等腰三角形经典例题整理
(完整版)等腰三角形典型例题

等腰三角形1.如图,已知点C为线段AB上一点,和都是等边三角形,AN、BM相交于点O,AN、CM交于点P,BM、CN交于点Q.(1)求证:.(2)求的度数.(3)求证:.【分析】(1)欲证,只需证明它所在的两个三角形全等.(2)的度数可用的外角来求,但要注意全等所得到这一条件的使用.(3)要,则,应该为一个等边三角形,可证明≌,从而得到.(1)证明:和都是等边三角形,,,,,即.在和中,≌,.(2)由(1)知,≌,.,即.(3)在和中,≌,,.又,,即,.【点拨】(1)要证明线段相等(或角相等),找它们所在的三角形全等.(2)本题的图形规律:共一个顶点的两个等边三角形构成的图形中,存在一对或多对绕公共点旋转变换的三角形全等.2.如图,在中,,,的平分线AM的长15,求BC的长.【分析】由AM平分,,可得,,则,所以.在中,,可得,由,可求出BC的长.解:在中,,,.AM平分,,,.在中,,.【点拨】含30度的直角三角形的性质常与直角三角形的两个锐角互余一起运用,此性质是求线段长度和证明线段倍分问题的重要方法.3.如图,,,,.求证:.【分析】根据已知“,”联想到等腰三角形“三线合一”,通过辅助线将证明转化为证明.证明:延长CE、BA交于点F.,.在和中,≌,,即.,.在和中,≌,,.【点拨】(1)利用等腰三角形“三线合一”不仅能得到线段相等、角相等,而且能得到线段的倍半关系.(2)联系等腰三角形“三线合一”作顶角平分线或底边的中线或底边的高线是常用的辅助线.4.如图,△ABC中,AB=AC,在AB边上取点D,在AC延长线上取点E,使BD=CE,连结DE交BC于G.求证:DG=GE.【分析】由于△ABC是等腰三角形,D为AB上一点,E为AC延长线上一点,故可考虑过D或E作腰AC或AB的平行线,通过构造等腰三角形,可获得结论.证法1:过D作DF∥AC,交BC于F(如图).∴∠DFB=∠ACB.又∵AB=AC,∴∠B=∠ACB.∴∠B=∠DFB.∴DB=DF.∵CE=BD(已知),∴DF=CE.又∠DGF=∠CGE,∠GDF=∠E,∴△DFG≌△ECG(AAS).∴DG=GE.证法2:过E作EM∥AB交BC延长线于M.∴∠B=∠M.又∵AB=AC,∴∠B=∠ACB.又∠ACB=∠ECM,∴∠M=∠ECM.∴EC=EM.∵CE=BD(已知),∴EM=BD.在△BDG与△MEG中,∴△BDG≌△MEG(AAS).∴DG=GE.【点拨】(1)本题的证明方法很多,其思路是通过利用等腰三角形ABC的底角相等并借助BD=CE条件,构造新的等腰三角形来寻求结论.(2)本题在推证含DG、GE为对应边的两个三角形全等时,寻找等边是一个难点,也是本题最易出错的地方,主要表现为把BD=CE这一条件直接作为三角形全等时的对应边.5.已知:如图,△ABC中,AB=AC,∠A=36°,仿照图(1),请你再设计两种不同的方法,将△ABC分割成3个三角形,使得每个三角形都是等腰三角形(如图(1)).(2)图(2)(3)供画图用,作图工具不限,不要求写画法,不要求证明;要求标出所分得的每个等腰三角形三个内角的度数).【分析】由于所给三角形是一个含36°的等腰三角形,因而将它分成三个等腰三角形时仍只需考虑以36°,72°,108°等为内角的等腰三角形即可.解:本题显然应有多种结果,现提供3种,以供同学们参考,如图中(2)、(3)、(4);【点拨】像本例这种图形的分割问题的求解,一方面应把握原图形的特征,借助经验予以解决,另一方面还应大胆尝试,在操作中获得结果.6.如图,在一个宽度为的小巷内,一个梯子的长度为b,梯子的脚位于P点.将梯子的顶端放于一堵墙上Q点时,Q点离地面的高度为c,此时梯子与地面的夹角为.将梯子顶端放于对面一堵墙上R点,离开地面的高度为d,此时梯子与地面的夹角为.可知,为什么?【分析】由,,可知,又,可知为等边三角形,则,可推得.证明:连接RQ、RB.,,.又,为等边三角形,.在中,,,,,在线段PQ的垂直平分线上,.在中,,.在中,,,,即。
等腰三角形 典型题【重点】

等腰三角形典型题一、求度数类题目(主要以等边对等角、等角对等边为设未知数依据,将所有角用按x的未知数表示后,再找等量关系)1. 如图,△ABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数。
2.如图,CA=CB,DF=DB,AE=AD,求∠A的度数3. 如图,△ABC中,AB=AC,D在BC上,DE⊥AB于E,DF⊥BC交AC于点F,若∠EDF=70°,求∠AFD的度数4. 如图,△ABC中,AB=AC,BC=BD=ED=EA,求∠A的度数CDC5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°, 在AC 上取点E ,使AE=AD ,求∠EDC 的度数6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1, 求∠ABC 的度数7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AECBADEP DD9. 如图,△DEF中,∠EDF=2∠E,FA⊥DE于点A,问:DF、AD、AE间有什么样的大小关系10. 如图,△ABC中,∠B=60°,角平分线AD、CE交于点O求证:AE+CD=AC11. 如图,△ABC中,AB=AC, ∠A=100°,BD平分∠ABC,求证:BC=BD+AD12. 如图,△ABC中,AB=AC,D为△ABC外一点,且∠ABD=∠ACD =60°求证:CD=AB-BDADF EBOABCDEFACFABCEF13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线求证:CD=21CE14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED15. 如图,△ABC 中,AB=AC,BE=CF,EF 交BC 于点G 求证:EG=FG16. 如图,△ABC 中,∠ABC=2∠C ,AD 是BC 边上的高,B 到点E ,使BE=BD 求证:AF=FCAB DFECE CA BDE 1 2FF17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且AE=BE 求证:AH=2BD18. 