运筹学案例分析
简单的运筹学实际应用案例

简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
运筹学案例分析报告

运筹学案例分析报告班级:姓名:学号:完成日期:问题一、一、问题描述京成畜产品有限公司计划在市区的东、南、西、北四区建立销售部部门市场,拟议中有10个位置A j(j=1,2,3,4,...,10)可供选择,考虑到各地区居民的消费水平及居民居住密集度,规定:在东区由A1,A2,A3三个点至多选择两个;在西区由A4,A5两个点中至多选一个;在南区由A6,A7两个点中至少选一个;在北区由A8,A9,A10三个点中至少选两个。
A j各点的设备投资及每年可获利润由于地点不同而不同,预测情况如下表(单位:万元)。
但投资总额不超过720万元,问应选择哪几个销售点,可使年利润最大?二、模型建立设0-1变量X i=1(点被选用)或0(A i点没被选用)。
建立数学模型:目标函数:maxZ=36X1+40X2+50X3+22X4+20X5+30X6+25X7+48X8+58X9+61X10约束条件:100X1+120X2+150X3+80X4+70X5+90X6+80X7+149X8+160X9+180X10<=720X1+X2+X3<=2X4+X5>=1X6+X7>=1X8+X9+X10>=2X i>=0,且X i为0-1变量,i=1,2,3,...,10其lingo程序为:model:sets:row/1..5/:b;col/1..10/:c,x;links(row,col):a;endsetsdata:b=720 2 -1 -1 -2;c=36 40 50 22 20 30 25 48 58 61;a=100 120 150 80 70 90 80 140 160 1801 1 1 0 0 0 0 0 0 00 0 0 -1 -10 0 0 0 00 0 0 0 0 -1-1 0 0 00 0 0 0 0 0 0 -1 -1 -1;enddatamax=@sum(col(j):c(j)*x(j));@for(row(i):@sum(col(j):a(i,j)*x(j))<=b(i));@for(col(j):@bin(x));end三、模型求解与分析通过lingo程序的求解,我们可以获得如下数据:Global optimal solution found.Objective value: 245.0000 Objective bound: 245.0000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostB( 1) 720.0000 0.000000B( 2) 2.000000 0.000000B( 3) -1.000000 0.000000B( 4) -1.000000 0.000000B( 5) -2.000000 0.000000C( 1) 36.00000 0.000000C( 2) 40.00000 0.000000C( 3) 50.00000 0.000000C( 4) 22.00000 0.000000C( 5) 20.00000 0.000000C( 6) 30.00000 0.000000C( 7) 25.00000 0.000000C( 8) 48.00000 0.000000C( 9) 58.00000 0.000000C( 10) 61.00000 0.000000X( 1) 1.000000 -36.00000X( 2) 1.000000 -40.00000X( 3) 0.000000 -50.00000X( 4) 0.000000 -22.00000X( 5) 1.000000 -20.00000X( 6) 1.000000 -30.00000X( 7) 0.000000 -25.00000X( 8) 0.000000 -48.00000X( 9) 1.000000 -58.00000X( 10) 1.000000 -61.00000A( 1, 1) 100.0000 0.000000A( 1, 3) 150.0000 0.000000 A( 1, 4) 80.00000 0.000000 A( 1, 5) 70.00000 0.000000 A( 1, 6) 90.00000 0.000000 A( 1, 7) 80.00000 0.000000 A( 1, 8) 140.0000 0.000000 A( 1, 9) 160.0000 0.000000 A( 1, 10) 180.0000 0.000000 A( 2, 1) 1.000000 0.000000 A( 2, 2) 1.000000 0.000000 A( 2, 3) 1.000000 0.000000 A( 2, 4) 0.000000 0.000000 A( 2, 5) 0.000000 0.000000 A( 2, 6) 0.000000 0.000000 A( 2, 7) 0.000000 0.000000 A( 2, 8) 0.000000 0.000000 A( 2, 9) 0.000000 0.000000 A( 2, 10) 0.000000 0.000000 