湖北武汉市四校联合体2018-2019学年高二上学期期末考试数学试题
湖北省武汉市四校联合体2018-2019学年高二(上)期末数学试题-218d45051493402186c7f37c7bd1162a

………外………内绝密★启用前【全国校级联考】湖北省武汉市四校联合体2018-2019学年高二(上)期末数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.设某高中的男生体重 (单位: )与身高 (单位:cm )具有线性相关关系,根据一组样本数据( , )( , , , ),用最小二乘法建立的回归方程为 ,则下列结论中不正确的是( ) A . 与 有正的线性相关关系 B .回归直线过样本点的中心C .若该高中某男生身高增加 ,则其体重约增加D .若该高中某男生身高为 ,则可断定其体重必为2.命题“ > ,使得 ”的否定是( ) A . 使得 B . ,使得 C . 使得D . ,使得3.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为( )A .11B .10C .9D .84.抛物线y=4x 2的焦点坐标是( )…………○…………线…※※答※※题※※…………○…………线…A .(0,1) B .(1,0)C .D .5.已知 , , , , , ,且 ,则 ( ) A .B .2C .D .6.执行如图所示的程序框图,若输入 , , ,则输出的 的值为( )A .27B .56C .113D .2267.若 且 ,则实数 的值为( ) A .1或 B . C . D .18.当双曲线的焦距取得最小值时,其渐近线的斜率是( )A .B .C .D .9.下列说法中正确的是( )A .若事件A 与事件B 是互斥事件,则B .若事件A 与事件B 满足条件: ,则事件A 与事件B 是对立事件C .一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件D .把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件 10.设抛物线 与椭圆相交于 、 两点,若 为抛物线的焦点,则的面积为( ) A .B .C .D .11.空间 、 、 、 四点共面,但任意三点不共线,若 为该平面外一点且A.B.C.D.12.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为、,且两条曲线在第一象限的交点为,是以为底边的等腰三角形.若,椭圆与双曲线的离心率分别为、,则的取值范围是()A.B.C.D.……○…………题※※……○…………第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.甲、乙两位同学的5次考试成绩如茎叶图所示,则成绩较稳定的那位学生成绩的方差为______.14.已知为坐标原点,椭圆上的点到左焦点的距离为4,为的中点,则的值等于______.15.甲、乙、丙3人站到共有6级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是____________(用数字作答).16.在棱长为的正方体中,是棱的中点,是侧面内的动点,且平面,则点形成的轨迹的长度为______.三、解答题17.已知命题:,;命题:函数在区间(,)上为减函数.(1)若命题“”为真命题,“”为假命题,求实数的取值集合;(2)若集合,,>},是的充分不必要条件,求实数的取值范围.18.我国是一个严重缺水的国家,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行居民生活用水定额管理,即确定一个居民用水量标准,使得的居民生活用水不超过这个标准.在本市居民中随机抽取的户家庭某年的月均用水量(单位:吨),通过数据分析得到如图所示的频率分布直方图:(1)求、的值,并估计全市所有家庭的月平均用水量;(2)如果我们称为这组数据中分位数,那么这组数据中分位数是多少?(3)在用水量位于区间,的四类家庭中按照分层抽样的方法抽取人参加由政府…………外………………○…………订……………线…………:___________班级:___________考号…………内………………○…………订……………线…………组织的一个听证会(每个家庭有 个代表参会),在听证会上又在这 个人中任选两人发言,其中至少有一人的家庭用水量超过两吨的概率是多少?19.如图所示的三角形表,最早出现在我国南宋数学家杨辉在 年所著的《详解九章算术》一书中,我们称之为“杨辉三角”.若等比数列 的首项是1,公比是 ,将杨辉三角的第 行的第1个数乘以 ,第2个数乘以 ,……,第 个数乘以 后,这一行的所有数字之和记作 , .(1)求 , 的值;(2)当 时,求 , 展开式中含x 项的系数. 20.已知抛物线 上不同的三点 、 、 , 为抛物线的焦点,且、 、 成等差数列,则当 的垂真平分线与 轴交于点 , 时,求 点的坐标.21.(本小题满分13分)如图,圆柱OO 1内有一个三棱柱ABC-A 1B 1C 1,(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1;(Ⅱ)设AB=AA1。
湖北省武汉市四校联合体2017-2018学年高二上学期期末考试理数学试题

2017-2018学年度第一学期武汉市四校联合体期末考试高二数学(理科)试卷命题学校:华中科技大学附属中学 命题教师:常静 高圣清考试时间:2018里1月29日 试卷满分:150分一、选择题(本大题12小题,每小题5分,共60分)1.某方便面生产线上每隔15分钟抽取一包进行检验,则该抽样方法为①;从某中学的40名数学爱好者中抽取5人了解学习负担情况,则该抽样方法为②,那么①和②分别为( )A.①系统抽样,②分层抽样B.①分层抽样,②系统抽样C.①系统抽样,②简单随机抽样D.①分层抽样,②简单随机抽样2.如果数据x 1,x 2…n x 的平均数为x,方差为s 2,则3x 1-1,3x 2-1,……,3x n -1的平均数和方差分别为( )A.x,s 2B.3x-1,s 2C.3x-1,3s 2D.3x-1,9s 23..已知抛物线方程为y=4x 2,则该抛物线的焦点坐标为( ) A.(0,1) B.(0,161) C.(1,0) D.(0,161) 4.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是 次品”,C=“三件产品至少有一件是次品”,则下列结论正确的是()A.A 与C 互斥B.任何两个均互斥C.B 与C 互斥D.任何两个均不互斥5.如图,在棱长均相等的四面体O-ABC 中,点D 为AB 的中点,21=,设=,=, =,则向量用向量表示为( )A. 316161++=B.313131++= C.31-6161+= D.326161++= 6.在边长为2的正方形中作其内切圆,然后向正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率π的值.如果撒了1000粒芝麻,落在圆内的芝麻总数是776粒,那么这次模拟中π的估计值是( )A.2.972B.2.983C.3.104D.3.1307.已知a,b ∈R,则“ab=1”是“直线ax+y-1=0和直线x+by-1=0平行”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件8.用1021a a a ,,,⋯表示某培训班10名学员的成绩,成绩依次为85,68,79,75,88,92,90, 80,78,87..执行如图所示的程序框图,若分别输入a i 的10个值,则输出的1-i n 的值为( )A.53B.32C.107 D.97 9.在区间(1,5]和[2,4上分别取一个数,记为a,b.则方程1by a x 2222=+表示焦点在x 轴上且离心率小于23的椭圆的概率为( ) A.3215 B.21 C.3217 D.3231 10.某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则这4人中三个项目都有人参加的概率为( )) A.98 B.94 C.92 D.278 11.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且331π=∠PF F ,则椭圆和双曲线的离心率乘积的最小值为( ) A.1 B.23 C.46 D.2 12.在2017年秋季开学之际,华科和附中食堂的伙食进行了全面升级,某日5名同学去食堂就餐,有米饭、花卷、包子和面条四种主食,每种主食均至少有一名同学选择且每人只能选择其中一种,花卷数量不足仅够一人食用,甲同学因肠胃不好不能吃米饭,则不同的食物搭配方案种数为( )A.96B.120C.132D.240二、填空题(本大题4小题,每小题5分,共20分) 13.将2018()10化成六进制数,结果为________.14.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排,选出的3名女同学必须从左至右,从高到矮排列,共有__________种不同的排法.15.设A(0,1),B 是圆F:x 2+(y+1)2=16上的动点,AB 的垂直平分线交BF 于P,则动点P 的轨迹方程为__________。
湖北省武汉外国语学校2018-2019学年高二上学期期末考试数学(文)试题 Word版缺答案

武汉外国语学校2018—2019学年度第一学期期末考试高二数学试题(文科)考试时间:2019年元月 满分:150分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知双曲线的方程为22145y x -=,则下列说法正确的是( )A .焦点在x 轴上B .虚轴长为4C .渐近线方程为20x +=D .离心率为352. 下列命题中真命题的个数是( ) ①若p q ∧是假命题,则p 、q 都是假命题;②命题“x ∀∈R ,3210x x -+≤”的否定是“0x ∃∈R ,320010x x -+>”;③命题p :x ≠2或y ≠4,命题q :x +y ≠6,则p 是q 的必要不充分条件; ④两个变量相关系数的值越小,说明它们的相关性越弱.A .0B .1C .2D .33. 某产品的广告费用x 与销售额y 的统计数据如下表:由上表求得回归方程9.49.1y x ∧=+,当广告费用为3万元时销售额为( ) A .39万元B .38万元C .38.5万元D .37.3万元4. 以下赋值语句书写正确个数有( ) (1)(2)(3) (4).A. 1B. 2C. 3D. 45. 将(2)2012化为六进制数为,则=( ) A .6B .7C .8D .96. 直线440kx y k --=与抛物线2y x =交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线102x +=的距离等于( ) A .74 B .94C .4D .27. 某中学有高中生3000人,初中生2000人,高中生中男生、女生人数之比为3:7,初中生中男生、女生人数之比为6:4,为了解学生的学习状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从初中生中抽取男生12人,则从高中生中抽取的女生人数是( )A .12B .15C.20D .218. 已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( ) A .12B .13C .14 D .189. 