如图,△ABC 中,AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30° 求证:AD=DC19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE=BD 求证:EC=ED20. 如图,四边形ABCD 中,∠BAD+∠BCD=180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H 求证:EH ⊥FHBDABBCDFADCF HG 12 M二、等腰三角形的性质及判定一、选择题1.等腰直角三角形的一个底角的度数是( )A .30°B .45°C .60°D .90°2、如图,AB AC BD BC ==,,若40A ∠=,则ABD ∠的度数是( )A .20B .30C .35D .403.如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么∠DBF =( )A .62ºB .38ºC .28ºD .26º4、如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,则∠A 等于( )A 、30oB 、40oC 、45oD 、36o5、如图,已知O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70°,则∠DAO+∠DCO 的大小是( ) A .70° B .110 C .140° D .150°6.如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( )A .32B .23C .12D .347、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cmB .12cmC .15cmD .12cm 或15cm二、填空题8. 如图,在△ABC 中,AB =AC ,与∠BAC 相邻的外角为80°,则∠B =____________.AD CPB60°BCOA9.如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连结DM . 在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可)10.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于一点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:①AD=BE ; ②PQ ∥AE ; ③AP=BQ ;④DE=DP ;⑤∠AOB=60°.恒成立的有________(把你认为正确的序号都填上).11、一个等腰三角形的一个外角等于110︒,则这个三角形的三个角应该为 。
专题03 等腰(直角)三角形中动点问题(老师版)

专题3等腰(直角)三角形中动点问题【典型例题】1.(2021·黑龙江集贤·八年级期末)如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线分别交AC、AB边于点E、F.若点D为DC边的中点,点M为线段EF上一动点,则CDM周长的最小值为___.【答案】13.5【解析】【分析】连接MA、AD,易得MA=MC,则△CMD的周长为:MC+MD+CD=MA+MD+CD≥AD+CD,当M点在线段AD上时,△CMD的周长最小,再由面积可求得AD的长,从而可求得周长的最小值.【详解】如图,连接MA、AD∵EF垂直平分线段AC∴MA=MC∴△CMD的周长=MC+MD+CD=MA+MD+CD≥AD+CD∵点D为DC边的中点,BC=3∴1 1.52CD BC==∵AB=AC ∴AD⊥BC∴118 2BC AD⨯=即1318 2AD⨯=∴AD=12∴AD+CD=12+1.5=13.5即△MCD的周长的最小值为13.5故答案为:13.5【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质定理,三角形的面积,两点之间线段最短等知识,关键是利用线段的垂直平分线的性质定理作辅助线MA,把MC+MD的最小值问题转化为两点间线段最短来解决.【专题训练】一、填空题1.(2022·江苏昆山·八年级期末)如图,∠ABC=30°,AB=6,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是以AB为底的等腰三角形时,t的值为______秒.【答案】【解析】【分析】过点P作PD⊥AB于点D,根据等腰三角形有性质得到BD=3,再根据30度角的直角三角形的性质结合勾股定理即可求解.【详解】解:过点P作PD⊥AB于点D,∵△ABP是以AB为底的等腰三角形,即BP=PA,∴BD=DA=12AB=3,∵∠ABC=30°,∴BP=2PD,即12BP=PD,∵BP2-PD2=BD2,∴BP2-14BP2=32,解得:BP=∵点P的运动速度是每秒1个单位长度,∴t的值为故答案为:【点睛】本题考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理等知识点,解答本题的关键是明确题意,找出所求问题需要的条件.2.(2021·浙江·诸暨市暨阳初级中学八年级期中)如图∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=6,动点C从点A出发,以每秒1个单位沿射线AN运动,当运动时间t是_______秒时,△ABC是直角三角形.【答案】3或12【解析】【分析】分∠ACB=90°和∠ABC=90°两种情况,根据含30°角的直角三角形的性质求出AC,再求出答案即可.【详解】解:如图:当△ABC是以∠ACB=90°的直角三角形时,∵∠MAN=60°,∴∠ABC=30°,∴AC=13 2AB=,∴运动时间t=3311AC==秒,当△ABC是以∠ABC=90°的直角三角形时,∵∠MAN=60°,∴∠ACB=30°,∴AC=212AB=,∴运动时间t=121211AC==秒,当运动时间t是3或12秒时,△ABC是直角三角形.