A( 3, 1) 0.000000 0.000000 A( 3, 2) 0.000000 0.000000 A( 3, 3) 0.000000 0.000000 A( 3, 4) -1.000000 0.000000 A( 3, 5) -1.000000 0.000000 A( 3, 6) 0.000000 0.000000 A( 3, 7) 0.000000 0.000000 A( 3, 8) 0.000000 0.000000 A( 3, 9) 0.000000 0.000000 A( 3, 10) 0.000000 0.000000 A( 4, 1) 0.000000 0.000000A( 4, 3) 0.000000 0.000000A( 4, 4) 0.000000 0.000000A( 4, 5) 0.000000 0.000000A( 4, 6) -1.000000 0.000000A( 4, 7) -1.000000 0.000000A( 4, 8) 0.000000 0.000000A( 4, 9) 0.000000 0.000000A( 4, 10) 0.000000 0.000000A( 5, 1) 0.000000 0.000000A( 5, 2) 0.000000 0.000000A( 5, 3) 0.000000 0.000000A( 5, 4) 0.000000 0.000000A( 5, 5) 0.000000 0.000000A( 5, 6) 0.000000 0.000000A( 5, 7) 0.000000 0.000000A( 5, 8) -1.000000 0.000000A( 5, 9) -1.000000 0.000000A( 5, 10) -1.000000 0.000000Row Slack or Surplus Dual Price1 245.0000 1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.000000 由此我们可以分析得出最优目标函数值为245.最优解为:X1=1,X2=1,X3=0,X4=0,X5=1,X6=1,X7=0,X8=0,X9=1,X10=1.四、结论当选择A1,A2,A5,A6,A10几个销售点时可获得最大利润245万元。
运筹学实例 含解析

案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。
其中有五项住宅工程,三项工业车间。
由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。
有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。
解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。
案例2. 生产计划问题某厂生产四种产品。
每种产品要经过A,B两道工序加工。
设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。
产品D可在A,B任何一种规格的设备上加工。
产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。
产品F可在A2及B2 ,B3上加工。
产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。
已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。
运筹学经典案例

运筹学经典案例案例一:鲍德西((B AWDSEY)雷达站的研究20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。
以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。
欧洲上空战云密布。
英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。
他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。
1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。
丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。
当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。
在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。
雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett 马戏团”,专门就改进空防系统进行研究。
这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。
研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。
