,是信号处理学中的一个重要定理,是由瑞典电子工程师Harry Nyquist于1928年提出的。

纳奎斯特抽样定理指出,要将连续时间的信
号无损地采样成离散时间的信号,采样频率必须大于原信号最大频率的两倍,即采样频率必须大于最高频率的两倍,也就是说,采样频率必须大于信号最高频率的两倍。

简单来说,纳奎斯特抽样定理指出,要想得到完整的信号,最低的采样频率必须大于信号最高频率的两倍。

这就是所谓的“双倍频率”原理,也叫做“纳奎斯特抽样定理”。

纳奎斯特抽样定理的最重要的概念是:在采样之前,信号的频率是有限的;在采样之后,信号的频率也是有限的,其值为原信号最高频率的一半。

也就是说,如果原信号的最高频率不超过采样频率的一半,那么在采样过程中不会丢失任何有用的信息。

如果原信号的最高频率超过采样频率的一半,那么在采样过程中就会丢失一部分有用的信息。

纳奎斯特抽样定理给信号处理提供了重要的理论基础,在数字信号处理的各个领域都得到了广泛的应用。

它是必须掌握的重要定律,并且它的实践应用也十分重要。

纳奎斯特抽样定理在数字音频处理、数字图像处理、数字视频处理等方面都有重要的应用,尤其是在数字信号处理领域,它的实践应用更为重要。

抽样定理

抽样定理

抽样定理抽样的分类:(1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理;(2) 用来抽样的脉冲序列是等间隔的还是非等同间隔的,又分为均匀抽样定理和非均匀抽样定理;(3) 抽样的脉冲序列是冲击序列还是非冲击序列,又分为理想抽样和实际抽样。

低通型连续信号抽样定理抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。

低通型连续信号的抽样定理:一个频带限制在(0,)H f 赫内的时间连续信号()m t ,若以12H f 的间隔对他进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

说明:抽样过程中满足抽样定理时,PCM 系统应无失真。

这一点与量化过程有本质区别。

量化是有失真的,只不过失真的大小可以控制。

低通型连续抽样定理证明设()m t 的频带为(0,)H f ,图中将时间连续信号()m t 和周期性冲激序列()T t δ相乘,用()s m t 表示此抽样函数,即()()()s T m t m t t δ=假设()m t 、()T t δ、()s m t 的频谱分别为()M ω、()T δω、()s M ω。

按照频域卷积定理,1()[()()]2s T M M ωωδωπ=因为 2()()T S n n T πδωδωω∞=-∞=-∑ 2S Tπω=所以, 1()[()*()]s s n M M n T ωωδωω∞=-∞=-∑由卷积关系,上式可写成1()()s s n M M n T ωωω∞=-∞=-∑ 上式表明,已抽样信号()s m t 的频谱()s M ω是无穷多个间隔为s ω的()M ω相迭加而成。

这表明()s M ω包含()M ω迭全部信息。

带通型抽样定理。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。

它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。

抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。

一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。

抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。

抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。

具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。

这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。

抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。

它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。

这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。

如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。

抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。

当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。

三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。

采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。

例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。

抽样定理

抽样定理

又有:
x(t ) = cos(Φ ) cos(
x p (t ) =
+∞ n = −∞
ωs
2
t ) − sin(Φ ) sin(
nT )δ (t − nT )
ωs
2
t)
∑ cos(Φ) cos( 2