故答案为:3或12【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能熟记含30°角的直角三角形的性质是解此题的关键.3.(2022·新疆·乌鲁木齐市第四中学八年级期末)如图,在边长为6,面积为ABC中,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_______【答案】【解析】【分析】由等边三角形的对称性得到MC=BM,再利用垂线段最段解题.【详解】解:过点C 作CN AB ⊥于点N ,BD Q 平分∠BAC ,△ABC 为等边三角形,BM MC∴=∴BM +MN MC MN =+,当CN AB ⊥时,=MC MN CN +最小等边△ABC 面积为6,CN ∴故答案为:【点睛】本题考查轴对称—最短路径问题、等边三角形的性质等知识,是重要考点,掌握相关知识是解题关键.4.(2021·福建省罗源第二中学八年级期中)如图,在等腰△ABC 中,AB =AC ,∠BAC =120°,BC =30cm ,一动点P 从B 向C 以每秒2cm 的速度移动,当P 点移动____________秒时,PA 与△ABC 的腰垂直.【答案】5或10【解析】【分析】根据等腰三角形性质求出∠B =∠C =30°,分PA ⊥AC 和PA ⊥AB 两种情况分类讨论,得到BP =10cm 或BP =20cm ,即可求出点P 移动的时间.【详解】解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°.如图①,当PA ⊥AC 时,∵∠C =30°.∴PC =2AP ,∠APC =60°,∴∠B =∠BAP =30°,∴AP =BP ,∴PC =2BP ,∴BP =13BC =13×30=10cm ,∴P 点移动了10÷2=5(秒);如图②当PA⊥AB时,∵∠B=30°.∴PB=2BP,∠APB=60°,∴∠C=∠CAP=30°,∴AP=CP,∴BP=2CP,∴BP=23BC=23×30=20cm,∴P点移动了20÷2=10(秒).故答案为:5或10【点睛】本题考查了等腰三角形的性质与判定,直角三角形性质等知识,熟知相关定理,根据条件分类讨论是解题关键5.(2022·福建省泉州实验中学八年级期末)如图,在等腰△ABC中,∠BAC=30°,AB=AC,BC=4,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,△PQR周长的最小值是______.【答案】423【解析】【分析】过BC的中点P作AB,AC的对称点M,N,连接MN交AB与Q,交AC于R,则此时△PQR周长最小,求出MQ,RQ,RN即可解决问题.【详解】过点P作AB,AC的对称点M,N,连接MN交AB于Q,交AC于R,设AP交MN于点D,则PQ MQ =,PR RN =,∴PQR 周长为PQ QR PR MQ QR EN MN ++=++≥,当,,,M Q R N 四点共线时,即当点P 是BC 的中点时,PQR 的周长最小,如图∵30BAC ∠=︒,∴75B C ∠=∠=︒,150MPN ∠=︒,∴15M N ∠=∠=︒,∴75MQB PQB B ∠=∠=∠=︒,∴MN BC ∥,2PQ PB ==,同理2PR PC ==,∵⊥AP BC ,∴AP MN ⊥.DP MN∴⊥PQ PR =DQ DR∴=∵180757530PQR ∠=︒-︒-︒=︒,∴Rt PDQ 中,112QD PQ ==∴==2QR DQ =⨯=,∴PQR 周长的最小值是22PQ QR PR ++=+=4+.故答案为:4+【点睛】本题是三角形综合题,考查了轴对称的性质,等边三角形的性质,等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.6.(2022·辽宁铁西·八年级期末)同学们,我们在今后的学习中会学到这个定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图,在Rt △ABC 中,∠ACB =90°,若∠ABC =30°,则12AC AB =.问题:在Rt △ABC ,∠ACB =90°,∠ABC =30°,AC D 是边BC 的中点,点E 是斜边AB 上的动点,连接DE ,把△BDE 沿直线DE 折叠,点B 的对应点为点F .当直线DF ⊥AB 时,AE 的长为_____.【答案】2或2【解析】【分析】如图1所示,设DF 与AB 交点为G ,先求出AB ==3BC ,由D 是BC 的中点,可以得到1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,即可得到1324DG BD ==,1122EG EF BE ==,BG ==,由此即可求出AE 的长;如图2所示,同理可得1324DG BD ==,4BG ==,1122EG EF BE ==,则32BE BG GE BG =+==,AE AB BE =-=【详解】解:如图1所示,设DF 与AB 交点为G ,∵∠ABC =30°,∠ACB =90°,∴2AB AC ==∴BC =,∵D 是BC 的中点,∴1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,∵DF ⊥AB ,∴∠DGB =∠FGB =90°,∴1324DG BD ==,1122EG EF BE ==,∴4BG ==,∴2332BE BG ==,∴AE AB BE =-=如图2所示,延长FD 与AB 交于点G ,同理可求出1324DG BD ==,4BG ==,1122EG EF BE ==,∴22BE BG GE BG =+==,∴2AE AB BE =-=,故答案为:2【点睛】本题主要考查了含30度角的直角三角形的性质,勾股定理,旋转的性质,熟练掌握含30度角的直角三角形的性质是解题的关键.7.(2021·全国·八年级专题练习)如图,60BOC ∠=︒,点A 是BO 延长线上的一点,10cm OA =,动点P 从点A 出发沿AB 以3cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P Q ,同时出发,用(s)t 表示移动的时间,当t =_________s 时,POQ △是等腰三角形;当t =_________s 时,POQ △是直角三角形.