基于DSP实现道路交通灯控制系统设计
DSP十字路口交通灯课程设计

DSP十字路口交通灯课程设计问题描述在城市交通中,十字路口是交通流量极大的交汇点。
为了保障交通安全和交通效率,交通信号灯的设计和优化显得尤为重要。
本文将介绍一种基于数字信号处理(DSP)技术的十字路口交通灯控制系统的设计。
需求分析在设计十字路口交通灯系统时,需要满足以下需求:1.实现交通信号灯的控制,包括红灯、绿灯和黄灯的变化;2.根据交通流量调整信号灯的时长,以提高交通效率;3.实现紧急情况下的临时信号灯控制,例如救护车或警车的经过;4.提供人行道信号灯,以保障行人的交通安全。
系统设计硬件设计本系统的硬件设计包括以下组成部分:1.十字路口交通信号灯,包括红灯、绿灯和黄灯的LED灯;2.交通流量检测器,用于检测不同道路上的车辆数量;3.紧急情况检测器,用于检测救护车或警车的到达;4.人行道信号灯,用于指示行人过马路的时机。
软件设计本系统的软件设计包括以下几个主要模块:1.交通信号灯控制模块:根据交通流量和紧急情况,控制交通信号灯的变化。
可以使用DSP算法对交通流量进行实时分析和预测,以决定不同道路上的信号灯时长。
2.交通流量检测模块:利用传感器或计数器等装置,实时监测不同道路上的车辆数量,并将数据传输给交通信号灯控制模块。
3.紧急情况检测模块:通过紧急情况检测器,实时检测救护车或警车的到达,并将信号传输给交通信号灯控制模块,暂停其他道路的交通以保障紧急车辆的通行。
4.人行道信号灯控制模块:根据人行道上的行人数量以及交通信号灯的变化,控制人行道信号灯的显示,保障行人的交通安全。
系统实现为了实现DSP技术在十字路口交通灯设计中的应用,我们可以按照以下步骤进行实施:步骤一:选择合适的DSP芯片根据实际需求和性能要求,选择适合的DSP芯片,具有足够的计算能力和IO接口以支持交通信号灯和其他传感器的连接。
步骤二:确定交通信号灯控制算法根据交通流量和紧急情况的检测数据,设计合适的控制算法,以控制交通信号灯的变化。
基于dsp交通灯设计报告

基于dsp交通灯设计报告1. 引言交通灯是城市交通系统中的重要组成部分,用于引导车辆和行人的交通流动。
而现代交通灯系统中,数字信号处理(DSP)技术的应用已经成为一种趋势。
本设计报告将介绍基于DSP的交通灯设计方案和实施细节。
2. 设计目标- 提高交通灯的智能化程度,优化交通流量控制;- 实现交通灯的自适应控制,根据实时交通情况调整信号灯时间;- 降低成本,提高可靠性,减少能源消耗。
3. 系统架构本系统的总体架构如下:++ ++交通监测传感器传感信号> DSP系统控制信号> 交通灯控制器++ ++传感器模块用于检测交通情况,并将信号传递给DSP系统进行实时处理。
DSP系统负责根据交通情况生成相应的控制信号,然后通过交通灯控制器将信号传递给交通灯。
4. DSP算法设计4.1 交通监测信号处理为了获取准确的交通情况信息,本系统采用了多种传感器,包括:电磁感应线圈传感器、摄像头传感器、红外传感器等。
这些传感器可以实时地感知车辆和行人的存在,并将输入信号传递给DSP系统。
DSP系统将接收到的传感器信号进行处理,包括数据滤波、信号分析等,以得到准确的交通信息,例如车辆数量、车辆速度、行人数量等。
这些信息将作为控制信号的依据。
4.2 交通灯控制算法基于得到的交通信息,DSP系统会使用一些交通灯控制算法来生成控制信号。
常见的算法包括:- 定周期控制算法:根据事先设定的时间间隔来控制信号灯的变换。
这种算法适用于交通流量变化较为平稳的路口;- 感应控制算法:根据实时的交通情况来调整信号灯时间。