如果圆22()()4x a y a -+-=上有且仅有两个点到原点的距离为2,那么实数a 的取值范围为( )A. (- C.((0,-⋃ D.(1)(1,--⋃10. 已知函数在区间(,)3ππ上有最大值,则实数的取值范围是( ) A .B .C .D .11. 某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(单位:分钟),根据所得数据的茎叶图,以5为组距将数据分为8组,分别是[)[)[]0,5,5,10,,35,40,作出频率分布直方图如图所示,则原始的茎叶图可能是( )12. 已知焦点在x 轴上的椭圆C :22212x yb+=0)b >( 的内接平行四边形的一组对边分别经过其两个焦点(如图),当这个平行四边形为矩形时,其面积的最大值,则b 的取值范围( )A. B. 2(C. D. 2二、填空题(本大题共4个小题,每小题5分,共20分.)13. 在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为_________ 14. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值14.3,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为________.(参考数据:2588.015sin = ,1305.05.7sin = )15. 已知抛物线()220y px p =>的焦点为F ,准线为l ,抛物线上有一点P ,过点P 作PM l ⊥,垂足为M ,且MP MF =,若PMF ∆,则p 等于_________16. 已知恒等式2311123nx x x x n++++=2012(2)(2)(2)n n a a x a x a x +-+-++- ,(n N *∈)12323n a a a na ++++=_________三、解答题(共70分)17. (10分)已知命题p :实数m 满足22127(0)m a am a +<>,命题q :实数m满足方程22112x y m m+=--表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,求实数a 的取值范围; 18. (12分)(1)已知为集合中三个不同的数,通过如图所示算法框图给出的算法输出一个整数,求输出的数的概率.(2)某班在一次数学活动中,老师让全班56名同学每人随机写下一对都小于1的正实数x 、y ,统计出两数能与1构成锐角三角形的三边长的数对(,)x y 共有12对,请据此估计π的近似值(精确到0.001).19. (12分)户外运动已经成为一种时尚运动.某公司为了了解员工喜欢户外运动是否与性别有关,决定从公司全体650人中随机抽取50人进行问卷调查. (1)通过对挑选的50人进行调查,得到如下2×2列联表:已知从这50人中进行随机挑选1人,此人喜欢户外运动的概率是0.6.请将2×2列联表补充完整,并估计该公司男、女员工各多少人?(2) 估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;(3) 若用随机数表法从650人中抽取员工.先将650人按000,001,…,649编号.恰好000~199号都为男员工,450~649号都为女员工.现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求至多取到1个男员工的概率. 附:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++错误!未找到引用源。
最新湖北省2018-2019年高二上学期期末考试数学(文)试题

高二年级上学期期末考试数学试题(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知抛物线的准线方程是,则的值为()A. 2B. 4C. -2D. -4【答案】B【解析】试题分析:,故选B.考点:抛物线及其性质.2. 已知命题:,总有,则为()A. ,使得B. ,总有C. ,使得D. ,总有【答案】C【解析】全称命题的否定为特称命题,所以命题:,总有,有,总有.故选B.3. 袋中装有红球3个、白球 2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A. 至少有一个白球;至少有一个红球B. 至少有一个白球;红、黑球各一个C. 恰有一个白球;一个白球一个黑球D. 至少有一个白球;都是白球【答案】B【解析】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立; 在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故B成立;在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立;在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.故选B.点睛:事件A和B的交集为空,A与B就是互斥事件,也可以描述为:不可能同时发生的事件,则事件A与事件B互斥,从集合的角度即;若A交B为不可能事件,A并B为必然事件,那么事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生,其定义为:其中必有一个发生的两个互斥事件为对立事件.4. 中国诗词大会的播出引发了全民的读书热,某中学语文老师在班里开展了一次诗歌默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A. 2B. 4C. 5D. 6【答案】B【解析】由题得:诗词达人有8人,诗词能手有16人,诗词爱好者有16人,分层抽样抽选10名学生,所以诗词能手有人5. 方程表示双曲线的一个充分不必要条件是()A. B. C. D.【答案】A【解析】由题意知,,则C,D均不正确,而B为充要条件,不合题意,故选A.6. 水滴在水面上形成同心圆,边上的圆半径以的速度向外扩大,则从水滴接触水面后末时圆面积的变化速率为()A. B. C. D.【答案】D【解析】由题意可知,水滴接触水面后半径与时间的关系为,则圆的面积,对时间求导可得:,令可得末时圆面积的变化速率为.本题选择D选项.7. 过抛物线焦点的直线与该抛物线交于,两点,若,则弦的中点到直线的距离等于()A. B. C. 4 D. 2【答案】B【解析】如图所示,过弦中点作准线的垂线,做直线的垂线,过点作准线的垂线,由梯形中位线的性质结合抛物线的定义可得:,则弦的中点到直线的距离等于.本题选择B选项.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.8. 已知,则()A. B. C. D. 3【答案】A【解析】由函数的解析式可得:,则,函数的解析式为:,.本题选择A选项.9. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的,分别为4,2,则输出的等于()A. 2B. 3C. 4D. 5【答案】C【解析】由程序框图可得,时,,继续循环;时,,继续循环;时,,继续循环;结束输出.点睛:循环结构的考查是高考热点,有时会问输出结果,或是判断框的条件是什么,这类问题容易错在审题不清,计数变量加错了,没有理解计数变量是在计算结果之前还是计算结果之后,最后循环进来的数是什么等问题,防止出错的最好的办法是按顺序结构写出每一个循环,这样就会很好的防止出错.10. 在处有极小值,则常数的值为()A. 2B. 6C. 2或6D. 1【答案】A【解析】函数,∴,又在x=2处有极值,∴f′(2)=12−8c+=0,解得c=2或6,又由函数在x=2处有极小值,故c=2,c=6时,函数在x=2处有极大值,故选:A.点睛:已知函数的极值点求参数的值时,可根据建立关于参数的方程(组),通过解方程(组)得到参数的值后还需要进行验证,因为“”是“为极值点”的必要不充分条件,而不是等价条件,因此在解答此类问题时不要忘了验证,以免产生增根而造成解答的错误.11. 为定义在上的函数的导函数,而的图象如图所示,则的单调递增区间是()A. B.C. D.【答案】D【解析】由函数的解析式可得:当时,,函数单调递增;当时,,函数单调递减;综上可得:的单调递增区间是.本题选择D选项.12. 是双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于,若,则双曲线的离心率为()A. B. 2 C. D.【答案】C【解析】由已知渐近线方程为l1:,l2:,由条件得F到渐近线的距离,则,在Rt△AOF中,,则.设l1的倾斜角为θ,即∠AOF=θ,则∠AOB=2θ.在Rt△AOF中,,在Rt△AOB中,.∵,即,即a2=3b2,∴a2=3(c2-a2),∴,即.故选C.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.........................二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的横线上.13. 有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为__________.【答案】【解析】甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P==.14. 过点向圆:作两条切线,切点分别为,,则过点,,,四点的圆的方程为__________.【答案】【解析】圆的圆心为(1,1),半径为1,由直线与圆相切知,,所以过点四点的圆的直径为,的中点为圆心,即圆心为(0,0)..所以.过点四点的圆的方程为.故答案为:.15. 如图是某工厂对一批新产品长度(单位:)检测结果的频率分布直方图.估计这批产品的中位数为__________.【答案】22.5【解析】根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20∼25内,设中位数为x,则0.3+(x−20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故答案为:22.5.点睛:用频率分布直方图估计总体特征数字的方法:①众数:最高小长方形底边中点的横坐标;②中位数:平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标;③平均数:频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和.16. 古式楼阁中的横梁多为木质长方体结构,当横梁的长度一定时,其强度与宽成正比,与高的平方成正比(即强度宽高的平方).现将一圆柱形木头锯成一横梁(长度不变),当高与宽的比值为__________时,横梁的强度最大.【答案】【解析】设直径为d,如图所示,设矩形横断面的宽为x,高为y.由题意知,当xy2取最大值时,横梁的强度最大.∵,∴.令,得,令,解得或(舍去).当,f′(x)>0;当时,f′(x)<0,因此,当时,f(x)取得极大值,也是最大值。
2018-2019学年高二上学期期末考试数学试题 (答案+解析)