【答案】52或54或10【解析】【分析】根据POQ ∆是等腰三角形,分两种情况进行讨论:点P 在AO 上,或点P 在BO 上;根据POQ ∆是直角三角形,分两种情况进行讨论:PQ AB ⊥,或PQ OC ⊥,据此进行计算即可.【详解】解:如图,当PO QO =时,POQ ∆是等腰三角形,103PO AO AP t =-=-,OQ t =,∴当PO QO =时,103t t -=,解得52t =;如图,当PO QO =时,POQ ∆是等腰三角形,310PO AP AO t =-=-,OQ t =,∴当PO QO =时,310t t -=,解得5t =;如图,当PQ AB ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2(310)t t =⨯-,解得4t =;如图,当PQ OC ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2310t t =-,解得:t =10.故答案为:52或5;4或10.【点睛】本题主要考查了等腰三角形的性质以及直角三角形的性质,解决问题的关键是进行分类讨论,分类时注意不能遗漏,也不能重复.二、解答题8.(2021·浙江余杭·八年级期中)如图,已知在ABC 中,90B ∠=︒,10AC =,6BC =,若动点P 从点B 开始,按B A C B →→→的路径运动,且速度为每秒2个单位长度,设出发的时间为t 秒.(1)出发2秒后,求CP 的长.(2)出发几秒钟后,CP 恰好平分ABC 的周长.(3)当t 为何值时,BCP 为等腰三角形?【答案】(1)PC 52(2)出发3秒钟后,CP 恰好平分△ABC 的周长(3)t =3或5.4或6或6.5时,△BCP 为等腰三角形【解析】【分析】(1)勾股定理求得AB 的长,进而根据速度求得出发2秒后BP 的长,Rt BCP △中勾股定理求解即可;(2)由于CP 恰好平分ABC 的周长,则P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意列出一元一次方程,解方程求解即可;(3)①当P 在AB 上时,若BP =BC 时,②当P 在AC 上时,若BP =BC 时,③当P 在AC 上时,若CB =CP 时,④当P 在AB 上时,若PC =PB 时,根据题意列出一元一次方程解方程求解即可(1)由∠B =90°,AC =10,BC =6,∴AB =8,∵P 从点B 开始,按B →A →C →B ,且速度为2,∴出发2秒后,则BP =4,AP =6,∵∠B =90°,∴在Rt BCP △中,由勾股定理得PC 22226452BP BC +=+=;(2)P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意可得,6+2t =10+8-2t ;解得t =3∴出发3秒钟后,CP 恰好平分△ABC 的周长(3)①当P 在AB 上时,若BP =BC 时,得到2t =6;则t =3,②当P 在AC 上时,若BP =BC 时,过点B 作BD AC ⊥,则68 4.810AB BC BD AB ⨯⨯===在Rt BDP △中,22226 4.8 3.6PD PD BD =-=-=在Rt ADB 中,22228 4.8 6.4AD AB BD =-=-=8 6.4 3.610.8BA AP BA AD PD ∴+=+-=+-=即210.8t =解得 5.4t =③当P 在AC 上时,若CB =CP 时,810612BA PA BA AC PC +=+-=+-=即212t =解得6t =④当P 在AC 上时,若PC =PB 时,15PA AB ==8513BA AP ∴+=+=得到2t=6;则t=6.5.综上可得t=3或5.4或6或6.5时,△BCP为等腰三角形.【点睛】本题考查了勾股定理,一元一次方程的应用,等腰三角形的性质与判定,分类讨论是解题的关键.9.(2022·吉林·八年级期末)如图,△ABC是等腰直角三角形,∠ACB=90°,AB=6.动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动.点P出发后,连接CP,以CP为直角边向右作等腰直角三角形CDP,使∠DCP=90°,连接PD,BD.设点P的运动时间为t秒.(1)△ABC的AB边上高为;(2)求BP的长(用含t的式子表示);(3)就图中情形求证:△ACP≌△BCD;(4)当BP:BD=1:2时,直接写出t的值.【答案】(1)3(2)当0<t≤3时,PB=6-2t;当t>3时,PB=2t-6;(3)见解析(4)t的值为2或6.【解析】【分析】(1)根据等腰直角三角形的性质解答即可;(2)根据两种情况,利用线段之间关系得出代数式即可;(3)根据SAS证明△ACP与△CBD全等即可;(4)利用全等三角形的性质解得即可.(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,AB=6,∴△ABC的AB边上高=12AB=3,故答案为:3;(2)解:∵AB=6,动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动,∴点P在线段AB上运动的时间为62=3(秒),当0<t≤3时,PB=6-2t,当t>3时,PB=2t-6;(3)证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∵∠PCD=90°,CP=CD,∴∠ACP+∠PCB=90°,∠PCB+∠BCD=90°,∴∠ACP=∠BCD,在△ACP与△CBD中,AC BC ACP BCD CP CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△CBD (SAS );(4)解:∵△ACP ≌△CBD ,∴AP =BD ,当BP :BD =1:2,即BD =2BP 时,当0<t ≤3时,2t =2(6-2t ),解得:t =2;当BP :BD =1:2,即BD =2BP 时,当t >3时,2t =2(2t -6),解得:t =6,综上所述,t 的值为2或6.【点睛】本题是三角形的综合题,关键是根据等腰直角三角形的性质和全等三角形的判定和性质解答.10.(2022·福建·厦门一中八年级期末)在锐角△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D.