通过感应信号的变化来判断是否有车辆或行人即将通过,从而动态地修改信号灯时间;- 神经网络控制算法:利用神经网络模型训练得到的交通流模式来控制信号灯。
综合考虑交通情况和控制策略,DSP系统将计算出每一个信号灯的变换时间,并将结果传递给交通灯控制器。
5. DSP系统实现本设计中,DSP系统选择了TMS320F28335作为核心处理器。
dsp交通灯课程设计

dsp交通灯课程设计一、课程目标知识目标:1. 学生能理解DSP(数字信号处理)的基本概念,掌握交通灯控制系统的原理;2. 学生能运用所学知识,设计并实现一个简单的交通灯控制系统;3. 学生了解交通灯控制系统中涉及的时间序列和逻辑关系。
技能目标:1. 学生能够运用编程软件(如C语言)实现交通灯控制系统的功能;2. 学生能够通过实际操作,调试并优化交通灯控制系统;3. 学生掌握团队协作和沟通技巧,能够有效地与组员合作完成课程设计。
情感态度价值观目标:1. 学生培养对数字信号处理技术的兴趣,激发学习热情;2. 学生通过课程设计,认识到科技在生活中的应用,增强社会责任感;3. 学生在课程设计过程中,培养耐心、细心和勇于克服困难的品质;4. 学生在团队协作中,学会尊重他人、倾听意见,形成良好的合作精神。
课程性质:本课程设计属于实践性课程,旨在让学生通过实际操作,将理论知识应用于实践,提高学生的动手能力和创新能力。
学生特点:学生具备一定的数字信号处理基础知识,对编程有一定了解,但实际操作经验不足。
教学要求:注重理论与实践相结合,强调学生的动手实践能力,培养学生团队协作和沟通能力。
通过课程设计,使学生在实践中掌握交通灯控制系统的设计方法,提高学生的综合素质。
二、教学内容1. 数字信号处理基础知识回顾:信号分类、采样与量化、信号处理的基本运算;2. 交通灯控制系统原理:交通灯的工作原理、信号灯控制逻辑、时间序列设计;3. 编程语言基础:C语言基本语法、数据类型、控制结构、函数;4. 交通灯控制系统设计:系统需求分析、模块划分、程序设计;5. 实践操作:交通灯控制系统的编程与调试、优化与改进;6. 团队协作与沟通:项目分工、进度安排、问题讨论与解决。
教材章节关联:1. 数字信号处理基础知识:教材第1章;2. 交通灯控制系统原理:教材第2章;3. 编程语言基础:教材第3章;4. 交通灯控制系统设计:教材第4章;5. 实践操作:教材附录及相关实验指导书;6. 团队协作与沟通:教材附录,关于项目实践的部分。
DSP 课程设计 交通灯的控制与实现

设计结果部分截图
2.6心得体会
两周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,和同学们相互探讨,相互学习。在此次的课程设计中,主要资料的查阅和对电路图的总体设计,对电路的设计包括绘制电路原理图。由于平时在对本课程的学习中,没有注重系统的设计,故在设计电路原理图的过程中也遇到了各种各样的问题。但是,这些问题在跟同组的同学讨论和向老师请教后也得到了解决。由此可以得出,我对本门课程的掌握还是很不好,动手的能力还是很欠缺的。在今后的学习过程中不仅要注意对理念知识的掌握,而且还要培养自己的对手操作能力。最后在老师的辛勤的指导下,终于迎刃而解,终于觉得平时所学的知识有了实用的价值,达到了理论与实际相结合的目的,不仅学到了不少知识,而且锻炼了自己的能力,使自己对以后的路有了更加清楚的认识,同时,对未来有了更多的信心。最后,对给过我帮助的所有同学和各位指导老师再次表示忠心的感谢!