2018-2019学年高二上学期期末考试一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则” B .命题“,”的否定“,”C .若为假命题,则,均为假命题D .“”是“直线:与直线:平行”的充要条件 3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A .B .C .D .4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A .B .C .D .5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A .B .C .D .6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是( )A .B .C .D .7.已知12,F F 是椭圆221169x y +=的两焦点,过点2F 的直线交椭圆于,A B 两点,在1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D . 9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A .B .C .D .10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+点,若,则实数的值为()A.B.C.2 D.312.已知双曲线22221x ya b-=的左、右顶点分别为,A B,P为双曲线左支上一点,ABP∆为等腰三角形且外接圆的半径为5a,则双曲线的离心率为()A.155B.154C.153D.152二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.参考答案一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 【答案】B【解析】试题分析:把原圆的方程写成标准方程为()()222310x y -++=,由于两圆共圆心,可设另一个圆方程为:()()22223x y r -++=,把1,1x y ==-代入所设方程,得:()()22221213,5r r -+-+=∴=,所以所求的圆的方程为()()22235x y -++=,化简为:22-4680x y x y +++=,故选B.【考点】1、圆的一般式方程;2、圆的标准方程的. 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实B.命题“,”的否定“,”C.若为假命题,则,均为假命题D.“”是“直线:与直线:平行”的充要条件【答案】A【解析】根据命题的条件、结论及逆否命题的定义判断;根据特称命题的否定是全称命题判断,根据复合命题的真值表判断;根据平行线的性质判断.【详解】否定“若,则方程有实数根”条件与结论,再将否定后的条件与结论互换可得其逆否命题为“若方程无实数根,则”,正确;命题“,”的否定“,”,不正确;若为假命题,则至少有一个是假命题,不正确;“直线:与直线:平行”的充要条件是“或”,不正确,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逆否命题的定义、特称命题的否定、复合命题的真值表、平行线的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A.B.C.D.【答案】C【解析】根据焦点坐标求得、双曲线的渐近线方程,结合,利用待定系数法进行求解即可.【详解】对应的双曲线方程为,双曲线的一个焦点是,且,则,则,则,则,即双曲线的方程为,故选C.【点睛】本题主要考查双曲线方程的求解,属于基础题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A.B.C.D.【答案】A【解析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输.【详解】若输入的值分别为,则,不满足条件,循环;,余数为13 ,即,不满足条件,循环;,余数为0 ,即,满足条件,输出,故选A.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A.B.C.D.【答案】A【解析】根据抛物线的定义可求出的横坐标,代入抛物线方程解出的纵坐标,代入斜率公式计算斜率.【详解】抛物线的焦点为,准线方程为,点到焦点的距离等于到准线的距离,所以,代入抛物线方程解得,,故选A.【点睛】本题主要考查抛物线的定义和几何性质,斜率公式的应用,属于中档题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决..6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是()A.B.C.D.【答案】D【解析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,利用对立事件概率计算公式,结合古典概型概率公式能求出向上的点数之和小于10的概率.【详解】将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷2次,基本事件总数为,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:共6个,出现向上的点数之和小于10的概率为,故选D.【点睛】本题考查古典概型概率公式的应用以及对立事件概率计算公式的应用,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 【答案】D【解析】由椭圆的定义得12128{8AF AF BF BF +=+=两式相加得|AB|+|AF 2|+|BF 2|=16,又因为在△AF 1B 中,有两边之和是10, 所以第三边的长度为:16-10=6 故选D . 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D .【答案】C 【解析】【详解】延长到点,使得,连接,则是平行四边形,可得,根据异面直线所成角的概念可知,所成的锐角即为所求的异面直线所成的角, 设三棱柱的棱长为1,则,在中,根据余弦定理可得,所以异面直线与所成角的余弦值为,故选C.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A.B.C.D.【答案】D【解析】以为原点,为轴、为轴、为轴,建立空间直角坐标系,利用向量法能求出点到平面的距离 .【详解】以为原点,为轴、为轴、为轴,建立空间直角坐标系,则,,设平面的法向量,则,取,得,点到平面的距离为,故选D.【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+ 【答案】B【解析】试题分析:圆()()221111C x y -++=:的圆心1(1)E -,,半径为1,圆()()222459C x y -+-=:的圆心5(4)F ,,半径是3.要使PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+;5(4)F ,关于x 轴的对称点)5(4F '-,,2241515()()PF PE PF PE EF -='-≤'=-+-+=,故4PF PE -+ 的最大值为549+= ,故选:B .【考点】圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使|PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+,再利用对称性,求出所求式子的最大值. 11.已知抛物线的焦点为,直线与C 交于A 、B (A 在轴上方)两点,若,则实数的值为( )A .B .C .2D .3【答案】D【解析】试题分析:由得或,即,,又,所以,,显然,即.故选D .【考点】直线与抛物线的位置关系,向量的数乘.【名师点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. (3)直线与抛物线相交问题,如果含有参数,一般采用“设而不求”方法,但象本题则是直接把直线方程与抛物线方程联立方程组解得交点坐标,再进行相减的运算.12.已知双曲线22221x y a b-=的左、右顶点分别为,A B , P 为双曲线左支上一点,ABP ∆为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A .155 B .154 C .153 D .152【答案】C【解析】由题意知等腰ABP ∆中, ||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆外接圆的半径为5a , ∴225sin aa θ=, ∴5sin 5θ=, 25cos 5θ=, ∴25254253sin22,cos22155555θθ⎛⎫=⨯⨯==⨯-= ⎪ ⎪⎝⎭. 设点P 的坐标为(),x y ,则118cos2,sin255a ax a AP y AP θθ=+===, 故点P 的坐标为118,55a a ⎛⎫⎪⎝⎭.由点P在椭圆上得2222118551a aa b⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,整理得2223ba=,∴221513c bea a==+=.选C .点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得,a b间的关系,最后根据离心率的定义可得所求.二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.【答案】30【解析】由频率分布直方图得,分数在内的频率为:,分数在内的人数为:,故答案为.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.【答案】【解析】利用点差法,结合是线段的中点,斜率为,可得,结合即可求出椭圆的离心率.【详解】设,则①,②,是线段的中点,,直线的斜率是,所以,①②两式相减可得,即,,,故答案为.【点睛】本题考查椭圆的离心率,以及“点差法”的应用,属于中档题. 对于有关弦中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.【答案】2或【解析】设是的中点,连接,在平面内作,则,可证明平面,连接,则是与平面所成的角,设,利用平面所成的角的正弦值为,列方程求解即可.【详解】设是的中点,连接,平面,,为正三角形,,平面,在平面内作,则,平面,连接,则是与平面所成的角,设,在直角三角形中,,求得,,平面所成的角的正弦值为,,解得或,即的长为2或,故答案为2或.【点睛】本题主要考查线面垂直的判定定理与性质,以及直线与平面所成的角,属于难题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;(2)如果命题“”为真命题,“”为假命题,求实数的取值范围.【答案】(1)(2)或【解析】(1)利用的判别式小于零即可得结果;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.【详解】(1)命题是真命题,则若,,的取值范.(2)若命题是真命题,设,令,,当时取最大值,,又因为“”为真命题,“”为假命题,所以一真一假.①若真假,,且,则得;②若假真,则得,且,得.综上,实数的取值范围为或.