ωs
结论
xp(t)作为输入加到截止频率为ωs/2的理想
低通滤波器上,其输出为
y (t ) = cos(Φ) cos(
2 假定以频率为二倍于该正弦信号频率的周 期单位冲激函数对它抽样。即抽样频率为 ω s。 抽样的冲激信号作为输入加到一个截至频 率为ωs/2的理想低通滤波器上。 x(t ) = cos(
ωs
t + Φ)
x p (t ) =
n = −∞
∑ x(nT )δ (t − nT )
+∞
其中T = 2π / ω s。
问题的提出:
抽样定理要求抽样频率大于或等于信号中最 高频率的两倍,但是等于的时候,会出现一 些问题。
为什么?
实际的例子
目的:确定圆盘的旋转方向。(抽样率ωs) ω0<ωs<2ω0 圆盘看起来是在倒转。(Why?)
考虑另一种情况
当ωs=2ω0时,不能确定圆 盘旋转方向。
信号的例子:
考虑下面正弦信号
ωs
2
t)
结果可见,x(t)的完全恢复仅仅发生在相位是 零的情况(或者2π整数倍的情况),否则信 号y(t)不等于x(t)。
极端的例子
考虑φ=-π/2的情况。这样有:
x(t ) = sin(
ωs
2
t)
该信号在抽样周期2π/ωs整倍数点上的 值都是零。在这个抽样率下所产生的信 号全是零。 当这个零输入加到该理想低通滤波器上 时,所得输出当然也都是零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k
5 非周期信号的频域分析 p 10
信号抽样的理论推导
若连续信号x(t)的频谱为X(j ),离散序列
x[k] 频谱为 X(ejW),且存在
x[k] x(t) t kT
则有
X
(e jW )
1 T
X
n
(
j(
nsam )
)
(W T )
信号时域的离散化导致其频域的周期化
其中: T 为抽样间隔,sam=2p /T为抽样角频率
Байду номын сангаас
若件带下限,信信号号xx((tt))的 可最以高用角等频间北大19率隔3达学4为T克获年的ω塔得在抽m大物A,T样学理&则值学学T在公习博唯司满士。一工学1足表9作1位一7示,年。定.后在19条转耶17鲁~入
Bell电话实验室工作。
抽样间隔T需满足:
1927年,Nyquist确定了对某一
T π / m 1/(带且2宽在f m的抽)有样限率时达间到连一续定信数号值进时,行根抽据样,
h(t)
x(t)
抗混
x1(t)
低通滤波器
X ( j) 1
H ( j)
1
X1( j) 1
0
m
5 非周期信号的频域分析 p 19
0 m m
0 m
抽样定理的工程应用
✓ 混叠误差与截断误差比较
X(ejW)
...
1 T
sam
m
0 m
X (e jW )
1
...
T
5
非周期信号的频域分sa析m
m
p 20
0 m
解: 根据信号时域与频域的对应关系及抽样定理得: 对信号x(2t)抽样时,最小抽样频率为 4fm(Hz); 对x(t)*x(2t)抽样时,最小抽样频率为 2fm(Hz); 对x(t)x(2t)抽样时,最小抽样频率为 6fm(Hz)。
5 非周期信号的频域分析 p 18
抽样定理的工程应用
许多实际工程信号不满足带限条件
为什么进行信号抽样
输入 x(t)
x[k] 离散 y[k]
A/D
系统
D/A
用数字方式处理模拟信号
输出 y(t)
离散信号与系统的主要优点:
(1) 信号稳定性好: 数据用二进制表示,受外界影响小。 (2) 信号可靠性高: 存储无损耗,传输抗干扰。 (3) 信号处理简便: 信号压缩,信号编码,信号加密等 (4) 系统精度高: 可通过增加字长提高系统的精度。 (5) 系统灵活性强: 改变系统的系数使系统完成不同功能。
m 0 m
X (e jW )
X [ j( sam )] ...
1 T
X ( j)
X [ j( sam )] ...
sam
samm
0
m sam
sam
5 非周期信号的频域分析 p 14
2、时域取样定理
抽样定理总是假设信号是实信号的!由于实信号的幅度 频谱具有偶对称性,所以当抽样信号能唯一表示原信号时, 要求:抽样频率不能过低,至少需是最高频率的两倍。
从抽样信号fs(t)中完全恢复原信号f(t),需满足两个条件:
(1) f(t) 的频谱函数在| | >m各处为零,即要求其在频域
有限(带限信号),对应时域无限,工程上无法实现……
(2) 抽样间隔T 需满足 T π / m 1/(2 f m ) ,
或抽样频率fs需满足: fs 2fm (或ωs 2ω m) 。