二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。
“Blackett马戏团”是世界上第一个运筹学小组。
在他们就此项研究所写的秘密报告中,使用了“Operational Research”一词,意指作战研究”或“运用研究”。
运筹学在实际问题中的应用案例分析

运筹学在实际问题中的应用案例分析运筹学作为一门研究如何最优化地解决决策问题的学科,在实际问题中得到了广泛的应用。
本文将通过分析两个实际案例来探讨运筹学在解决复杂问题和优化资源利用方面的应用。
案例一:物流配送优化物流配送是一个典型的运筹学应用领域。
在现代社会,物流配送环节对于企业的运营效率和成本控制至关重要。
如何合理安排车辆路线、调度和配送是一项复杂且具有挑战性的任务。
运筹学可以通过数学建模和优化算法来解决这个问题。
首先,我们可以将物流配送问题建模为一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的组合优化问题,目标是寻找一条最短路径,使得从一个地点出发经过所有其他地点后回到起点,且路径的总长度最小。
通过运筹学方法,可以利用算法来求解最佳路径并优化物流配送效率。
其次,为了进一步优化物流配送的效率,我们可以引入车辆调度问题。
例如,考虑到不同城市的交通堵塞情况,我们可以使用调度算法将不同城市的订单分配给不同的车辆,以减少整体行程时间和成本。
通过运筹学的应用,一家物流公司可以最大限度地减少行程时间、减少燃料消耗,提高物流配送的效率。
因此,运筹学在物流配送问题中的应用具有重要的意义。
案例二:生产排产优化生产排产是制造业中的一个重要环节,它关系到企业的生产效率、生产能力和订单交付时间。
运筹学在生产排产中的应用可以帮助企业提高生产效率,降低成本并及时交付产品。
在生产排产中,我们通常需要考虑到多个因素,如机器的利用率、工人的工作时间和任务的优先级等。
通过运筹学的方法,可以构建一个数学模型,通过数学规划算法来优化生产排产方案。
例如,假设一个工厂有多个机器和多个订单需要排产,每个订单有不同的完成时间和优先级。
我们可以通过运筹学的方法,将这个问题建模为一个调度问题。
然后,利用调度算法来确定每个订单的完成时间和最优的生产顺序,从而实现生产排产的优化。
通过运筹学的应用,企业可以有效地优化生产排产计划,提高生产效率,减少资源浪费,并保证订单能够及时交付。
运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。
运筹学的应用范围非常广泛,涉及到各个领域。
以下是一个关于运筹学应用的实际案例。
某公司是一家制造业企业,主要生产产品A和产品B。
这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。
公司的目标是最大化利润。
产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。
产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。
物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。
同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。
另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。
为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。
首先,公司需要确定目标函数。
由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。
假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。
那么公司的目标函数可以定义为:Z=10A+8B。
然后,公司需要确定约束条件。
根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。
由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。
最后,公司需要使用线性规划算法来求解最优解。
线性规划算法可以通过求解目标函数的最大值来找到最优解。
在这个案例中,可以使用单纯形法来求解最优解。
通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。
对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。
生活中运筹学案例分析

生活中运筹学案例分析
运筹学是一门研究如何做出最优决策的学科,它在生活中有着广泛的应用。
从
日常生活中的购物决策到企业的生产计划,都可以看到运筹学的影子。
在本文中,我们将通过一些生活中的案例来分析运筹学的应用。
首先,让我们来看一个购物决策的案例。
假设你需要购买一件衣服,而且你有
多个选择。
每件衣服的价格、品质、风格都不同,你需要在这些选择中做出最优的决策。