【点睛】本题通过判断或命题、且命题的真假,综合考查函数的定义域、值域以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1)(2)可靠【解析】(1)根据所给的数据,先做出的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【详解】(1)由题意:,,.,故回归直线方程为:.(2)当时,,当时,,所以(1)中所得的回归直线方程是可靠的. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.【答案】(1)(2)【解析】(1)利用古典概型概率公式分别求出甲中奖与乙中奖的概率,利用对立事件的概率公式求出甲不中奖与乙不中奖的概率,然后利用独立事件概率公式、互斥事件的概率公式求解即可;(2)设甲乙到达时间分别为9:00起第小时,则.甲乙到达时间为正方形区域,甲比乙先到则需满足,利用线性规划以及几何概型概率公式可得结果.【详解】(1)记“甲取得三个球同色”为事件A,“乙取得三个球同色”为事件B,“甲乙恰有一人中奖”为事件C.所以A与B相互独立,记两红球为1,2号,四个白球分别为3,4,5,6号,从6个球中抽取3个的所有可能情况有个基本事件.其中事件A包括个基本事件故,所以所以.(2)设甲乙到达时间分别为9:00起第x,y小时,则0≤x≤,≤y≤1.甲乙到达时间(x,y)为图中正方形区域,甲比乙先到则需满足x<y,为图中阴影部分区域.设甲比乙先到为事件B,则P(B)=1-=.【点睛】本题主要考查古典概型、“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.【答案】(1);(2)或.【解析】(1)将圆化为标准方程,求出其圆心和半径,并求出圆心关于直线+1对称点的坐标,从而可得结果;(2)先验证斜率不存在时,直线符合题意;斜率存在时,由可求得的夹角,可得圆心到直线的距离,利用点到直线的距离公式列方程可得到直线的斜率,由点斜式可得结果.【详解】(1)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,设圆的标准方程为,∵圆C1与圆C2关于直线y=x+1对称,所以,解得.故圆的方程为.(2),所以易得点到直线的距离为,当的斜率不存在时,的方程为,符合要求;当的斜率存在时,设的方程为,由得,故的方程为;综上,的方程为或.【点睛】本题主要圆的方程,直线的点斜式方程的应用,属于中档题.在解题过程中需要用“点斜式”、“斜截式”设直线方程时,一定不要忘记讨论直线斜率不存在的情况,这是解析几何解题过程中容易出错的地方.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.【答案】(1)见解析(2)【解析】(1)先证明平面FBC∥平面EAD,即证明FC∥平面EAD.(2)利用向量法求二面角A-FC-B的余弦值.【详解】(1)证明:∵四边形ABCD与BDEF均为菱形,∴AD∥BC,DE∥BF.∵AD⊄平面FBC,DE⊄平面FBC,∴AD∥平面FBC,DE∥平面FBC,又AD∩DE=D,AD⊂平面EAD,DE⊂平面EAD,∴平面FBC∥平面EAD,又FC⊂平面FBC,∴FC∥平面EAD.(2)连接FO、FD,∵四边形BDEF为菱形,且∠DBF=60°,∴△DBF为等边三角形,∵O为BD中点.所以FO⊥BD,O为AC中点,且F A=FC,∴AC⊥FO,又AC∩BD=O,∴FO⊥平面ABCD,∴OA、OB、OF两两垂直,建立如图所示的空间直角坐标系O-xyz,设AB=2,因为四边形ABCD为菱形,∠DAB=60°,则BD=2,OB=1,OA=OF=,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),F(0,0,),∴=(,0,),=(,1,0),设平面BFC的一个法向量为n=(x,y,z),则有∴令x=1,则n=(1,-,-1),∵BD⊥平面AFC,∴平面AFC的一个法向量为=(0,1,0).∵二面角A-FC-B为锐二面角,设二面角的平面角为θ,∴cosθ=|cos〈n,〉|===,∴二面角A-FC-B的余弦值为.【点睛】(1)本题主要考查空间位置关系的证明,考查二面角的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理计算能力.(2) 二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程;(2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)【解析】试题分析:(1)由题意可求得b=1,a =,则椭圆方程为;(2)假设直线存在,设出直线的斜截式方程,联立直线与椭圆的方程,结合题意和韦达定理可得满足题意的直线存在,直线方程为.试题解析:(1)由△OMF是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l交椭圆于P,Q两点,且使F为△PQM的垂心设P(,),Q(,)因为M(0,1),F(1,0),故,故直线l的斜率于是设直线l的方程为由得由题意知△>0,即<3,且由题意应有,又故解得或经检验,当时,△PQM不存在,故舍去;当时,所求直线满足题意综上,存在直线l,且直线l的方程为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
{高中试卷}湖北省武汉市四校联合体高二(上)期末数学试卷(理科)解析版[仅供参考]
![{高中试卷}湖北省武汉市四校联合体高二(上)期末数学试卷(理科)解析版[仅供参考]](https://img.taocdn.com/s3/m/09ba7640dd88d0d232d46a20.png)
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:20XX-20XX 学年湖北省武汉市四校联合体高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 设某高中的男生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -80.71,则下列结论中不正确的是( )A. y 与x 有正的线性相关关系B. 回归直线过样本点的中心(x −,y −)C. 若该高中某男生身高增加1cm ,则其体重约增加0.85kg D. 若该高中某男生身高为170cm ,则可断定其体重必为63.79kg2. 命题“∃x 0>1,使得x 02−1≥0”的否定是( )A. ∃x 0>1,使得x 02−1<0B. ∀x >1,使得x 2−1<0C. ∃x 0≤1,使得x 02−1<0D. ∀x ≤1,使得x 2−1<03. 如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为( )A. 11B. 10C. 9D. 84. 抛物线y =4x 2的焦点坐标是( )A. (0,1)B. (1,0)C. (0,116)D. (116,0)5. 已知a ⃗ =(1,2,y),b ⃗ =(x ,1,2),且(a ⃗ +2b ⃗ )∥(2a ⃗ −b ⃗ ),则x •y =( ) A. 13B. 2C. −12D. −16. 执行如图所示的程序框图,若输入n =5,A =4,x =2,则输出的A 的值为( ) A. 27B. 56C. 113D. 2267. 若(1+mx )8=a 0+a 1x +a 2x 2+…+a 8x 8且a 1+a 2+…+a 8=255,则实数m 的值为( )A. 1或−3B. −1C. −3D. 18. 当双曲线x 2m 2+8+y 26−2m =1的焦距取得最小值时,其渐近线的斜率是( ) A. ±32B. ±23C. ±2√23D. ±12 9. 下列说法中正确的是( )A. 若事件A 与事件B 是互斥事件,则P(A)+P(B)=1B. 若事件A 与事件B 满足条件:P(A ∪B)=P(A)+(B)=1,则事件A 与事件B 是对立事件C. 一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件D. 把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件10. 设抛物线y 2=6x 与椭圆x 2+y 24=1相交于A 、B 两点,若F 为抛物线的焦点,则△ABF 的面积为( )A. √32B. √3C. 5√32D. 5√3 11. 空间A 、B 、C 、D 四点共面,但任意三点不共线,若P 为该平面外一点且PA ⃗⃗⃗⃗⃗ =53PB ⃗⃗⃗⃗⃗ −x PC ⃗⃗⃗⃗⃗ −13AD ⃗⃗⃗⃗⃗⃗ ,则实数x 的值为( ) A. 13B. −13C. 23D. −2312. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=8,椭圆与双曲线的离心率分别为e 1、e 2,则e 1+1e 2的取值范围是( ) A. (0,12)B. (12,43)C. (43,2)D. (12,+∞)二、填空题(本大题共4小题,共20.0分)13. 甲、乙两位同学的5次考试成绩如茎叶图所示,则成绩较稳定的那位学生成绩的方差为______.14.已知O为坐标原点,椭圆x225+y216=1上的点M到左焦点F1的距离为4,N为MF1的中点,则ON的值等于______.15.甲、乙、丙3人站到共有6级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是______(用数字作答).16.在棱长为2的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,P是侧面BCC1B1内的动点,且A1P∥平面D1AE,则点P形成的轨迹的长度为______.三、解答题(本大题共6小题,共70.0分)17.已知命题p:∀x∈R,ax2-2x+1≥0;命题q:函数y=−ax在区间(-∞,0)上为减函数.(1)若命题“(¬p)∨q”为真命题,“(¬p)∧q”为假命题,求实数a的取值集合;(2)若集合A={x|(x-1)(x+2)<0},B={a|a2-4at+3t2≥0,其中t>0},a∈A是a∈B的充分不必要条件,求实数t的取值范围.18.我国是一个严重缺水的国家,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行居民生活用水定额管理,即确定一个居民用水量标准m,使得86%的居民生活用水不超过这个标准.在本市居民中随机抽取的100户家庭某年的月均用水量(单位:吨),通过数据分析得到如图所示的频率分布直方图:(1)求a、m的值,并估计全市所有家庭的月平均用水量;(2)如果我们称m为这组数据中86%分位数,那么这组数据中50%分位数是多少?(3)在用水量位于区间[1,3]的四类家庭中按照分层抽样的方法抽取15人参加由政府组织的一个听证会(每个家庭有1个代表参会),在听证会上又在这15个人中任选两人发言,其中至少有一人的家庭用水量超过两吨的概率是多少?19.如图所示的三角形表,最早出现在我国南宋数学家杨辉在1261年所著的《详解九章算术》一书中,我们称之为“杨辉三角”.若等比数列{a n}的首项是1,公比是q(q≠1),将杨辉三角的第n+1行的第1个数乘以a1,第2个数乘以a2,……,第n+1个数乘以a n+1后,这一行的所有数字之和记作f(n,q).(1)求f(4,3)的值;(2)当q=x2+3x-5时,求f(4,q)展开式中含x项的系数.20. 