(1)如图1,过点B 作BG ⊥AC 于点G ,求证:AC =BF ;(2)动点P 从点D 出发,沿射线DB 运动,连接AP ,过点A 作AQ ⊥AP ,且满足AP AQ =.①如图2,当点P 在线线段BD 上时,连接PQ 分别交AD 、AC 于点M 、N .请问是否存在某一时刻使得△APM 和△AQN 成轴对称,若有,求此刻∠APD 的大小;若没有,请说明理由.②如图3,连接BQ ,交直线AD 与点F ,当点P 在线段BD 上时,试猜想BP 和DF 的数量关系并证明;当点P 在DB 的延长线上时,若27AD FD =,请直接写出PB BD 的值.【答案】(1)证明过程见解析.(2)①存在某一时刻使得△APM 和△AQN 成轴对称,∠APD =30°,理由见解析.②BP =2DF ,47PB BD =【解析】【分析】(1)根据已知条件,证明△BDF 和△ADC 全等,即可得出AC =BF .(2)①因为∠C =60°在Rt △ABC 中∠CAD =30°,∠PAQ =90°,由对称的性质可知∠PAD =∠QAC =30°,所以可以得出∠APD =60°;②过Q 作QE ⊥AD ,交AD 与点E ,可证△APD ≌△QAE ,得出AE =PD ,再证△APD ≌△QAE ,得出EF =DF ,再通过等量代换即可.(1)证明:∵AD ⊥BC∴∠ADB =∠ADC =90°又∵∠B =45°∴△ABD 是等腰直角三角形∴AD =BD∵BG ⊥AC∴∠BGC =90°又∵∠C =60°∴∠DAC =90°-∠C =90°-60°=30°∠FBD =90°-∠C =90°-60°=30°∴∠DAC =∠FBD在△BDF 和△ADC 中,FBD CDA BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC ∴AC =BF(2)①存在某一时刻使得△APM 和△AQN 成轴对称∵AQ ⊥AP∴∠QAP =90°由(1)的证明知∠DAC =30°,根据对称的性质,得∠PAD =∠QAC =2QAP CAD ∠-∠=90︒︒-302=30°∵∠ADP =90°∴∠APD =90°-∠PAD =90°-30°=60°②BP =2DF理由如下:如图4所示,过Q 作QE ⊥AD ,交AD 与点E ,那么∠AEQ =∠FEQ =90°∴∠AQE +∠QAE =90°又∵∠PAD +∠QAE =90°∴∠AQE =∠PAD在△APD 和△QAE 中,AQE PAD AEQ PDA AQ AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△QAE ∴AE =PD ;AD =QE∴DE =BP又∵AD =BD∴BD =QE在△QEF 和△BDF 中,QEF BDF EFQ DFB EQ DB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△QEF ≌△BDF∴EF =DF∴BP =2DF当点P 在DB 的延长线上时,如下图所示,由上述证明过程可知PB =2DF ,BD =AD又已知27AD FD∴DF =27AD∴PB =2×27BD =47BD ∴PB BD =47【点睛】本题考查了三角形全等的判定与性质,解题的关键是通过适当的作辅助线找等量关系从而得出三角形全等,再由全等的性质找出线段的关系,本题是一道压轴题,比较难.11.(2022·北京顺义·八年级期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC 中,AB =AC ,AB BC的值为△ABC 的正度.已知:在△ABC 中,AB =AC ,若D 是△ABC 边上的动点(D 与A ,B ,C 不重合).(1)若∠A =90°,则△ABC 的正度为;(2)在图1,当点D 在腰AB 上(D 与A 、B 不重合)时,请用尺规作出等腰△ACD ,保留作图痕迹;若△ACD的正度是2,求∠A 的度数.(3)若∠A 是钝角,如图2,△ABC 的正度为35,△ABC 的周长为22,是否存在点D ,使△ACD 具有正度?若存在,求出△ACD 的正度;若不存在,说明理由.【答案】(1)22(2)图见解析,∠A =45°(335.【解析】【分析】(1)当∠A=90°,△ABC是等腰直角三角形,故可求解;(2)根据△ACD的正度是22,可得△ACD是以AC为底的等腰直角三角形,故可作图;(3)由△ABC的正度为35,周长为22,求出△ABC的三条边的长,然后分两种情况作图讨论即可求解.【详解】(1)∵∠A=90°,则△ABC是等腰直角三角形∴AB=AC∵AB2+AC2=BC2∴BC∴△ABC2故答案为:2 2;(2)∵△ACD1)可得△ACD是以AC为底的等腰直角三角形故作CD⊥AB于D点,如图,△ACD即为所求;∵△ACD是以AC为底的等腰直角三角形∴∠A=45°;(3)存在∵△ABC的正度为3 5,∴ABBC=35,设:AB=3x,BC=5x,则AC=3x,∵△ABC的周长为22,∴AB+BC+AC=22,即:3x+5x+3x=22,∴x=2,∴AB=3x=6,BC=5x=10,AC=3x=6,分两种情况:①当AC=CD=6时,如图过点A 作AE ⊥BC 于点E ,∵AB =AC ,∴BE =CE =12BC =5,∵CD =6,∴DE =CD −CE =1,在Rt △ACE 中,由勾股定理得:AE =在Rt △AED 中,由勾股定理得:AD =∴△ACD 的正度=AC AD =②当AD =CD 时,如图由①可知:BE =5,AE ,∵AD =CD ,∴DE =CE −CD =5−AD ,在Rt △ADE 中,由勾股定理得:AD 2−DE 2=AE 2,即:AD 2−(5−AD )2=11,解得:AD =185,∴△ACD 的正度=185365AD AC ==.综上所述存在两个点D ,使△ABD 具有正度.△ABD 35.【点睛】此题考查了等腰三角形的性质,解题的关键是理解正度的含义、熟知勾股定理与等腰三角形的性质.12.(2022·北京西城·八年级期末)在ABC 中,120BAC ∠=︒,AB AC =,AD 为ABC 的中线,点E 是射线AD 上一动点,连接CE ,作60CEM ∠=︒,射线EM 与射线BA 交于点F .