这时,你可以运用运筹学的方法,比如成本效益分析、决策树分析等,来帮助你做出最佳选择,从而在有限的预算内获得最大的满意度。
其次,让我们来看一个企业生产计划的案例。
假设一个工厂需要生产多种产品,并且有限的资源,比如人力、原材料、机器等。
在这种情况下,工厂需要合理安排生产计划,以最大化产出并降低成本。
这就需要运用运筹学的方法,比如线性规划、排程算法等,来优化生产计划,使得工厂能够以最有效的方式进行生产。
此外,运筹学还可以应用于交通运输、物流配送、金融投资等方面。
比如,在
交通运输中,如何合理安排车辆的路线,以最小化时间和成本;在物流配送中,如何优化仓储和配送流程,以提高效率和降低成本;在金融投资中,如何构建最佳的投资组合,以最大化收益和降低风险。
综上所述,运筹学在生活中有着广泛的应用,可以帮助我们在各种决策中做出
最优选择。
通过分析一些生活中的案例,我们可以更好地理解和应用运筹学的方法,从而提高我们的决策能力和生活质量。
希望本文能够对读者有所启发,让大家在生活中更加注重运筹学的应用。
运筹学案例分析

运筹学案例分析⼀.案例描述西兰物业公司承担了正⼤⾷品在全市92个零售店的⾁类、蛋品和蔬菜的运送业务,运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)。
这92个零售点每天需要运送货物吨,其分布情况为:5千⽶以内为A区,有36个点,从总部到该区的时间为20分钟;10千⽶以内5千⽶以上的为B区,有26个点,从总部到该区的时间为40分钟;10千⽶以上的为C区,有30个点,从总部到该区的时间为60分钟;A区各点间的运送的时间为5分钟,B区各点间的运送时间为10分钟,C区各点间的运送时间为20分钟,A区到B区的运送时间为20分钟,B区到C 区的运送时间为20分钟,A区到C区的运送时间为40分钟。
每点卸货、验收时间为30分钟。
该公司准备购买规格为2吨的运送车辆,每车购价5万元。
请确定每天的运送⽅案,使投⼊的购买车辆总费⽤为最少。
⼆.案例中关键因素及其关系分析关键因素:1.⾸先针对⼀辆车的运送情况作具体分析,进⽽推⼴到多辆车的运送情况;2.根据案例中的关键点“零售点每天需要运送货物吨”及“规格为2吨的运送车辆”可知就⼀辆车运送⽽⾔,可承担4个零售点的货物量;3.根据案例中的“运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)”可知每天货物运送的总时间为210分钟,超过该时间的运送⽅案即为不合理;4.如下表以套裁下料的⽅法列出所有可能的下料防案,再逐个分析。
三、模型构建1、决策变量设置设已穷举的12个⽅案中⽅案i所需的车辆数为决策变量Xi (i=1,2…12),即:⽅案1的运送车台数为X1;⽅案2的运送车台数为X2;⽅案3的运送车台数为X3;⽅案4的运送车台数为X4;⽅案5的运送车台数为X5;⽅案6的运送车台数为X6;⽅案7的运送车台数为X7;⽅案8的运送车台数为X8;⽅案9的运送车台数为X9;⽅案10的运送车台数为X10;⽅案11的运送车台数为X11;⽅案12的运送车台数为X12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学案例分析指导老师:班级:姓名:学号:个人学习时间优化分配设计总说明(摘要)合理的安排时间方案,采取最优化的时间组合,有利于我们充分发挥各个时间阶段的学习效益。
同时可以使我们的学习符合日常行为及自身特点,不仅使时间得到有效安排,也使得我们的身心得到和谐。
此次,研究分配一天中四个阶段四门课程的学习时间,就是根据学生的身心特点,和各阶段对各课程学习的收获程度,采取获得程度量化的方法,设计出一个最优的时间组合方案,从而获得最大的收获效益。
即获得学习的最大价值。
在这个过程中要将运筹学的各种理论知识与具体实际情况相结合。
首先是确定所要研究的问题,考虑所需要的各种数据,根据实际需求确定所需要的数据和模拟量化的数据。
将数据整理形成分析和解决问题的具体模型。
其次对已得模型利用计算机进行求解,得出方程的最优解。
最后结合所研究问题的实际背景,对模型的解进行评价、分析以及调整,并对解的实施与控制提出合理化的建议。
关键词:时间优化,线性规化,最优解,获得效益最大目录1.绪论1.1研究的背景 (3)1.2研究的主要内容与目的 (3)1.3研究的意义 (3)1.4研究的主要方法与思路 (3)2.理论方法的选择2.1 所研究的问题的特点 (4)2.2 拟采用的运筹学理论方法的特点 (4)2.3 理论方法的适用性及有效性论证 (5)3.模型的建立3.1 基础数据的确定 (5)3.2 变量的设定 (6)3.3目标函数的建立 (6)3.4 限制条件的确定 (6)3.5 模型的建立 (7)4 .模型的求解及解的分析4.1 模型的求解 (7)4.2 解的分析与评价 (9)5 .结论与建议5.1 研究结论 (11)5.2 建议与对策 (11)个人学习时间优化分配1.绪论1.1研究的背景作为一名大学生,学习是自己的事情。
我们在这个过程中占领绝对的主动权。
因此,如何分配自己的时间来安排各门功课的进度和深度,就显得十分的必要。
对于学习,不仅讲究的是质量,更追求的是效益。