已知抛物线y 2=4x 上不同的三点A 、B 、C ,F 为抛物线的焦点,且|AF ⃗⃗⃗⃗⃗ |、|BF ⃗⃗⃗⃗⃗ |、|CF⃗⃗⃗⃗⃗ |成等差数列,则当AC 的垂真平分线与x 轴交于点D(3,0)时,求B 点的坐标.21. 如图,圆柱OO 1内有一个三棱柱ABC -A 1B 1C 1,三棱柱的底面为圆柱底面的内接三角形,且AB 是圆O 的直径.(1)证明:平面A 1ACC 1⊥平面B 1BCC 1;(2)设AB =AA 1,在圆柱OO 1内随机选取一点,记该点取自于三棱柱ABC -A 1B 1C 1内的概率为P .当点C 在圆周上运动时,记平面A 1ACC 1与平面B 1OC 所成的角为θ(0°<θ≤90°),当P 取最大值时,求cosθ的值.22. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,点M(1,32)在椭圆C 上.(1)求椭圆C 的方程;(2)设点A (2,0),过点B (27,0)的直线l 交椭圆C 于E 、F 两点,求证:AE ⊥AF .答案和解析1.【答案】D 【解析】解:根据线性回归方程=0.85x-80.71,回归系数=0.85>0,y 与x 具有正的线性相关关系,A 正确;回归 直线过样本点的中心,B 正确;该大学某女生身高增加1cm 时,则其体重约增加0.85kg ,C 正确;当x=170cm 时,=0.85×170-85.71=58.79kg ,即大学某女生身高为170cm ,她的体重约为58.79kg ,D 错误;故选:D .根据线性回归方程及其意义,对选项中的命题进行分析、判断即可.本题考查了回归方程的意义与应用问题,是基础题.2.【答案】B 【解析】解:命题是特称命题,则命题的否定是:∀x >1,使得x 2-1<0,故选:B .根据特称命题的否定是全称命题进行判断即可.本题主要考查含有量词的命题的否定,根据特称命题的否定是全称命题是解决本题的关键.3.【答案】C 【解析】解:由随机模拟试验可得:=,所以S黑=≈9,故选:C.由几何概型中的面积型结合随机模拟试验可得:=,所以S黑=≈9,得解.本题考查了几何概型中的面积型,属简单题.4.【答案】C【解析】解:抛物线y=4x2的标准方程为 x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选:C.把抛物线y=4x2的方程化为标准形式,确定开口方向和p值,即可得到焦点坐标.本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.5.【答案】B【解析】解:=(1+2x,4,4+y),=(2-x,3,2y-2),∵,∴存在实数k使得=k(),∴,解得x=,y=4.∴x•y=2.故选:B.由,可得存在实数k使得=k(),利用向量相等即可得出.本题考查了向量坐标运算性质、向量共线定理、空间向量基本定理,考查了推理能力与计算能力,属于基础题.6.【答案】C【解析】解:模拟程序的运行,可得n=5,A=4,x=2,i=4,满足条件i>0,执行循环体,A=12,i=3 满足条件i>0,执行循环体,A=27,i=2 满足条件i>0,执行循环体,A=56,i=1 满足条件i>0,执行循环体,A=113,i=0 不满足条件i>0,退出循环,输出A的值为113.故选:C.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量A的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.解:若,则令x=0可得a0=1,令x=1,可得1+a1+a2+…+a8=(1+m)8=1+255=256,则实数m=1,或m=-3,故选:A.令x=0可得a0=1,再令x=1,可得1+a1+a2+…+a8=(1+m)8=1+255=256,由此求得m的值.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.8.【答案】B【解析】解:由题意可得6-2m>0,即有m<3,由c2=m2+8+6-2m=(m-1)2+13,可得当m=1时,焦距2c取得最小值,双曲线的方程为:,即有渐近线方程为y=±x.渐近线的斜率为±.故选:B.由题意可得6-2m>0,即有m<3,由c2=m2+8+6-2m=(m-1)2+13,可得m=1取得最小值,由双曲线的渐近线方程,可得渐近线的斜率.本题考查双曲线的渐近线的斜率的求法,注意运用二次函数的最值的求法,考查运算能力,属于中档题.9.【答案】D【解析】解:在A中,若事件A与事件B是互斥事件,则P(A)+P(B)≤1,故A错误;在B 中,若事件A与事件B满足条件:P(A∪B)=P(A)+(B)=1,则事件A与事件B不一定是对立事件,故B错误;在C中,一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”能同时发生,不是对立事件,故C错误;在D中,把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”,由互斥事件和对立事件的概念可判断两者不可能同时发生,故它们是互斥事件,故D正确.故选:D.由互斥事件和对立事件的概念可判断结论.本题考查命题真假的判断,考查对立事件、互斥事件等基础知识,考查运算求解能力,是基础题.解:抛物线y2=6x的焦点坐标(,0),抛物线y2=6x与椭圆x2+=1相交于A、B两点,则A(,),B(,);则△ABF的面积为:=.故选:B.求出抛物线的焦点坐标,求出A,B的坐标,然后求解△ABF的面积.本题考查抛物线与椭圆的位置关系的应用,考查转化思想以及计算能力.11.【答案】C【解析】解:因为空间A、B、C、D四点共面,但任意三点不共线,则=m+n,又点P为该平面外一点,则-=m()+n,所以(1+m)=+m+n,又,由平面向量的基本定理得:-x=1,即x=,故选:C.由平面向量基本定理及向量的线性运算得:=m+n,-=m()+n,所以(1+m)=+m+n,又,得-x=1,即x=,得解.本题考查了平面向量基本定理及向量的线性运算,属中档题.12.【答案】B【解析】解:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=8,即有m=8,n=2c,由椭圆的定义可得m+n=2a1,由双曲线的定义可得m-n=2a2,即有a1=4+c,a2=4-c,(c<4),再由三角形的两边之和大于第三边,可得2c+2c=4c>8,则c>2,即有2<c<4.由离心率公式可得e1+=+=+=,由2<c<4可得c(4+c)的范围是(12,32),即有的范围是(,).故选:B.设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由条件可得m=8,n=2c,再由椭圆和双曲线的定义可得a1=4+c,a2=4-c,(c<4),运用三角形的三边关系求得c的范围,再由离心率公式,计算即可得到所求范围.本题考查椭圆和双曲线的定义和性质,考查离心率的求法,考查三角形的三边关系,考查运算能力,属于中档题.13.【答案】2【解析】解:甲的平均数为=(88+89+90+91+92)=90,甲的方差为=[(88-90)2+(89-90)2+(90-90)2+(91-90)2+(92-90)2]=2,乙的平均数为=(89+87+93+90+91)=90,乙的方差为=[(89-90)2+(87-90)2+(93-90)2+(90-90)2+(91-90)2]=4.∴成绩较稳定的那位学生成绩的方差为2.故答案为:2.利用茎叶图分别求出甲、乙二人的平均数、方差,由此能求出成绩较稳定的那位学生成绩的方差.本题考查成绩较稳定的那位学生成绩的方差的求法,考查茎叶图的性质等基础知识,考查运算求解能力,是基础题.14.【答案】3【解析】解:椭圆的a=5,设右焦点为F2,根据椭圆的定义得:|MF1|+|MF2|=2a=10,|MF1|=4,可得|MF2|=6,由于△MF2F1中N、O是MF1、F1F2的中点,根据中位线定理得:|ON|=|MF2|=3,故答案为:3.首先根据椭圆的定义求出|MF2|=6的值,进一步利用三角形的中位线求得结果.本题考查的知识点:椭圆的定义,椭圆的方程中量的关系,三角形中位线定理,考查运算能力,属于基础题.15.【答案】210【解析】解:由题意知本题需要分组解决,∵对于6个台阶上每一个只站一人有A63种;若有一个台阶有2人另一个是1人共有C31A62种,∴根据分类计数原理知共有不同的站法种数是A63+C31A62=210种.故答案为:210.由题意知本题需要分组解决,共有两种情况,对于6个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整--完成了所有步骤,恰好完成任务.16.【答案】√2【解析】解:取B 1C 1,BB 1的中点M ,N ,连接A 1M ,A 1N ,则A 1N ∥D 1E ,MN ∥BC 1∥AD 1,∴平面A 1MN ∥平面D 1AE ,∵A 1P ∥平面D 1AE ,∴P 在线段MN 上,即P 的轨迹为线段MN .∵正方体棱长为2,∴BC 1=2,故MN=BC 1=.故答案为:.过A 1作平面D 1AE 的平行平面,求出此平面与平面D 1AE 的交线即可.本题考查了线面平行的判定与性质,属于中档题.17.【答案】解:(1)若命题“(¬p )∨q ”为真命题,“(¬p )∧q ”为假命题,则¬p ,q 一个为真命题,一个为假命题,即p ,q 同时为真命题或同时为假命题,若p ,q 同时为真命题,则当a =0时,不等式等价为-2x +1≥0,不满足条件.当a ≠0时,要使不等式恒成立,则{△=4−4a <0a>0,即{a >1a>0,得a >1,即p :a >1;若函数y =−ax 在区间(-∞,0)上为减函数,则a <0,即q :a <0,若p ,q 同时为真命题,则{a <0a>1,此时a 无解若p ,q 同时为假命题,则{a ≥0a≤1,得0≤a ≤1.即实数a 的取值范围是[0,1].(2)A ={x |(x -1)(x +2)<0}={x |-2<x <1},B ={a |a 2-4at +3t 2≥0,其中t >0}={a |(a -t )(a -3t )≥0}={a |a ≥3t 或a ≤t ,其中t >0},若a ∈A 是a ∈B 的充分不必要条件,则A ⊊B ,即t >1或3t <-2(舍),即实数t 的取值范围是(1,+∞).【解析】 (1)根据命题“(¬p )∨q”为真命题,“(¬p )∧q”为假命题得到p ,q 命题真假性相同,然后进行求解即可.(2)求出结合A ,B 的等价条件,结合充分条件和必要条件的定义转化为集合的子集关系进行求解即可.本题主要考查充分条件和必要条件的应用以及复合命题真假关系的应用,根据条件转化为集合关系是解决本题的关键.18.【答案】解:(1)由频率分布直方图得:(0.16+0.30+0.40+0.50+0.30+0.16+a +a )×0.5=1,解得a =0.20XX .由频率分布直方图得:区间在[0.5,3)内的频率为:1-(0.16+0.20XX+0.20XX )×0.5=0.83,∵计划在本市实行居民生活用水定额管理,即确定一个居民用水量标准m ,使得86%的居民生活用水不超过这个标准,∴m =3+0.86−0.830.16×0.5=3.20XX375.(2)区间在[0.5,2)的频率为:(0.16+0.30+0.40)×0.5=0.43,区间在[2,2.5)的频率为0.50×0.5=0.25,∴这组数据中50%分位数是:2+0.5−0.430.5×0.5=2.20XX .