fs = 2fm 定义为最小取样频率,称为Nyquist Rate。以上条件也 就是抽样后频谱不产生混叠的充分条件。
5 非周期信号的频域分析 p 15
Nyquist,美国物理学家,1889
抽样定年出理生的在内瑞容典。1976年在Texas逝
世。他对信息论做出了重大贡献。
1907年移民到美国并于1912年进入
实际滤波
1 F ( j) 理想
1 F ( j)
1 F ( j)
滤波
0
0 m
0 m
(2) 若连续时间信号 f (t) 的最高频率 fm 未知,
如何确定抽样间隔T?
取较大的T,从抽样信号频谱可发现有混叠,逐渐减小T,当前后2次抽样信号频 谱之间没有变化时,即可确定T
5 非周期信号的频域分析 p 22
fsam 2fm (或ω这复sa些原m 抽信 样号2ω。值m为可)不以使在原接波收形端产准生确“地半恢
fsam= 2fm
为最小抽样频率波,损称失”为,N采yq样ui率st至R少at应e. 为信号最
高频率的2倍,这就是著名的
5 非周期信号的频域分析 p 16
Nyquist采样定理。
信号抽样的实现
x(t)
5 非周期信号的频域分析 p 5
如何进行信号抽样
5 非周期信号的频域分析 p 6
如何进行信号抽样
x[k ] x(t ) t kT
如何选取抽样间隔T?
5 非周期信号的频域分析 p 7
信号抽样的理论推导
x(t) tkT x[k ]
?
x[k] x(t) t kT
X ( j)
X (e jW ) (W T )
5 非周期信号的频域分析 p 11
离散序列x[k]频谱与抽样间隔T之间的关系
sam 2m
X ( j) 1
m 0 m
X [ j( sam )] ...
sam
X (e jW )
1 T
X ( j)
m
sam /2 0 m
X [ j( sam )] ...
sam
5 非周期信号的频域分析 p 12
离散序列x[k]频谱与抽样间隔T之间的关系
连续信号x(t)的频谱为X(j ),
离散序列x[k] 频谱为 X(ejW)
5 非周期信号的频域分析 p 8
信号抽样的理论推导
T (t) (t kT) k
sam () sam ( nsam) n
sam 2π / T
T (t) (1)
sam () (sam )
T 0 T
5 非周期信号的频域分析 p 9
连续时间信号的时域抽样
什么是信号抽样 为什么进行抽样 抽样定理的理论推导 抽样定理内容 抽样定理的应用
5 非周期信号的频域分析 p 1
什么是信号抽样
5 非周期信号的频域分析 p 2
什么是信号抽样
5 非周期信号的频域分析 p 3
[x,Fs,Bits]=wavread(‘myhreat’); play(x) Fs=22,050 ; Bits=16
sam 2m
X ( j) 1
m 0 m
X [ j( sam )] ...
X (e jW )
1 T
X(j)
sam m
0 m
X [ j( sam )]
...
sam
5 非周期信号的频域分析 p 13
离散序列x[k]频谱与抽样间隔T之间的关系
sam 2m
X ( j) 1
混叠 (aliasing)
A/D
x[k]=x(kT)
T
x[k] x(t) t kT
抽样间隔(周期) 抽样角频率 抽样频率
5 非周期信号的频域分析 p 17
T
(s)
sam=2p/T (rad/s)
fsam=1/T (Hz)
已知实信号x(t)的最高频率为fm (Hz),试计算对 各信号x(2t), x(t)*x(2t), x(t)x(2t)抽样不混叠的最 小抽样频率。
t
sam 0 sam
xsam(t) x(t)T (t) x(kT) (t kT) k
Xsam( j)
1 2π
X
(
j) *sam
n
(
nsam )
1 T n
X ( j( nsam))
X sam ( j) x(kT)e jkT x(kT)e jkΩ X (e jW )
k
X ( j) 1
sam
...
0
X1( j)
1
sam
m
0 m
...
不同抽样频率的语音信号效果比较
抽样频率fsam=44,100 Hz
抽样频率fsam=5,512 Hz
抽样频率fsam=5,512 Hz 抽样前对信号进行了抗混叠滤波
5 非周期信号的频域分析 p 21
思考题
(1) 根据时域抽样定理,对连续时间信号进行抽 样时,只需抽样速率 fs 2fm。在工程应用中, 抽样速率常设为 fs (3~5)fm,为什么?
相关文档
最新文档