};
void main(void)
{
int nWork1,nWork2,nWork3,nWork4,k;
int nNowStatus,nOldStatus,nOldTimeCount,nSaveTimeCount,nSaveStatus;
unsigned int nScanCode;
nTimeCount=0; bHold=0;
void Delay(unsigned int nTime);
void SetLEDArray1(int nNumber);//修改显示内容
单片机DSP系统设计 单片机控制的十字路口交通灯系统

单片机及DSP课程设计报告专业:电子信息工程班级:姓名:学号:指导教师:时间:一.摘要十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。
那么靠什么来实现这井然秩序呢?靠的就是交通信号灯的自动指挥系统。
交通信号灯控制方式很多。
当今时代是一个自动化时代,交通灯控制等很多行业的设备都与计算机密切相关。
因此,一个好的交通灯控制系统,将给道路拥挤、违章控制等方面给予技术革新。
随着大规模集成电路及计算机技术的迅速发展,以及人工智能在控制技术方面的广泛运用,智能设备有了很大的发展,是现代科技发展的主流方向。
本系统采用单片机8051为中心器件来设计交通灯控制器,系统实用性强、操作简单、扩展性强。
本设计就是采用单片机模拟十字路口交通灯的各种状态显示以及倒计时时间。
本设计系统由单片机I/O口扩展系统(8255)、交通灯状态显示系统、LED数码显示系统、紧急情况中断系统等几大部分组成。
系统除基本的交通灯功能外,还具有倒计时、更改计时常数、紧急事故处理等功能,较好的模拟实现了十字路口可能出现的状况。
软件上采用C51编程,主要编写了主程序,LED数码管显示程序,中断程序延时程序、按键扫描等。
经过整机调试,实现了对十字路口交通灯的模拟。
关键词:8051 8255 LED 数码管交通灯程序单片机二.设计任务和要求2.1设计任务:设计用单片机控制的十字路口交通灯系统,可以控制延时时间以及实现在交通事故时道口封锁、单方向通行的状态。
2.2设计要求:(1)设计接口电路,将这些外设构成一个简单的单片机应用系统,画出接口的连接图。
(2)编写程序实现下列功能:用红、绿、黄三支共两组发光二极管表示交通信号灯,利用单片机模拟有时间显示的定时交通信号灯控制管理。
信号灯的变化规律可如下:①放行线:绿灯亮放行25秒,黄灯亮警告5秒,然后红灯亮禁止。
②禁示线:红灯亮禁止30秒,然后绿灯亮放行。
③同时用2位数码管进行30秒钟递减时间显示。
(3)当有紧急事故时,封锁路口,当有特殊情况时可以单方向通过。
dsp课程设计交通灯

dsp课程设计 交通灯一、课程目标知识目标:1. 学生能理解并掌握交通灯的基本工作原理,包括灯色变化规律及控制逻辑。
2. 学生能够运用数字信号处理(DSP)的基本概念,分析交通灯控制系统中的信号处理流程。
3. 学生能够描述交通灯控制系统中各组件的功能及其相互关系。
技能目标:1. 学生能够设计并实现一个简易的交通灯控制系统模型,运用所学DSP知识进行信号处理。
2. 学生通过小组合作,培养实际操作、问题解决和团队协作能力。
3. 学生能够运用图表、流程图等工具,展示交通灯控制系统的设计思路和操作步骤。
情感态度价值观目标:1. 学生培养对工程技术的兴趣,激发对电子控制系统的好奇心和创新意识。
2. 学生在学习过程中,树立安全意识,认识到遵守交通规则的重要性。
3. 学生通过课程学习,增强环保意识,认识到科技对解决交通问题的作用。
分析课程性质、学生特点和教学要求,本课程针对高年级学生设计,注重理论与实践相结合。
课程目标旨在帮助学生将所学DSP知识应用于实际交通灯控制系统中,培养其动手能力、团队协作能力和创新能力。
通过本课程的学习,学生能够更好地理解科技在生活中的应用,提高其综合素质。