(3)在用水量位于区间[1,3]的四类家庭中按照分层抽样的方法抽取15人参加由政府组织的一个听证会(每个家庭有1个代表参会),家庭用水量超过两吨的抽取:15×0.5+0.30.3+0.4+0.5+0.3=8,在听证会上又在这15个人中任选两人发言,基本事件总数n =C 152=120XX ,其中至少有一人的家庭用水量超过两吨的对立事件是两人的家庭用水量都不超过两吨,∴其中至少有一人的家庭用水量超过两吨的概率是:p =1-C 72C 152=45.【解析】 (1)由频率分布直方图的性质能求出a ;由频率分布直方图得:区间在[0.5,3)内的频率为0.83,由此能求出m .(2)区间在[0.5,2)的频率为0.43,区间在[2,2.5)的频率为0.25,由此能求出这组数据中50%分位数.(3)家庭用水量超过两吨的抽取8,在听证会上又在这15个人中任选两人发言,基本事件总数n==120XX ,其中至少有一人的家庭用水量超过两吨的对立事件是两人的家庭用水量都不超过两吨,由此能求出其中至少有一人的家庭用水量超过两吨的概率.本题考查频率分布直方图、分层抽样,概率等基础知识,考查运算求解能力,是基础题. 19.【答案】解:(1)由题意知,f (4,3)=1×1+4×3+6×32+4×33+1×34=266;(2)当q =x 2+3x -5时,f (4,q )=1×1+4×(x 2+3x -5)+6×(x 2+3x -5)2+4×(x 2+3x -5)3+1×(x 2+3x -5)4,展开式中含x 项的系数为4×3+6×C 21×3×(-5)+4×C 31×3×(-5)2+C 41×3×(-5)3=12-180+900-1500=-768.【解析】(1)由题意写出f (4,3)计算公式,求出即可;(2)把q=x 2+3x-5代入f (4,q )的计算公式,利用二项式展开式的定义求展开式中含x 的系数.本题考查了二项式展开式定理的应用问题,也考查了等比数列的应用问题,是中档题.20.【答案】解:设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),由|AF⃗⃗⃗⃗⃗ |,|BF ⃗⃗⃗⃗⃗ |,|CF ⃗⃗⃗⃗⃗ |成等差数列,则2|BF ⃗⃗⃗⃗⃗ |=|AF ⃗⃗⃗⃗⃗ |+|CF ⃗⃗⃗⃗⃗ |,即2x 2=x 1+x 3,∴直线AC 的斜率为k =y 3−y 1x 3−x 1=y 3−y 1y 324−y 124=4y 3+y 1,∴y 1+y 3=4k ;设AC 中点为(x 2,2k ),则线段AC 的垂直平分线方程为y -2k =-1k (x -x 2),令y =0,得x =2+x 2,∴x 2=1,代入y 2=4x 得y =±2,则点B 的坐标为(1,2)或(1,-2).【解析】 设出点A 、B 、C 的坐标,根据||,||,||成等差数列得出2x 2=x 1+x 3,利用定义求出直线AC 的斜率k ,再求出AC 的中点,写出AC 的垂直平分线方程,从而求得点B 的坐标.本题考查了抛物线的简单几何性质与方程的应用问题,也考查了等差数列的应用问题,是中档题.21.【答案】解:(Ⅰ)因为AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC ,因为AB 是圆O 直径,所以BC ⊥AC ,又AC ∩AA 1=A ,所以BC ⊥平面A 1ACC 1,而BC ⊂平面B 1BCC 1,所以平面A 1ACC 1⊥平面B 1BCC 1.(Ⅱ)设圆柱的底面半径为r ,则AB =AA 1=2r ,故三棱柱ABC -A 1B 1C 1的体积为V 1=12AC ⋅BC ⋅2r =AC •BC •r ,又因为AC 2+BC 2=AB 2=4r 2,所以AC ⋅BC ≤AC 2+BC 22=2r 2,当且仅当AC =BC =√2r 时等号成立,从而V 1≤2r 3,而圆柱的体积V =πr 2•2r =2πr 3,故P =V 1V≤2r 32πr 3=1π,当且仅当AC =BC =√2r ,即OC ⊥AB 时等号成立,所以P 的最大值是1π.P 取最大值时,OC ⊥AB ,于是以O 为坐标原点,建立空间直角坐标系O -xyz ,设OB 为y 轴的正半轴,OC 为x 轴正半轴,OO 1为z 轴的正半轴,则C (r ,0,0),B (0,r ,0),B 1(0,r ,2r ),因为BC ⊥平面A 1ACC 1,所以BC ⃗⃗⃗⃗⃗ =(r ,−r ,0)是平面A 1ACC 1的一个法向量,设平面B 1OC 的法向量n ⃗ =(x ,y ,z),由{n ⃗ ⊥OC ⃗⃗⃗⃗⃗ n ⃗ ⊥OB 1⃗⃗⃗⃗⃗⃗⃗⃗ 得{ry +2rz =0rx=0,故{y =−2z x=0,取z =1得平面B 1OC 的一个法向量为n ⃗ =(0,−2,1),因为0°<θ≤90°,所以cosθ=|cos〈n ⃗ ,BC ⃗⃗⃗⃗⃗ 〉|=|n ⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ ||=|2r√5⋅√2r |=√120XX .【解析】(1)欲证平面A 1ACC 1⊥平面B 1BCC 1,关键是找线面垂直,根据直线与平面垂直的判定定理知BC ⊥平面A 1ACC 1;(2)根据AC 2+BC 2=AB 2为定值可求出V 1的最大值,从而得到P=的最大值,P 取最大值时,OC ⊥AB ,于是以O 为坐标原点,建立空间直角坐标系O-xyz ,求出平面A 1ACC 1的一个法向量与平面B 1OC 的一个法向量,然后求出两法向量的夹角从而得到二面角的余弦值.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、必然与或然思想.22.【答案】解:(1)由题意可得{2a =41a 2+94b 2=1,解得a =2,b =√3,∴椭圆C 的方程为x 24+y 23=1,证明:(2)设A (x 1,y 1),B (x 2,y 2),设过点B (27,0)的直线方程为x =my +27,代入椭圆方程x 24+y 23=1,消x 可得(3m 2+4)y 2+127my -12×4849=0,∴y 1+y 2=-12m 7(3m 2+4),y 1y 2=-4×12249(3m 2+4),∴AE ⃗⃗⃗⃗⃗ •AF ⃗⃗⃗⃗⃗ =(x 1-2,y 1)(x 2-2,y 2)=(x 1-2)(x 2-2)+y 1y 2,=(my 1-127)(my 2-127)+y 1y 2,=(m 2+1)•y 1y 2-12m7(y 1+y 2)+12249=-(m 2+1)4×12249(3m 2+4)+12m 7(3m 2+4)+12m7•12m 7(3m 2+4)+12249=12249(-4m 2+43m 2+4+m 23m 2+4+1)=0,∴AE ⃗⃗⃗⃗⃗ ⊥AF⃗⃗⃗⃗⃗ ,∴AE ⊥AF .【解析】(1)由题意可得,解得即可求出椭圆的方程,(2)设A (x 1,y 1),B (x 2,y 2),设过点B 的直线方程为x=my+,代入椭圆方程+=1,根据韦达定理和向量的运算可得到•=0,即可证明.本题考查饿了椭圆的方程以及直线和椭圆的位置关系,考查了韦达定理,向量的运算等知识,考查了运算求解能力,转化与化归能力,属于中档题.。
2018-2019湖北省高二上学期期末考试数学(理)试题(解析版)

2018-2019学年湖北省华中师范大学第一附属中学高二上学期期末考试数学(理)试题一、单选题1.用秦九韶算法求多项式当的值时,,则的值是A.2 B.1 C.15 D.17【答案】C【解析】运用秦九韶算法将多项式进行化简,然后求出的值【详解】,当时,,故选【点睛】本题主要考查了秦九韶算法,结合已知条件即可计算出结果,较为基础2.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为A.15.5 B.15.6C.15.7 D.16【答案】B【解析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值【详解】由频率分布直方图可以计算出各组频率分别为:,频数为:则平均值为:故选【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错3.若方程,其中,则方程的正整数解的个数为A.10 B.15 C.20 D.30【答案】A【解析】将方程正整数解问题转化为排列组合问题,采用挡板法求出结果【详解】方程,其中,则将其转化为有6个完全相同的小球,排成一列,利用挡板法将其分成3组,第一组小球数目为第二组小球数目为第三组小球数目为共有种方法故方程的正整数解的个数为10故选【点睛】本题主要考查了多元方程的正整数解的问题,在求解过程中将其转化为排列组合问题,运用挡板法求出结果,体现的转化的思想4.过作圆的切线,切点分别为,且直线过双曲线的右焦点,则双曲线的渐近线方程为A.B.C.D.【答案】B【解析】由题意先求出直线的方程,然后求出双曲线的右焦点,继而解出渐近线方程【详解】过作圆的切线,切点分别为,则两点在以点,连接线段为直径的圆上则圆心为,圆的方程为直线为两圆公共弦所在直线则直线的方程为:即,交轴由题意可得双曲线的右焦点为则解得,,故渐近线方程,即故选【点睛】本题主要考查了直线、圆、双曲线的综合问题,在解题过程中运用了直线与圆相切,两圆公共弦所在直线方程的求解,最后再结合条件计算出双曲线方程,得到渐近线方程,知识点较多,需要熟练掌握各知识点5.给出下列结论:(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862. (2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.(3)若两个变量的线性相关性越强,则相关系数的值越接近于1.(4)对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是A.3 B.2 C.1 D.0【答案】C【解析】运用抽样、方差、线性相关等知识来判定结论是否正确【详解】(1)中相邻的两个编号为053,098,则样本组距为样本容量为则对应号码数为当时,最大编号为,不是,故(1)错误(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,则乙组数据的方差为那么这两组数据中较稳定的是乙,故(2)错误(3)若两个变量的线性相关性越强,则相关系数的绝对值越接近于1,故错误(4)按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故正确综上,故正确的个数为1故选【点睛】本题主要考查了系统抽样、分层抽样、线性相关、方差相关知识,熟练运用各知识来进行判定,较为基础6.已知是之间的两个均匀随机数,则“能构成钝角三角形三边”的概率为A.B.C.D.【答案】A【解析】由已知条件得到关于的范围,结合图形运用几何概型求出概率【详解】已知是之间的两个均匀随机数,则均小于1,又能构成钝角三角形三边,结合余弦定理则,又由三角形三边关系得,如图:则满足条件的区域面积为,则满足题意的概率为,故选【点睛】本题考查了几何概率,首先要得到满足题意中的条件的不等式,画出图形,由几何概率求出结果,在解题中注意限制条件7.已知实数满足,则的取值范围是A.(-∞,0]∪(1,+∞) B.(-∞,0]∪[1,+∞)C.(-∞,0]∪[2,+∞) D.(-∞,0]∪(2,+∞)【答案】A【解析】先画出可行域,化简条件中的,将范围问题转化为斜率问题求解【详解】由,可得令,则为单调增函数即有可行域为:又因为,则问题可以转化为可行域内的点到连线斜率的取值范围将代入将代入结合图形,故的取值范围是故选【点睛】本题主要考查了线性规划求范围问题,在解答过程中要先画出可行域,然后将问题转化为斜率,求出结果,解题关键是对条件的转化8.