(1)如图1,当点E 与点D 重合时,求证:2AB AF =;(2)如图2,当点E 在线段AD 上,且与点A ,D 不重合时,①依题意,补全图形;②用等式表示线段AB ,AF ,AE 之间的数量关系,并证明.(3)当点E 在线段AD 的延长线上,且ED AD ≠时,直接写出用等式表示的线段AB ,AF ,AE 之间的数量关系.【答案】(1)见解析;(2)AB AF AE =+,证明见解析;(3)当AD ED >时,AB AF AE =+,当AD ED <时,AB AE AF=-【解析】【分析】(1)根据等腰三角形三线合一的性质得60BAD CAD ∠=∠=︒,90ADC ∠=︒,从而可得在Rt ADB 中,30B ∠=︒,进而即可求解;(2)画出图形,在线段AB 上取点G ,使EG EA =,再证明()BGE FAE ASA ≅,进而即可得到结论;(3)分两种情况:当AD ED >时,当AD ED <时,分别画出图形,证明()BHE FAE ASA ≅或()NEF AEC ASA ≅,进而即可得到结论.【详解】(1)∵AB AC =,∴ABC 是等腰三角形,∵120BAC ∠=︒,∴30B C ∠=∠=︒,18012060FAC ∠=︒-︒=︒,∵AD 为ABC 的中线,∴60BAD CAD ∠=∠=︒,90ADC ∠=︒,∴6060120DAF CAD FAC ∠=∠+∠=︒+︒=︒,∵60CEM ∠=︒,∴906030ADF ∠=︒-︒=︒,∴180(12030)30AFD ∠=︒-︒+︒=︒,∴AD AF =,在Rt ADB 中,30B ∠=︒,∴22AB AD AF ==;(2)AB AF AE =+,证明如下:如图2,在线段AB 上取点G ,使EG EA =,∵60BAC ∠=︒,∴AEG △是等边三角形,∴60AEG ∠=︒,120BGE FAE ∠=∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴EB EC =,BED CED ∠=∠,∴AEB AEC ∠=∠,即AEG GEB CEF AEF ∠+∠=∠+∠,∵60CEF AEG ∠=∠=︒,∴GEB AEF ∠=∠,在BGE △与FAE 中,GEB AEF EG EA BGE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BGE FAE ASA ≅,∴GB AF =,∴AB GB AG AF AE =+=+;(3)当AD ED >时,如图3所示:与(2)同理:在线段AB 上取点H ,使EH EA =,∵60BAD ∠=︒,∴AEH △是等边三角形,∴120BHE FAE ∠=∠=︒,60AEH ∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴BED CED ∠=∠,∵60CEF AEH ∠=∠=︒,∴HEB AEF ∠=∠,∴()BHE FAE ASA ≅,∴HB AF =,∴AB HB AH AF AE =+=+,当AD ED <时,如图4所示:在线段AB 的延长线上取点N ,使EN EA =,∵60BAD ∠=︒,∴AEN △是等边三角形,∴60AEN FNE ∠=∠=︒,∵60CEF AEN ∠=∠=︒∴NEF AEC ∠=∠,在NEF 与AEC △中,60FNE CAE EN EA NEF AEC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴()NEF AEC ASA ≅,∴NF AC AB ==,=,∴BN AF=-=-,∴AB AN BN AE AF∴AB AE AF=-.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.。
等腰三角形 典型例题

典型例题例题1 如图,P、Q是边BC上的两点,且,求的度数.分析由已知为等边三角形,故可求得它的外角的度数,又由等腰三角形的性质求得底角的度数.解(已知)∴(等边三角形三个角都为60°)∴(等边对等角)又(三角形的一个外角等于它不相邻的两个内角和)∴同理∴说明几何计算的目的通常是找量与量的关系,等腰三角形的两底角相等,等边三角形三内角均为60°,等腰三角形三线合一的性质等都是建立量与量的关系的依据.例题2 如图,在中,在CA的延长线上,是高.试说明EF与BC的位置关系.并说明理由.分析画出准确的图形,能看出,三角尺也能显示出有这样的关系,但这并不能作为理由.真正的理由应该用我们所学的知识去推理.结论是,从图中看EF、BC没有联系,但AD与BC是垂直的,只要说明,问题就解决了.解∴又为的一个外角∴∴∴∴∴说明(1)在同一三角形中,有边相等,要联想到角相等.(2)在这里AD起到“桥梁”的作用,有的题题目中没有现成的“桥梁”,还可以自己“制造”“桥梁”.拿本题来说,过点A画BC的平行线与EF相交,或者,过点E作BC的平行线与BA的延长线相交,也都可以作为“桥梁”.有兴趣的同学可以试一试.例题3 如图是我们最为熟悉的图形之一,这个图形可以看做是按照一定规则连结正五边形的顶点得到的,被称为正五角形.这个图形有几条对称轴?在这个图形中有哪些个等腰三角形?分析由这个图形与正五边形的关系知过点和B的直线,以及有类似特点的直线都是这个图形的对称轴.由于直线是图形的对称轴,所以图形沿直线进行翻折后,点与点重合,这使得线段与重合,线段与重合,可见与都是等腰三角形,利用同样的思路可以发现图中的其他等腰三角形.解这个图形有五条对称轴.在这个图形中共有十个等腰三角形,可以视为两组:;,以及说明如果你只发现了图中的五个三角形,请不要以“粗心”原谅自己,而应该感到自己从多角度观察、思考问题的意识不强,基本功还差.例题4 一个等腰三角形的周长为18cm,一边长为4cm,求其他两边的长.分析题目中给出“一边长为4”,究竟是腰长为4,还是底边长为4呢?都无法确定,也许这两种情况都有可能,所以应该分两种情况进行讨论.解若以4cm长的边为底边,设腰长为x cm,则 cm.若以4cm长的边为腰,设底边长为x,则 cm.,出现二边之和小于第三边的情况,所以以4cm长为腰不能组成三角形.故其他两边的长为7cm、7cm.说明(1)涉及等腰三角形的边的问题,在未指明腰和底的情况下,要分情况予以讨论.(2)凡涉及三角形三边的长时,一定要检查三边能否构成一个三角形。