1. 交通灯控制系统概述:介绍交通灯的基本构成、功能及其在交通管理中的作用,结合教材相关章节,理解交通灯控制系统的基本原理。
- 教材章节:第三章“交通控制系统”2. 数字信号处理(DSP)基础知识:回顾DSP的基本概念、算法和应用,为分析交通灯控制系统中的信号处理打下基础。
- 教材章节:第二章“数字信号处理基础”3. 交通灯控制系统的设计:- 信号处理算法:讲解交通灯控制系统中信号处理算法的选择和应用。
- 系统组件:分析交通灯控制系统中各组件的功能和相互关系。
- 教材章节:第四章“交通灯控制系统的设计与实现”4. 简易交通灯控制系统的设计与实现:- 设计思路:引导学生运用所学知识,设计交通灯控制系统的模型。
- 实践操作:组织学生分组进行实际操作,实现简易交通灯控制系统。
基于DSP实现道路交通灯控制系统设计

基于DSP实现道路交通灯控制系统设计道路交通灯控制系统是现代城市中的重要组成部分,它通过使用数字信号处理(Digital Signal Processing,DSP)技术,能够在不同的交通情况下实现自动化的交通信号控制。
本文将以DSP技术为基础,设计一种道路交通灯控制系统,并详细介绍其实现原理和设计步骤。
首先,我们需要明确系统的设计目标。
本文设计的道路交通灯控制系统旨在提高交通流畅性、减少交通拥堵、优化交通信号时长,并提高城市交通系统的效率和安全性。
设计步骤如下:(1)采集交通流量数据。
为了准确地控制交通信号灯的时长和变化,我们需要实时地获得各个道路的交通流量数据。
这可以通过在道路上安装传感器,如车辆、摄像头、雷达等,来检测交通流量和车辆速度信息。
然后,将这些数据传输给DSP系统进行处理和分析。
(2)信号处理和分析。
DSP系统将采集到的交通流量数据进行处理和分析,通过对交通数据的统计和分析,可以准确地估计出各个道路的交通状况,并预测未来一段时间内的交通流量。
这些分析结果将用作交通信号灯控制的依据。
(3)交通信号灯控制算法。
基于分析得到的交通数据,我们可以设计一种控制算法来自动化地控制交通信号灯的时长和变化。
这个算法可以根据交通流量来动态地调整不同方向的交通信号灯的时长。
例如,在交通繁忙时,可以适当延长绿灯亮起的时间,从而提高车辆通过的效率。
(4)控制信号输出。
根据控制算法的结果,DSP系统将输出控制信号,控制交通信号灯的时长和变化。
这个信号可以通过控制器直接控制交通信号灯的开关,使交通信号灯能够根据实际交通状况及时地调整和变化。
(5)实时监测和反馈。
为了保证交通信号灯控制系统的稳定性和可靠性,需要实时监测交通信号灯的状态和交通流量,在需要的时候进行调整和反馈。
这可以通过在交通信号灯上安装传感器,并将监测到的数据传输给DSP系统进行实时监测和分析。
通过以上设计步骤,基于DSP实现的道路交通灯控制系统能够自动化地根据实际交通状况来调整交通信号灯的时长和变化,提高交通系统的流畅性和效率,减少交通拥堵,提高交通安全性。
DSP实验设计报告交通灯

DSP实验设计报告交通灯设计目的本实验旨在根据交通灯控制的实际情况,通过DSP进行流程设计,实现交通灯的各种状态的控制,以此提高实验者的DSP编程能力,增加其对控制系统的理解。
设计原理本实验的主要控制器是TMS320C6748 DSP芯片,通过硬件与LED灯连接,实现交通灯的开关控制。
同时为了保证控制系统可靠稳定,使用了光电隔离模块,充分隔离DSP和LED灯的电路。
本设计的交通灯状态转换流程采用了状态机设计思想,为灯控中的状态设计了相应的状态表,每种灯的状态都在状态表里有清晰的描述。
设计方案交通灯设有3种状态:绿灯进车、黄灯过渡、红灯停车,每一种状态都有对应的时间段,为保证交通的顺畅性,在每一个灯的状态下,都会伴随一个闪烁的灯,以提醒司机进行注意。
以此设计的状态图如下图所示。
在进入程序正式实现之前,本设计还首先对TMS320C6748芯片进行了硬件初始化。