在二项式的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是A.第6项B.第5项C.第4项D.第3项【答案】C【解析】由已知条件先计算出的值,然后计算出系数最小的项【详解】由题意二项式的展开式中,当且仅当第5项的二项式系数最大,故二项式展开式的通项为要系数最小,则为奇数当时,当时,当时,当时,故当当时系数最小则系数最小的项是第4项故选【点睛】本题主要考查了二项式展开式的应用,结合其通项即可计算出系数最小的项,较为基础9.已知椭圆的左、右焦点分别为,过的直线与椭圆交于两点,若且,则椭圆的离心率为A.B.C.D.【答案】C【解析】由已知条件进行转化,得到三角形三边的表示数量关系,再结合条件运用余弦定理求出结果【详解】如图得到椭圆图形,由题意中,两个三角形高相同故可以得到,又则,,由可以推得,即有,,,又因为,所以即有化简得,即,解得,故椭圆的离心率为故选【点睛】本题考查了求椭圆的离心率以及直线和椭圆的位置关系,结合椭圆的定义和已知角相等分别求出各边长,然后运用余弦定理求出结果,需要一定的计算量10.将一颗质地均匀的骰子先后抛掷三次,则数字之和能被3整除的概率为A.B.C.D.【答案】A【解析】先计算出一共有多少种情况,然后再计算出满足数字之和能被3整除的情况,求出概率【详解】先后抛掷三次一共有种情况数字之和能被3整除,则以第一次出现1为例,有:,共种则共有种数字之和能被3整除的概率为故选【点睛】本题主要考查了古典概率,结合古典概率公式分别求出符合条件的值,然后计算出结果,较为基础11.在下方程序框图中,若输入的分别为18、100,输出的的值为,则二项式的展开式中的常数项是A.224 B.336 C.112 D.560【答案】D【解析】由程序图先求出的值,然后代入二项式中,求出展开式中的常数项【详解】由程序图可知求输入的最大公约数,即输出则二项式为的展开通项为要求展开式中的常数项,则当取时,令解得,则结果为,则当取时,令,解得,则结果为,故展开式中的常数项为,故选【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题12.如下图,已知分别为双曲线的左、右焦点,过的直线与双曲线C 的右支交于两点,且点A、B分别为的内心,则的取值范围是A.B.C.D.【答案】D【解析】由已知条件得到的横坐标是相等的,然后再结合题意求出的取值范围【详解】如图,圆与切于点三点,由双曲线定义,即,所以则,又,,故,同理可得,即,设,,,直线与双曲线右支交于两点,又知渐近线方程为,可得,设圆和圆的半径分别为,则,,所以因为,由基本不等式可得,故选【点睛】本题考查了直线与双曲线的位置关系,又得三角形的内切圆问题,在求解过程中将其转化利用双曲线定义求出,且得到两点横坐标,然后结合了三角函数求出半径之和,考查了转化的能力,较为综合二、填空题13.向正方形随机撒一些豆子,经查数,落在正方形内的豆子的总数为1000,其中有780粒豆子落在该正方形的内切圆内,以此估计圆周率的值(用分数表示)为____________.【答案】【解析】运用古典概率和几何概率来估计圆周率的值【详解】令正方形内切圆的半径为,则正方形边长为,则由题意中“落在正方形内的豆子的总数为1000,其中有780粒豆子落在该正方形的内切圆内”可得,化简得【点睛】本题考查了结合概率问题来估计圆周率的值,较为基础14.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发____________.【答案】1【解析】因为题目中要去掉一个最高分,所以对进行分类讨论,然后结合平均数的计算公式求出结果【详解】若,去掉一个最高分和一个最低分86分后,平均分为,不符合题意,故,最高分为94分,去掉一个最高分94分,去掉一个最低分86分后,平均分,解得,故数字为1【点睛】本题考查了由茎叶图求平均值,理解题目意思运用平均数计算公式即可求出结果,注意分类讨论15.将排成一排,则字母不在两端,且三个数字中有且只有两个数字相邻的概率是____________.【答案】【解析】分类讨论不同字母和数字的特殊情况可能出现的结果,然后运用古典概率求出答案【详解】将排成一排一共有种不同排法,则字母不在两端,且三个数字中有且只有两个数字相邻有种不同的排法,所以其概率为,故答案为16.已知圆上存在点,使(为原点)成立,,则实数的取值范围是____________.【答案】【解析】根据条件中计算出点的轨迹,然后转化为圆和圆的位置关系求出实数的取值范围【详解】由题意中,设,则,化简得,又点在圆上,故两圆有交点,可得,又因为,解得【点睛】本题考查了圆和圆的位置关系,在解题时遇到形如条件时可以求出点的轨迹为圆,然后转化为圆和圆的位置关系来求解,属于中档题三、解答题17.为了解华师一附中学生喜欢吃辣是否与性别有关,调研部(共10人)分三组对高中三个年级的学生进行调查,每个年级至少派3个人进行调查.(1)求调研部的甲、乙两人都被派到高一年级进行调查的概率.(2)调研部对三个年级共100人进行了调查,得到如下的列联表,请将列联表补充完整,并判断是否有以上的把握认为喜欢吃辣与性别有关?喜欢吃辣不喜欢吃辣合计男生10女生2030合计100参考公式:,其中.【答案】(1);(2)见解析【解析】(1)求出一共可能出现的情况,然后计算满足条件甲、乙两人都对高一年级进行调查的情况,运用古典概率求出结果(2)补充完整列联表,根据公式计算出的值,得到结论【详解】(1)设事件A为“甲、乙两人都对高一年级进行调查”基本事件共有个事件A包含的基本事件有个由古典概型计算公式,得∴甲、乙两人都对高一年级进行调查的概率为(2)喜欢吃辣不喜欢吃辣合计男生401050女生203050合计6040100∴∴有以上的把握认为喜欢吃辣与性别有关【点睛】本题考查了运用古典概率公式求解概率问题,以及补充完整列联表,根据公式计算出的值,较为基础18.已知N,,且.求:(1)展开式中各项的二项式系数之和;(2);(3).【答案】(1)64;(2)7813;(3)【解析】由已知条件先求出的值,解法一:由代入化简求出,解法二:令,倒序相加求出(1)代入求出展开式中各项的二项式系数之和(2)令和,得到表达式,两式相加求出结果(3)令代入求出结果【详解】∵∴∴法二:设则,相加得即∴(2)令,得①令,得②相加得(或)(3)令得=【点睛】本题考查了求解二项式中各项的二项式系数之和以及部分项的系数之和,通常运用赋值法求出结果,较为基础19.一只红铃虫的产卵数y和温度x有关,现收集了6组观测数据于下表中,通过散点图可以看出样本点分布在一条指数型函数y=的图象的周围.(1)试求出y关于x的上述指数型的回归曲线方程(结果保留两位小数);(2)试用(1)中的回归曲线方程求相应于点(24,17)的残差.(结果保留两位小数)温度x(°C)202224262830产卵数y(个)6917254488z=lny 1.79 2.20 2.83 3.22 3.78 4.48几点说明:①结果中的都应按题目要求保留两位小数.但在求时请将的值多保留一位即用保留三位小数的结果代入.②计算过程中可能会用到下面的公式:回归直线方程的斜率==,截距.③下面的参考数据可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.【答案】(1);(2)【解析】(1)由已知条件结合计算公式求出的值,继而得到回归直线方程(2)由(1)得回归直线方程,代入点(24,17)计算出残差【详解】(1)设z关于x的回归直线方程为∴=≈保留三位小数:≈0.265,保留两位小数:≈0.27∴=≈3.05-0.265×25≈-3.58∴z=lny关于x的回归直线方程为=0.27x-3.58∴y关于x的指数型的回归曲线方程为=(2)相应于点(24,17)的残差=y-=17-=17-≈17-=17-18.17=-1.17【点睛】本题考查了回归直线方程的计算并求出残差,运用公式求解,较为基础20.已知椭圆的离心率为,左、右焦点分别是.以为圆心以(1)求椭圆的标准方程;(2)不过点的直线与该椭圆交于两点,且与互补,求面积的最大值.【答案】(1);(2)【解析】(1)由已知条件可得,求出,得到椭圆方程(2)联立直线方程与椭圆方程,由已知与互补则斜率相加得零得到的数量关系,然后再求解三角形面积问题【详解】(1)由题∴,方程为(2)消y得设∴①由得∴,=∴②,由①②得∴令,则,当时,【点睛】本题考查了求椭圆方程以及三角形面积问题,在求解过程中关键是将题目中的角互补转化为斜率问题,然后再求解,注意计算不要出错,属于中档题21.已知抛物线的焦点为,过焦点且斜率存在的直线与抛物线交于两点,且点在点上方,点与点关于轴对称.(1)求证:直线过某一定点;(2)当直线的斜率为正数时,若以为直径的圆过,求的内切圆与的外接圆的半径之比.【答案】(1)定点;(2)【解析】(1)设出BD直线方程和B、D两点坐标,联立直线方程与抛物线方程,得到关于纵坐标的表达式,然后求出直线方程,继而得到定点(2)求出BD、的直线方程,由点到直线距离相等求出内切圆半径,然后求出【详解】(1)设BD:,联立消x得∴恒正,∴即令,得∴定点Q(2)由题==∴即得(舍)∴BD:由题,的内心必在x轴上,设内心∴由I到直线BQ与到直线BD的距离相等得,∴,内心∴内切圆半径BD中垂线方程为,得联立得∴的外接圆半径∴【点睛】本题考查了直线与抛物线的位置关系,考查了直线恒过定点问题,三角形外接圆与内切圆的关系,在求解过程中注意计算22.以直角坐标系的原点O为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线C1的极坐标方程为,曲线C2的参数方程是(为参数).(1)求曲线C1的直角坐标方程及曲线C2的普通方程;(2)已知点,直线l的参数方程为(t为参数),设直线l与曲线C1相交于P,Q两点,求的值.【答案】(1),;(2)【解析】(1)运用公式将极坐标方程转化为普通方程,运用消参法求出曲线普通方程(2)运用参数方法求出结果【详解】(1),得①,②相除得,将其代入②得又的普通方程为法二:设,则()∴的普通方程为(2)直线参数方程的标准形式为(为参数)代入得,【点睛】本题考查了极坐标方程转化为普通方程,运用公式代入即可化简出结果,在求长度问题时可以采用含参的方法求解。
湖北省武汉市四校联合体2018-2019学年高二(上)期末数学试题(解析版)

故选 A
【点睛】本题主要考查二项式定理的应用,熟记二项式定理即可求解,属于基础题型.
8.当双曲线
x2 m2 8
6
y2 2m
1 的焦距取得最小值时,其渐近线的斜率是(
)
A. 3 2
B. 2 3
C. 2 2 3
D. 1 2
【答案】B
【解析】 【分析】
先由题意求出 m 范围,再表示出焦距,进而可得出结果.
【解析】 【分析】 计算正方形二维码的面积,利用面积比等于对应的点数比,即可求出黑色部分的面积.
【详解】因为边长为 4 的正方形二维码面积为 42 16 ,设图中黑色部分的面积为 S ,
则 S 453 ,所以 S
【点睛】本题主要考查模拟方法估计概率,熟记模拟估计方法即可,属于基础题型.
与
b
的坐标,表示出
a
2b
与
2a
b
,再由向量共线的坐标表示即可求出结果.
【详解】因为
a
1,2,y
,b
x,1,2
,所以
a
2b
1
2x,4,y
4
,
2a
b
2
x,3,2 y
2
;
又
a
2b
2a
b
,
1 2x 所以 2 x
4 3
y4 2y 2
,解得
x
1 ,y 2
4
,因此
xy
2.
故选 B 【点睛】本题主要考查由向量共线的问题,根据向量的坐标运算求解即可,属于基础题型.