等腰三角形经典习题(必看)

等腰三角形经典习题(必看)等腰三角形经典题(必看)以下是一些经典的等腰三角形题,希望能对你的研究有所帮助。
1. 判断等腰三角形给定一个三角形ABC,其中AB=AC。
你需要判断这个三角形是否为等腰三角形。
解答:如果角B等于角C,则该三角形为等腰三角形。
2. 求等腰三角形的周长已知一个等腰三角形ABC,其中AB=AC,且BC=8cm。
你需要求解这个等腰三角形的周长。
解答:由于AB=AC且BC=8cm,那么周长等于AB+AC+BC=2AB+BC=2(BC/2)+BC=BC+BC=2BC=2*8cm=16cm。
3. 求等腰三角形的面积已知一个等腰三角形ABC,其中AB=AC=10cm,且角BAC等于60度。
你需要求解这个等腰三角形的面积。
解答:由于AB=AC=10cm且角BAC等于60度,我们可以利用正弦定理来计算三角形的高。
设三角形的高为h,那么有sin60度=h/10cm,解得h=10cm*sin60度=10cm*sqrt(3)/2=5sqrt(3)cm。
等腰三角形的面积可以通过底边乘以高再除以2来计算,即面积=10cm*5sqrt(3)cm/2=25sqrt(3)cm²。
4. 求等腰三角形的顶角已知一个等腰三角形ABC,其中AB=AC=5cm,且BC=6cm。
你需要求解这个等腰三角形的顶角。
解答:由于AB=AC=5cm且BC=6cm,我们可以使用余弦定理来计算角BAC的大小。
设角BAC为x度,则有cosx=(5²+5²-6²)/(2*5*5)=19/25。
解得x=arccos(19/25)≈31.8度。
因此,等腰三角形的顶角大约为31.8度。
以上是一些关于等腰三角形的经典习题,希望对你的学习有所帮助。
如果你还有其他问题,请随时向我提问。
等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础巩固1、已知等腰三角形的一个内角为 80°,则它的另外两个内角分别是多少度?解:当 80°的角为顶角时,底角的度数为:(180° 80°)÷ 2 = 50°,所以另外两个内角分别是 50°,50°。
当 80°的角为底角时,顶角的度数为:180° 80°× 2 = 20°,所以另外两个内角分别是 80°,20°。
2、等腰三角形的两边长分别为 6 和 8,则其周长是多少?解:当腰长为 6 时,三边长分别为 6,6,8,因为 6 + 6>8,所以能组成三角形,此时周长为 6 + 6 + 8 = 20。
当腰长为 8 时,三边长分别为 8,8,6,因为 8 + 6>8,所以能组成三角形,此时周长为 8 + 8 + 6 = 22。
综上,其周长为 20 或 22。
3、一个等腰三角形的周长为 20,其中一边长为 8,求另外两边的长。
解:当 8 为腰长时,底边长为 20 8× 2 = 4,因为 8 + 4>8,所以能组成三角形,此时另外两边长分别为 8,4。
当 8 为底边时,腰长为(20 8)÷ 2 = 6,因为 6 + 6>8,所以能组成三角形,此时另外两边长分别为 6,6。
(二)能力提升1、等腰三角形一腰上的高与另一腰的夹角为 30°,则顶角的度数为多少?解:当等腰三角形为锐角三角形时,腰上的高与另一腰的夹角为30°,则顶角为 60°。
当等腰三角形为钝角三角形时,腰上的高与另一腰的夹角为 30°,则顶角的外角为 60°,所以顶角为 120°。
综上,顶角的度数为 60°或 120°。
2、如图,在△ABC 中,AB = AC,D 是 BC 边上的中点,∠B =30°,求∠1 和∠ADC 的度数。
等腰三角形试题参考模板范本

等腰三角形 姓名一、填空题(16×2′=32′)1、已知等腰三角形一腰长为2cm ,底边的长为1cm ,则它的周长为 cm 。
2、已知等腰三角形的两边长分别为2和4,则它的周长为3、已知等腰三角形的两边长分别为4和54、已知等腰三角形的底角为5005、已知等腰三角形的一个角为3806、已知等腰三角形的一个角为12007、已知如图,AB=AC ,∠A=360,∠1=∠ 图中等腰三角形 个8、已知:如图,D 是ΔABC 中AB 边上一点,E 是CA 延长线上一点,EAB=AC ,AE=AD ,∠B=400,则∠E= 度;∠1= 度 A9、画水平放置的正三角形ABC 的直观图, D 1画法:1、画AB 边上的高CD B E C2、画线段A ′B ′,使A ′B ′=3、取 画∠ED ′B ′= C E4、在射线DE 上截取D ′C ′=1/2DC C ′5、连A ′C ′,B ′C ′∴Δ 就是水平放置的正三角形ABC 的 A D B A′ D ′ B ′ 10、下列命题中,①两直线平行,同位角相等;②全等三角形对应角相等;③在一个三角形中,等边对等角;④等腰三角形是等边三角形。
它们的逆命题是真命题的个数有 个二、选择题(4′×7=28′) A11、如图,在等腰三角形的底边BC 上的高AD 上取一点E , E连BE ,CE ,则图中有全等三角形的对数( )A 、0对B 、1对C 、2对D 、3对 B D C12、如果等腰三角形的一个外角为1350,那么底角为( )A 、450B 、720C 、67.50D 、450或67.5013、以下命题属于假命题的是( )A 、两底角相等的三角形是等腰三角形B 、在一个三角形中,等边对等角C 、ΔABC 中,∠A=∠B ,则ΔABC 是等腰三角形D 、有一个角是600的等腰三角形是正三角形14、已知等腰三角形的底边和一腰长是方程组⎩⎨⎧=+=+7342y x y x 的解,这个三角形的周长为( )A 、3B 、4C 、4或5D 、515、等腰三角形一腰上的中线分此三角形为两个三角形,若这两个三角形的周长相差2,且等腰三角形底边长是8,则它的腰长是( )A 、3或5B 、5或6C 、5或10D 、6或1016、已知等腰三角形顶角等于一个底角的两倍,那么这个底角为( )A 、300B 、450C 、600D 、90017、若a 、b 、c 为ΔABC 的三边,且a 2+b 2+c 2=ab+bc+ac ,则ΔABC 是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、非特殊三角形三、解答题(共40′)18、(10′)在ΔABC中,AB=AC,∠CDA=600,AD⊥AC于点A,求∠BAD的度数AB D C19、(10′)画一个水平放置的底边长为2.5cm,高为3cm的正三棱柱直观图20、(10′)如图OB,OC分别是ΔABC的∠ABC和∠ACB的平分线,交于点O,过O作OE∥AB交BC于E,OF∥AC交BC于F,BC=1998,求ΔOEF的周长AOB E F C21、(10′)如图,ΔBCE,ΔADC都是正三角形,求证:AE=BDDEA C B。