然后,通过while(1)循环语句,对交通灯的各个状态进行了详细的代码实现。
在绿灯进车状态下,程序会调用绿灯程序来实现灯的亮灭控制,同时启动两个计时器,一个是绿灯定时器,另一个是闪烁灯定时器,用于定时绿灯亮起的时间和检测闪烁灯是否需要亮起。
设计结果本设计成功实现了交通灯的几种不同状态的控制,在调试过程中,程序运行稳定,性能良好,每种状态的时间也能够精确控制。
同时闪烁灯的提醒功能也能够很好的保证交通的顺畅性。
当交通灯进入红灯时,即停车状态,道路上的车辆就需要停车等待,因此为了达到更好的交通效果,可将道路的长度设置得适当加长,同时还需要设置好交通灯的时间参数,适时地调节程序中各种灯亮起的时间,使得交通灯控制系统的效率和安全性能得到了很大地提升。
不过需要注意的是,在程序运行过程中,还需要注重一些细节问题的处理,如各种定时器的时间调整、闪烁灯的速度设置等。
只有这样才能够保证一套良好的交通灯控制系统的建立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言 (1)2项目设计实现功能 (2)2.1交通灯控制要求 (2)2.2 液晶显示器控制 (3)3 项目实现方案 (3)3.1项目设计整体思路 (3)3.2设计原理 (5)3.2.1 CPU定时器原理 (5)3.2.2 DSP外设中断扩展模块 (6)3.2.3 发光二极原理 (6)3.2.4 TMS320F28x DSP 的I/O (7)3.2.5 液晶显示器控制原理 (8)4 程序设计 (9)4.1 程序总体设计 (9)4.2 程序编写(见附页) (10)5 心得体会 (10)附页 (10)基于DSP实现道路交通灯控制系统设计摘要:DSP数字信号处理,是一门涉及多学科而又广泛应用于许多领域的新兴学科。
随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速发展。
数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法。
本次设计是基于dsp原理设计交通灯控制系统软硬件系统,利用发光二极管亮灭模拟交通信号,数码管倒计时时间,利用TMS320F2812 DSP片上定时器产生时钟计数,设计模拟实际生活中的十字路口交通灯。
关键字:DSP;TMS320F2812;发光二极管;交通灯;Abstract: DSP digital signal processing, is a multidisciplinary and widely applied in many fields of the emerging discipline. Along with the computer and the rapid development of information technology, digital signal processing technology to emerge as the times require and develop rapidly. Digital signal processing is through the use of a mathematical skills to perform the conversion or extraction of information, to deal with real signal method. The design is based on the principle of DSP design of traffic light control system software and hardware system, using light-emitting diodes to eliminate simulated traffic signal countdown