2018-2019 学年湖北省武汉市四校联合体高二(上)期末数学试卷(理
科)
一、选择题(本大题共 12 小题,共 60.0 分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年湖北省武汉市四校联合体高二(上)期末数学试卷(理)一、选择题(本大题共12小题,共60.0分)1.设某高中的男生体重(单位:)与身高(单位:cm)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是()A. 与有正的线性相关关系B. 回归直线过样本点的中心C. 若该高中某男生身高增加,则其体重约增加D. 若该高中某男生身高为,则可断定其体重必为【答案】D【】【分析】根据线性回归方程的意义,判断选项中的命题是否正确即可.【详解】根据与的线性回归方程为可得,,因此与有正的线性相关关系,故A正确;回归直线过样本点的中心, B正确;该高中某男生身高增加,预测其体重约增加,故C正确;若该高中某男生身高为,则预测其体重约为,故D错误.故选D【点睛】本题主要考查线性回归分析,熟记线性回归方程的定义以及回归分析的相关概念即可,属于基础题型.2.命题“使得”的否定是()A. 使得B. ,使得C. 使得D. ,使得【答案】B【】【分析】根据含有一个量词的命题的否定,直接可写出结果.【详解】命题“使得”的否定是“,使得”.故选B【点睛】本题主要考查特称命题的否定,只需改量词和结论即可,属于基础题型.3.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为()A. 11B. 10C. 9D. 8【答案】C【】【分析】计算正方形二维码的面积,利用面积比等于对应的点数比,即可求出黑色部分的面积.【详解】因为边长为4的正方形二维码面积为,设图中黑色部分的面积为,则,所以.故选C【点睛】本题主要考查模拟方法估计概率,熟记模拟估计方法即可,属于基础题型.4.抛物线y=4x2的焦点坐标是()A. (0,1)B. (1,0)C.D.【答案】C【】抛物线标准方程为,开口向上,故焦点坐标为,故选C.5.已知,且,则()A. B. 2 C. D.【答案】B【】【分析】先由与的坐标,表示出与,再由向量共线的坐标表示即可求出结果.【详解】因为,所以,;又,所以,解得,因此.故选B【点睛】本题主要考查由向量共线的问题,根据向量的坐标运算求解即可,属于基础题型.6.执行如图所示的程序框图,若输入,则输出的的值为()A. 27B. 56C. 113D. 226【答案】C【】【分析】按照程序框图,逐步只需即可得出结果.【详解】初始值为,第一步:,进入循环;第二步:,,进入循环;第三步:,,进入循环;第四步:,,进入循环;第五步:,,结束循环,输出.故选C【点睛】本题主要考查程序框图,分析框图的作用,逐步执行即可,属于基础题型.7.若且,则实数的值为()A. 1或B.C.D. 1【答案】A【】【分析】分别令和,即可结合题中条件,即可求出结果.【详解】因为令,则;令则,又,所以,即,因此,解得或.故选A【点睛】本题主要考查二项式定理的应用,熟记二项式定理即可求解,属于基础题型.8.当双曲线的焦距取得最小值时,其渐近线的斜率是()A. B. C. D.【答案】B【】【分析】先由题意求出范围,再表示出焦距,进而可得出结果.【详解】因为表示双曲线,所以,解得;又焦距为,当且仅当时,取最小值,此时双曲线方程为,因此渐近线的斜率为.故选B【点睛】本题主要考查双曲线的简单性质,熟记双曲线性质即可,属于基础题型.9.下列说法中正确的是()A. 若事件A与事件B是互斥事件,则B. 若事件A与事件B满足条件:,则事件A与事件B是对立事件C. 一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件D. 把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件【答案】D【】【分析】由互斥事件的概念可判断A,D;根据对立事件的概念可判断B,C.【详解】不能同时发生的事件称为互斥事件,故D正确;互斥的两个事件的并事件不一定包含所有情况,因此若事件A与事件B是互斥事件,则概率之和不一定等于1,所有A错;交事件为不可能事件,并事件为必然事件的两个事件互为对立事件;对于B选项,事件A与事件B 满足条件:,但A与B的交事件不一定为不可能事件,所有B错;C 中事件“至少有一次中靶”与事件“至多有一次中靶”都包含“有一次中靶”,交事件不是不可能事件,所有C错.故选D【点睛】本题主要考查互斥事件,熟记概念即可,属于基础题型.10.设抛物线与椭圆相交于两点,若为抛物线的焦点,则的面积为()A. B. C. D.【答案】B【】【分析】由抛物线与椭圆方程联立,求出两点坐标,得出长度,进而可求出结果.【详解】由得,解得(舍)或,所以,即,,因此,又为抛物线的焦点,所以,所以.故选B【点睛】本题主要考查圆锥曲线的性质,联立抛物线与椭圆方程,即可求解,属于基础题型.11.空间四点共面,但任意三点不共线,若为该平面外一点且,则实数的值为()A. B. C. D.【答案】A【】【分析】根据空间中四点共面的充要条件,即可求出结果.【详解】因为空间四点共面,但任意三点不共线,对于该平面外一点都有,所以,解得.故选A【点睛】本题主要考查空间向量,熟记四点共面的充要条件,即可求出结果,属于常考题型.12.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为,且两条曲线在第一象限的交点为,是以为底边的等腰三角形.若,椭圆与双曲线的离心率分别为、,则的取值范围是()A. B. C. D.【答案】B【】【分析】先设椭圆与双曲线的方程为,,再由题意求出与的关系,以及求出的范围,进而可求出结果.【详解】设椭圆与双曲线的标准方程为,,因为是以为底边的等腰三角形,,所以,即,再由三角形的两边之和大于第三边可得,即,所以有;因此,由离心率公式可得,,又因为,所以,因此;令,则,设,,则在上恒成立,所以在上单调递增,因此.故选B【点睛】本题主要考查椭圆与双曲线离心率的问题,熟记椭圆与双曲线的性质即可,属于常考题型.二、填空题(本大题共4小题,共20.0分)13.甲、乙两位同学的5次考试成绩如茎叶图所示,则成绩较稳定的那位学生成绩的方差为______.【答案】2【】【分析】分别求出甲乙两位同学的方差,即可得出结果.【详解】由茎叶图可得:甲的平均成绩为,所以方差为;乙的平均成绩为,所以方差为;因此,所以甲稳定,方差为2.故答案为2【点睛】本题主要考查方差的计算,熟记公式即可,属于基础题型.14.已知为坐标原点,椭圆上的点到左焦点的距离为4,为的中点,则的值等于______.【答案】3【】【分析】连结,易得为三角形的中位线,进而可求出结果.【详解】如图所示,连结,因为为的中点,且为坐标原点,所以,由椭圆定义可得,又,所以,因此.故答案为3【点睛】本题主要考查椭圆的定义,熟记定义即可求解,属于常考题型.15.甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是____________(用数字作答).【答案】【】试题分析:对于6个台阶上每一个只站一人,有种;若有一个台阶有2人,另一个是1人,则共有种,所以不同的站法种数是种.考点:排列组合的应用.16.在棱长为的正方体中,是棱的中点,是侧面内的动点,且平面,则点形成的轨迹的长度为______.【答案】【】【分析】取中点,连结,先由面面平行的判定定理证明平面平面,进而即可求出结果.【详解】如图所示,取中点,连结,则有,又正方体中,所以;因为平面,平面,所以平面;又是棱的中点,所以,因为平面,平面,所以平面;又平面,平面且,所以平面平面;因为平面,所以点轨迹为线段,由题意易得.故答案为【点睛】本题主要考查立体几何的问题,熟记面面平行的判定即可求解,属于常考题型.三、解答题(本大题共6小题,共70.0分)17.已知命题;命题函数在区间上为减函数.(1)若命题“”为真命题,“”为假命题,求实数的取值集合;(2)若集合,},是的充分不必要条件,求实数的取值范围.【答案】(1)[0,1] ;(2)[1,+∞).【】【分析】(1)根据命题“(¬p)∨q”为真命题,“(¬p)∧q”为假命题得到p,q命题真假性相同,然后进行求解即可.(2)求出结合A,B的等价条件,结合充分条件和必要条件的定义转化为集合的子集关系进行求解即可.【详解】解:(1)若命题“”为真命题,“”为假命题,则,一个为真命题,一个为假命题,即,同时为真命题或同时为假命题,若,同时为真命题,则当时,不等式等价为,不满足条件.当时,要使不等式恒成立,则,得,即;若函数在区间上为减函数,则,即,若,同时为真命题,则,此时无解若,同时为假命题,则,得.即实数的取值范围是.(2),,若是的充分不必要条件,则A B,即或(舍)即实数的取值范围是.【点睛】本题主要考查充分条件和必要条件的应用以及复合命题真假关系的应用,根据条件转化为集合关系是解决本题的关键.18.我国是一个严重缺水的国家,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行居民生活用水定额管理,即确定一个居民用水量标准,使得的居民生活用水不超过这个标准.在本市居民中随机抽取的户家庭某年的月均用水量(单位:吨),通过数据分析得到如图所示的频率分布直方图:(1)求的值,并估计全市所有家庭的月平均用水量;(2)如果我们称为这组数据中分位数,那么这组数据中分位数是多少?(3)在用水量位于区间的四类家庭中按照分层抽样的方法抽取人参加由政府组织的一个听证会(每个家庭有个代表参会),在听证会上又在这个人中任选两人发言,其中至少有一人的家庭用水量超过两吨的概率是多少?【答案】(1),;平均用水量约为;(2);(3).【】【分析】(1)由频率分布直方图的性质能求出a;由频率分布直方图得:区间在内的频率为,由此能求出.根据求平均数公式求得平均用水量.(2)区间在的频率为,区间在的频率为,由此能求出这组数据中分位数.(3)家庭用水量超过两吨的抽取,在听证会上又在这个人中任选两人发言,基本事件总数,其中至少有一人的家庭用水量超过两吨的对立事件是两人的家庭用水量都不超过两吨,由此能求出其中至少有一人的家庭用水量超过两吨的概率.【详解】解:(1)由频率分布直方图得:,解得.由频率分布直方图得:区间在内的频率为:,计划在本市实行居民生活用水定额管理,即确定一个居民用水量标准,使得的居民生活用水不超过这个标准,.全市所有家庭的月平均用水量约为.(2)区间在的频率为:,区间在的频率为,这组数据中分位数是:.(3)在用水量位于区间的四类家庭中按照分层抽样的方法抽取人参加由政府组织的一个听证会(每个家庭有个代表参会),家庭用水量超过两吨的抽取:,在听证会上又在这个人中任选两人发言,基本事件总数,其中至少有一人的家庭用水量超过两吨的对立事件是两人的家庭用水量都不超过两吨,其中至少有一人的家庭用水量超过两吨的概率是:.【点睛】本题考查频率分布直方图、分层抽样,概率等基础知识,考查运算求解能力,是基础题.19.如图所示的三角形表,最早出现在我国南宋数学家杨辉在年所著的《详解九章算术》一书中,我们称之为“杨辉三角”.若等比数列的首项是1,公比是,将杨辉三角的第行的第1个数乘以,第2个数乘以,……,第个数乘以后,这一行的所有数字之和记作.(1)求的值;(2)当时,求展开式中含x项的系数.【答案】(1)266;(2)-768.【】【分析】(1)由题意写出)计算公式,求出即可;(2)把代入的计算公式,利用二项式展开式的定义求展开式中含的系数.【详解】解:(1)由题意知,;(2)当时,,展开式中含x项的系数为.【点睛】本题考查了二项式展开式定理的应用问题,也考查了等比数列的应用问题,是中档题.20.已知抛物线上不同的三点,为抛物线的焦点,且成等差数列,则当的垂真平分线与轴交于点时,求点的坐标.【答案】或【】【分析】设出点,,,根据,,成等差数列得出,利用定义求出直线的斜率,再求出的中点,写出的垂直平分线方程,从而求得点的坐标.【详解】解:设点,,,由||,||,||成等差数列,则,即,直线的斜率为,;设中点为,则线段的垂直平分线方程为,令,得,,代入得,则点的坐标为或.【点睛】本题考查了抛物线的定义,也考查了等差数列的应用问题,属于常考题型.21. (本小题满分13分)如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。