等腰等边三角形典型题

等腰等边三角形典型题一、等腰三角形典型题1. 题目:在等腰△ABC中,AB = AC,∠A = 50°,求∠B和∠C的度数。
- 解析:因为AB = AC,所以△ABC是等腰三角形,等腰三角形两底角相等。
三角形内角和为180°,已知∠A=50°,设∠B = ∠C = x,则可列方程x + x+50° = 180°,2x=180° - 50°,2x = 130°,解得x = 65°,所以∠B = ∠C = 65°。
2. 题目:等腰三角形的一个角是70°,求这个等腰三角形的顶角的度数。
- 解析:分两种情况讨论。
- 当这个70°的角是底角时,因为等腰三角形两底角相等,所以另一个底角也是70°,根据三角形内角和为180°,则顶角为180°-70°×2 = 180° - 140°=40°。
- 当这个70°的角是顶角时,顶角就是70°。
3. 题目:已知等腰三角形的腰长为5cm,底边长为6cm,求这个等腰三角形的面积。
- 解析:先作等腰三角形底边上的高。
因为等腰三角形三线合一(底边上的高、中线、顶角平分线三线合一),所以底边上的高将底边平分。
底边长为6cm,则底边的一半是3cm。
根据勾股定理,高h=√(5^2)-3^{2}=√(25 - 9)=√(16) = 4cm。
三角形面积S=(1)/(2)×底×高=(1)/(2)×6×4 = 12cm^2。
二、等边三角形典型题1. 题目:等边三角形ABC的边长为6,求它的高和面积。
- 解析:- 求高:因为等边三角形三线合一,设等边三角形的高为h,边长为a = 6,根据勾股定理h=√(a^2)-<=ft((a)/(2))^{2}=√(6^2)-3^{2}=√(36 - 9)=√(27)=3√(3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
A
CF D
图6
B
C
9. 已知,如图,△ ABC 中,∠ C= 90°, AB 的垂直平分线交 AB 于 E,交 AC 于 D, AD = 8,∠ A = 30°,求 CD 的长。
C D
A
E
B
10、如图 11,在△ ABC 中,∠ A= 90°, AB =AC , D 为 BC 边中点, E 、 F 分别在 AB 、
B
C
D 4 已知,如图,△ ABC 中, AB = AC ,D 是 AB 上一点, E 是 AC 延长线上一点, DE 交 BC
于 F,又 BD= CE,求证: DF= EF
A
D
B
C
F
E
5. 如图, P 是等边三角形 ABC内的一点,连结 PA、 PB、PC, ?以 BP 为边作∠ PBQ=60°,且 BQ=BP,连结 CQ.观察并猜想 AP与 CQ之间的大小关系,并证明你的结论.ຫໍສະໝຸດ A DBEC
例例 4 、如图 9 ,已知 AD 为△ ABC 的高, E 为 AC 上一点, BE 交 AD 于 F ,且有 BF = AC ,
FD =CD ,你认为 BE 与 AC 之间有怎样的位置关系 ? 你能证明它吗?
证明:线段 BE ⊥ AC ,理由如下:
∵AD ⊥ BC ,∴∠ ADB =∠ ADC = 90°,
B
D
C
图5
证明:过 E 作 EF ⊥ CD 于点 F, ∵△ ABC 是等边三角形,∴∠ B= 60°,∴∠ BEF = 30°, ∴BE = 2BF ,即 BA + AE = BC + BD =2BC + CD = 2( BC +CF ), ∴CD = 2CF , ∴ CF = DF ,
在△ CEF 和△ DEF 中, CF =DF ,∠ CFE =∠ DFE = 90°, EF = EF ,
AC 上,且 DE ⊥DF ,求证: AE + AF 是一个定值 .
A
F
E
C
B
D
图 11
已知,如图,△ ABC 是等边三角形, E 是 AB 上一点, D 是 AC 上一点,且 AE =CD,又 BD 与 CE 交于点 F,试求∠ BFE 的度数。
A
E
D
F
B
C
6. 已知,如图,△ ABC 中,∠ B = 90°, AC 的垂直平分线交 AC 于 D,交 BC 于 E,又∠ C= 15°, EC= 10,求 AB 的长。
6,已知,如图, AB =AC = CD ,求证:∠ B= 2∠ D A
B
C
D
E
7、如图 6 ,在等边△ ABC 中, D、E 分别在边 BC 、BA 的延长线
上,且 AE = BD ,求证: CE = DE .
A
B
8·已知,如图,△ ABC 是等边三角形, AD//BC ,AD ⊥ BD ,BC =6,求 AD 的长。
即 BE ⊥ AC .
图9
D
C
例 1、如图 5 ,在△ ABC 中, AB = AC ,点 O 在△ ABC 内, OB
A
=OC ,求证: AO ⊥ BC .
证明:延长 AO 交 BC 于点 D,
O
∵AB = AC , OB =OC , OA =OA ,∴△ ABO ≌△ ACO , ∴∠ BAO =∠ CAO ,即∠ BAD =∠ CAD , ∴AD ⊥ BC ,即 AO ⊥ BC .
5、如图, AB=AC ,∠ ABD= ∠ ACD ,请你说明 AD 是 BC 的中垂线。 A
B
C
D
1.等腰三角形 ABC中,AB=AC,一腰上的中线 BD?将这个等腰三角形周长分成 15 和 6 两部分,求这个三角形的腰长及底边长.
2、如图,在△ ABC 中,∠ B 和∠ C 的平分线相交于点 O,且 OB=OC ,请说明 AB=AC 的
理由。
A
O
B
C
3· .已知, AB = AC ,∠ ABD =∠ ACD ,求证: DB = DC A
A
∴∠ FBD +∠ BFD =90°,
在 Rt △BDF 和 Rt△ ADC 中, BF = AC ,FD =CD , ∴Rt △ BDF ≌ Rt △ ADC , ∴∠ BFD =∠ C ,∴∠ FBD +∠ C= 90°,
E F
∴∠ BEC = 180°-(∠ FBD +∠ C)= 180°- 90°= 90°, B