在同一个平台上,在相同的时间内,如果采取恰当的学习方法,获取最佳的时间方案,无疑会赢得事半功倍的效果!不同的时段,对自己而言适合不同功课的学习,所以需要针对实际需要合理的分配各个时间段的学习情况。
那么针对自己目前的学习情况,和学习现状,如何去分配各门功课在不同阶段的时间,从而得到最大的效果那?如何分配,这些都要求我们运用运筹学中线性规划的方法来研究解答。
1.2研究的主要内容与目的此次研究主要集中探讨在给定的时间和需要的时间下,通过各门课程各个阶段的获得系数,分配各阶段各功课的学习时间,从而达到最大的获得效益。
亦即,达到最大的学习效率,充分利用学习时间。
因此,借助自己建立的模型,运用线性规划的知识进行研究,从而最优的确定在什么时候哪门功课上学习多长时间,使自己的努力换取最大的收益。
这样,学习的进度,个人的发展便会沿着自己的希望前进。
为以后的考研等奠定扎实的基础。
1.3研究的意义此次研究一方面使得自己从课本上所学的线性规划的理论知识得到强化,锻炼了自己的实践能力和动手能力。
另一方面使得结合计算软件运用运筹学的相关知识解决实际问题的方法得到进一步了解,增强了我们对运筹学理论的理解程度。
同时,也解决了自己目前面临的实际问题,对自己的发展也是一个帮助。
而此次线性规划模型的确立、求解、分析……又有利于类似的时间分配问题,或其他分配问题得到解决,以到达合理安排,进行科学管理,减少资源浪费,达到最优化的最终目的。
1.4研究的主要方法与思路本课题通过对运筹学中线性规划的理论知识与分析方法的运用,建立线性模型达到解决实际问题的方法。
在寻求本次研究的线性规划问题的最优方案时,应采用线性规划的方法和思想进行分析,并在求解时,将其转化为线性规划的模型,具体思路如下:首先根据自己的在各个时间学习各门功课的情况,确定各个阶段各门功课的获得系数,确定目标函数,然后找到相关数据之间的关系,分析哪些数据对解决该问题是有用的,收集和统计上述拟定模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。
其次对已得模型利用计算机进行求解,得出方程的最优解。
最后结合所研究问题的实际背景,对模型的解进行评价、分析以及调整,并对解的实施与控制提出合理化的建议。
2 理论方法的选择2.1 所研究的问题的特点线性规划的问题一般是研究效益最大化的问题。
在这个模型中各个时间段的学习时间,各门课程每天学习的需求量都是有限的,就是模型中约束条件的右边项,即资源限制条件。
其次各门功课各个时间段的获得系数也是确定的,就是模型中的未知量的系数,即约束条件系数。
目标的实现是线性的。
而在这个实际问题中,我们要求的是效益最大化问题,在已知各个时间段的学习情况的前提下,选择合适的时间段合适的科目选择学习时间,从而得到学习时间的最优化分配。
它要求各决策变量以及限制条件都不能为负。
2.2 拟采用的运筹学理论方法的特点拟采用的运筹方法是线性规划的方法,模型为线性规划的方法建立的规划模型对问题进行分析与求解。
其中构建线性规划的模型是解决问题的一个关键性问题。
线性规划的模型的建立过程主要抓住“四个要素”和“两个关系”。
所谓“四个要素”是指:决策变量,资源常量,约束系数,价值系数。
抓住了这四个要素,就等于抓住了建模问题的关键所在。
所谓“两个关系”是指:约束关系和目标函数关系。
建立线性规划问题的模型主要有以下六个步骤:1.设置决策变量;2.确定资源变量;3.找出决策变量之间的关系与资源约束常量之间的关系;4.找出决策变量的价值系数并形成目标函数;5.确定每个决策变量的取值范围;6.整理所得到的代数表达式,形成规范的线性规划数学模型。
以上问题线性规划的模型是:maxf(x)=∑∑cijxij;∑xij>=ai;(i=1,2,……,m)St∑xij<=bj;(j=1,2,……,n)xij>0(i=1,2,……,m;j=1,2,……,n)该模型的特点是:目标函数和约束条件都是线性方程式,其中的决策变量是由所研究问题本身的性质确定的静态变量,不会因外界环境的变化而变化,对决策变量都为非负值。
目标函数是求一个最优值的方案选择。
2.3 理论方法的适用性及有效性论证所研究的问题是运筹学线性规划中关于时间分配的问题,在各个时间段可利用资源一定的条件下根据不同事物的特点合理的分配时间已达到最优化的方案。
该方案对于在有限资源条件下的各种事物的不同条件下的安排都有效,它可以提供给我们最好的分配方案,得到资源优化配置,从而最大限度的发挥资源的有效价值。
我们在利用计算软件LINDO将线性规划求解完毕后,还可以进一步的利用该软件对该模型进行灵敏度分析,分析方程的密切程度以及模型的优劣。
这就是对该线性规划模型有效性的论证。
3 模型的建立3.1 基础数据的确定大学生考研时主要复习四个方面的课程:专业课,数学,英语,计算机。
而一天中的学习时段分四个:早上,上午,下午,晚上。
若以半小时为时刻划分单位,则早上为2个半小时,上午4个半小时,下午为4个半小时,晚上为6个半小时。
我们用数字来量化的表示学习的收获程度。
假定数字1为最小收获值,5为最大收获值,根据自己在不同阶段对各学科学习的收获程度得到如下关系表;表1各个阶段不同学科学习获得表(半小时)3.2变量的设定因为此处研究的获得效益问题中,时间因素起重要作用,所以时间是问题得以解决的核心问题。