time, digital tube, the use of TMS320F2812 DSP on-chip timer generates a clock counting, designed to simulate the actual life of the crossroads traffic lights.Keyword: DSP; TMS320F2812; light emitting diode; traffic lights;1 引言交通是经济、社会发展的基础性产业,是社会、经济活动中人流、物流、资金流和信息流的主要流动方式。
现代社会中,如果没有高效运转的交通运输体系,就不可能有经济的持续发展。
然而,随着社会经济的发展,机动车辆迅速增加,人们在赚取由机动车辆所带来的巨额利润以及充分享受汽车带来的巨大便利的同时,越来越被交通拥堵、交通事故频发、环境污染加剧和燃油损耗上升等诸多问题所困扰。
随着交通的不断发展和汽车化进程的加快,交通拥挤加剧,交通事故频发,交通环境恶化,已经成为引人注目的城市问题之一。
交通问题不仅在发展中国家,就在发达国家也是一个令人困扰的严重问题。
众所周知,缓解交通拥挤的最直接和最有效办法是提高路网的通信能力。
但无论哪个国家的大城市,不可能无限制地修建道路,不论是资金因素还是土地因素,都限制了道路的无节制增长。
因此,无限制地修建道路难满足日益增长的交通需求。
与此同时,通过限制车辆增加削减交通需求也受到客观因素的制约而无法取得满意的结果。
事实上,由于交通系统是一个相当复杂的大系统,无论单独从车辆方面考虑还是从道路方面考虑,都很难从根本上解决问题。
道路交通系统是一个地区、一个城市的主要组成部份,这个系统的运行状况如何,直接反映了一个地区、一个城市的现代化管理水平。
在这一系统中,道路不仅仅是易变化的部分,而其它组成部分则存在着较大的可变性和随机性。
只有对这一系统的组成及其运行机理进行科学客观的分析研究,对能制定出科学有效的管理和控制对策,从而保障系统的有效运行。
2项目设计实现功能2.1交通灯控制要求交通灯分红黄绿三色,东、南、西、北各一组,用灯光信号实现对交通的控制:绿灯信号表示通行,黄灯表示警告,红灯禁止通行,灯光闪烁表示信号即将改变。
计时显示:液晶屏幕上8×8 点阵显示0-9 计数。
正常交通控制信号顺序:正常交通灯信号自动变换:⑴南北方向绿灯,东西红灯(20 秒)。
⑵南北方向绿灯闪烁。
⑶南北方向黄灯。
⑷南北方向红灯,东西方向黄灯。
⑸东西方向绿灯(20 秒)。
⑹东西方向绿灯闪烁。
⑺东西方向黄灯。
⑻返回⑴循环控制。
紧急情况处理:模仿紧急情况(重要车队通过、急救车通过等)发生时,交通警察手动控制⑴当任意方向通行剩余时间多于10 秒,将时间改成10 秒。
⑵正常变换到四面红灯(20 秒)。
⑶直接返回正常信号顺序的下一个通行信号(跳过闪烁绿灯、黄灯状态)。
2.2 液晶显示器控制本次设计使用ICETEK-F2812-A板,ICETEK-F2812-A是一块以TMS320F2812DSP 为核心的DSP 扩展评估板,它通过扩展接口与实验箱的显示/控制模块连接,可以控制其各种外围设备。
液晶显示模块的访问、控制是由2812DSP对扩展扩展接口的操作完成。
控制扩展口的寻址:命令控制扩展接口的地址为0x108001,数据控制扩展接口的地址为0x108003 和0x108004,辅助控制扩展接口的地址为0x108002。
可以观察到液晶显示从0到9的计数。
灵活使用控制字,可以实现复杂多变的显示。
当使用点阵图形显示时需要在 DSP 内存中建立图形存储缓冲;适当更新显示可取得动画效果。
在实际生活中观察点阵显示的霓虹灯广告、交通指示牌、报站牌等领会这种控制的具体应用。
3 项目实现方案3.1项目设计整体思路根据DSP的硬件中断、定时器、I/O访问原理。
用定时器定时。