因此,我们利用变量xij(i=1,2,3,4;j=1,2,3,4)来表示每个时间段上学习各门课程所花费的时间。
即为模型的决策变量。
因为xij是表示学习的时间,其取值不可能为负数,所以xij>=0。
3.3 目标函数的建立根据自己的实际学习中在不同时间学习各课程的收获程度,可得到时间与课程之间的获得系数,即Cij,如下表所示:表3 单位利润表(元/件)所以该模型的线性规划目标函数方程如下:Maxf(x)=3x11+5x12+1x13+5x14+4x21+3x22+3x23+5x24+5x31+4x32+4x33+4x 34+4x41+2x42+5x43+x443.4 限制条件的确定在该学习时间的线性规划模型中各时间阶段的总的学习时间与各门课程一天中的总学习时间都是有限制的,一般不可能无限制增大,这些就是模型中约束条件的右边项,即资源限制条件。
(1)每门课程一天内的学习时间是有限制的,即它在各时间阶段学习的时间总和不能少于需要,我们设定它为ai,得约束条件为:∑xij>ai,i=1,2,3,4;(2)每个时间阶段学习的总时间不能超过一定的限值,我们设定为bij得约束条件为:∑xij<bij,j=1,2,3,4,5;3.5 模型的建立根据以上的分析,已知该线性规划模型的目标函数,变量设定和约束条件,因此可得此方程的线性规划模型为:Maxf(x)=3x11+5x12+1x13+5x14+4x21+3x22+3x23+5x24+5x31+4x32+4x33+4x 34+4x41+2x42+5x43+x44Stx11+x12+x13+x14=2x21+x22+x23+x24=4x31+x32+x33+x34=4x41+x42+x43+x44=6x11+x21+x31+x41=5x12+x22+x32+x42=3x13+x23+x33+x43=5x14+x24+x34+x44=3xij>0(i=1,2,3,4;j=1,2,3,4)4 模型的求解及解的分析4.1 模型的求解运用计算机软件“LINDO”对该模型进行求解,可得计算结果如下:根据上述数据分析可得:目标函数最大值=77.00000其中:x12=2,x21=1,x24=3, x31=3, x32=1, x41=1, x43 =5,其余的x值为0。
也就是说,早上学习英语的时间x12=2(半小时);上午学习专业课的时间: x21=1(半小时);上午学习计算机的时间x24=3(半小时);下午学习专业课的时间x31=3(半小时);下午学习英语的时间x32=1(半小时);晚上学习专业课的时间x41=1(半小时);晚上学习数学的时间x43 =5(半小时);其余时间各门课程的学习时间全为0。
最后一天学习的最大获得效益为:77个半小时。
4.2 解的分析与评价为了确保最优方案不发生本质性变化,便于我们在学习中根据需要加以控制和改变学习策略,我们需要研究这些要素的上下限值,从中找出影响我们学习的主要因素,即敏感因子,所以我们要对该方程进行灵敏度分析,得:NO. ITERATIONS= 11RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGESVARIABLE CURRENT ALLOWABLE ALLOWABLECOEF INCREASE DECREASEX11 3.000000 3.000000 INFINITYX12 5.000000 INFINITY 2.000000X13 1.000000 6.000000 INFINITYX14 5.000000 2.000000 INFINITYX21 4.000000 2.000000 0.000000X22 3.000000 0.000000 INFINITYX23 3.000000 2.000000 INFINITYX24 5.000000 0.000000 2.000000X31 5.000000 0.000000 2.000000X32 4.000000 2.000000 0.000000X33 4.000000 2.000000 INFINITYX34 4.000000 2.000000 INFINITYX41 4.000000 0.000000 1.000000X42 2.000000 1.000000 INFINITYX43 5.000000 INFINITY 0.000000X44 1.000000 4.000000 INFINITYRIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE2 2.000000 1.000000 0.0000003 4.000000 1.000000 0.0000004 4.000000 1.000000 0.0000005 6.000000 INFINITY 0.0000006 5.000000 0.000000 1.0000007 3.000000 0.000000 1.0000008 5.000000 0.000000 INFINITY9 3.000000 0.000000 1.000000 对以上计算软件的分析结果进行人为分析得:表4 目标函数系数的敏感程度分析根据上述分析可知,在目标函数系数中,x21,x24,x31,x32,x41为敏感因素。