用I/O口控制红绿黄灯的开关,用硬件中断模拟紧急情况发生(如:急救车,消防车)。
有紧急情况发生,两向全红,以便让紧急车通过。
紧急车通过后,交通的恢复中断前的状态。
中断服务流程设计总流程图3.2设计原理3.2.1 CPU定时器原理F2810/F2812芯片内部有3个32位CPU定时器(TIMER0/1/2),其中定时器1和定时器2预留给实时操作系统使用(如 DSPBIOS),只有CPU定时器0用户可以在应用程序中使用。
定时器功能框图如下:在F281x芯片中,向CPU申请中断的定时器中断信号(TINT0、TINT1及TINT2)连接方式如下图:为保证定时器正常,需要进行一下操作:首先将计数值写入32位计数寄存器(TIMH:TIM)内,该计数值放在周期寄存器(PRDH:PRD)中;然后按SYSCLOCKOUT的频率对计数值进行减计数。
当计数器的值计到0时,定时器会产生一个中断脉冲输出。
3.2.2 DSP外设中断扩展模块2812的CPU为了能够及时有效的处理好各个外设的中断请求,设计了一个专门处理外设中断的扩展模块(the Peripheral Interrupt Expansion block),叫做外设中断控制器PIE,它能够对各种中断请求源(例如来自于外设或者其他外部引脚的请求)做出判断以及相应的决策。
PIE 可以支持96个不同的中断,这些中断分成了12个组,每个组有8个中断,而且每个组都被反馈到CPU内核的12 条中断线中的某一条上(INT1-INT12)。
PIE 目前只使用了96 个终端中的45 个,其他的等待将来的功能扩展。
2812的中断是3级中断机制,分别是外设级,PIE级以及CPU级,对于某一个具体的外设中断请求,任意一级的不许可,CPU最终都不会执行该外设中断。
3.2.3 发光二极原理显示/控制模块上的发光二极管是由连接在F2812DSP 扩展扩展接口上的寄存器EWR和SNR控制的。
这两个寄存器均为6 位寄存器,其位定义见下表:两个寄存器的地址均映射到 F2812DSP 的扩展空间,地址为108007H,DSP 通过对扩展区域该地址的写操作来修改两个寄存器上各位的状态,当寄存器某位取‘1’值时,相应指示灯被点亮,取‘0’值则熄灭。
当写入108007H 的数据(8 位有效值)的高两位为‘00’时,数据的低6 位将写入EWR 寄存器;当高两位的值为‘01’时,写入SNR 寄存器。
3.2.4 TMS320F28x DSP 的I/OTMS320F28x DSP 的I/O 空间大部分被保留用于外部扩展。
在扩展时一般将带有控制能的寄存器或分离地址访问的存储单元的地址映射到I/O 空间,访问这部分的单元又称I/O 端口访问。
例如:可将控制指示灯组的寄存器或锁存器映射到一个I/O 端口地址上;A/D、D/A 等专用芯片控制端和状态寄存器也常映射到I/O 端口上。
总之,在I/O 空间中扩展的设备一般重点用于控制,而使用大片连续存储空间的存储器单元一般映射到数据空间。
ICETEK-F2812-A 板将指示灯、DIP 开关、A/D 和D/A 的控制端等映射在I/O 空间。
在程序中,访问I/O 端口的语句较为简单。
3.2.5 液晶显示器控制原理显示开关:0x3f 打开显示;0x3e 关闭显示;设置显示起始行:0x0c0+起始行取值,其中起始行取值为0 至63;设置操作页:0x0b8+页号,其中页号取值为0-7;设置操作列:0x40+列号,其中列号为取值为0-63;写显示数据:在使用命令控制字选择操作位置(页数、列数)之后,可以将待显示的数据写入液晶显示模块的缓存。
将数据发送到相应数据控制扩展接口即可。
液晶显示器与DSP 的连接:数据信号的传送:由于液晶显示模块相对运行在8MHz 主频下的DSP 属于较为慢速设备,连接时需要考虑数据线上信号的等待问题;电平转换:由于DSP 为3.3V 设备,而液晶显示模块属于5V 设备,所以在连接控制线、数据线时需要加电平隔离和转换设备。