热交换器原理与设计

合集下载

热交换器原理与设计

热交换器原理与设计

热交换器原理与设计
热交换器是一种用于传热的设备,广泛应用于工业生产、能源
领域以及日常生活中。

其作用是在两种流体之间传递热量,使它们
达到所需的温度。

热交换器的设计和运行原理对于提高能源利用效
率和保障设备安全稳定运行具有重要意义。

热交换器的原理是利用热传导的物理特性,通过将两种流体分
别置于不同的传热面上,使它们之间产生温度差,从而实现热量的
传递。

在热交换器中,传热面的设计和流体流动方式是影响传热效
率的关键因素。

此外,热交换器的设计还需要考虑流体的物性参数、流体流速、传热面积以及传热介质的选择等因素。

在热交换器的设计过程中,首先需要确定传热的需求,包括传
热量、传热温差等参数。

然后根据流体的性质和工艺要求选择合适
的传热面积和传热介质。

接下来是热交换器内部结构的设计,包括
传热面的布置方式、流体流动路径的设计等。

最后是对热交换器的
整体结构进行设计,包括支撑结构、连接方式、绝热措施等。

热交换器的设计需要综合考虑传热效率、成本、占地面积等因素。

为了提高传热效率,可以采用增加传热面积、改善流体流动方
式、优化传热介质等措施。

在降低成本方面,可以通过材料选择、结构设计等途径进行优化。

此外,合理设计热交换器的结构,可以减小占地面积,提高设备的整体性能。

总的来说,热交换器的设计是一个综合考虑传热效率、成本和结构合理性的工程问题。

通过科学合理的设计,可以提高能源利用效率,降低生产成本,保障设备的安全稳定运行。

因此,热交换器的设计对于工业生产和生活中的能源利用具有重要的意义。

《热交换器原理与设计》热交换器设计

《热交换器原理与设计》热交换器设计
由于流道长,可为完全逆流,便于控制温度和利用低温热源,操 作时允许较低的温度差,因此,在一些低温差传热的场合,采用 螺旋板换热器比较合适。
结构紧凑,制造简便,单位体积设备内的传热面积约为列管式换 热器的3倍。
操作压力和温度不能太高,尤其是所能承受的压力比较低,操作 压力只能在20atm以下,操作温度约在300-400℃以下。
37
具有的共同特点
①强化传热的凹凸形波纹; ②用以安装密封垫片的密封槽; ③介质进出的角孔; ④板片悬挂装置(缺口); ⑤保证密封垫片压紧时对中的定 位缺口; ⑥板片组装后保持流道一定的间 隙、并使流层“网状”化的触点, 可使板片在两侧介质有压差情况 下减少板片的变形; ⑦使介质能均匀沿板片流道宽度 分布的导流槽;
1—上导杆;2—垫片;3—传热板片;4—角孔; 5—前支柱;6—固定端板;7—下导杆;8—活动端板
29
30
a 传热板片
作用: 流体在低速下发生强烈湍流,以强化传热 提高板片刚度,能耐较高的压力
类型:
人字形板
水平平直波纹板
锯齿形板
31
32
人字形波纹片
33
板片的样式
34
35
水平平直波纹
36
17
组成 传热板片
密封垫圈
压紧装置 轴及接口管等
18
板式换热器的构造
19
20
21
平板式换热器的工作原理
若干矩形板片,其上四角开有圆孔,通过圆孔外设置或不 设置圆环形垫片可使每个板间通道只留两个孔相连。
(a)平板式换热器流向示意图
b)平板式换热器板片
平板式换热器
22
工作过程
板四角开有角孔,流体由一个角孔流入,即在两块板形成的流道 中流动,而经另一对角线角孔流出(该板的另外两个角孔则由垫 片堵住),流道很窄,通常只有3~4 mm,冷热两流体的流道彼 此相间隔。为了强化流体在流道中的扰动,板面都做成波纹形。 板片间装有密封垫片,它既用来防漏,又用以控制两板间的距离。 冷热两流体分别由板的上、下角孔进入换热器,并相间流过奇数 及偶数流道,然后再从下、上角孔流出。传热板片是板式换热器 的关键元件,不同类型的板片直接影响到传热系数、流动阻力和 承受压力的能力。 板片的材料,通常为不锈钢,对于腐蚀性强的流体(如海水冷却 器),可用钛板。

热交换器原理与设计

热交换器原理与设计

热交换器原理与设计热交换器是一种用于传热的设备,它可以将热量从一个流体传递到另一个流体,而两者之间并不直接接触。

热交换器广泛应用于工业生产和日常生活中,如空调系统、冷却系统、加热系统等。

在本文中,我们将深入探讨热交换器的原理与设计。

热交换器的原理主要基于热传导和对流传热。

在热交换器中,两种流体分别流经热交换器的两侧,通过热传导和对流传热的方式,实现热量的传递。

热交换器的设计主要包括换热面积、传热系数、流体流速等因素。

换热面积越大,传热效果越好;传热系数越大,传热效率越高;流体流速对于传热效果也有着重要的影响。

热交换器的设计需要考虑多种因素,如流体的性质、温度、压力、换热面积、传热系数等。

在实际工程中,需要根据具体的工况条件来选择合适的热交换器类型,如板式热交换器、管式热交换器、壳管式热交换器等。

不同类型的热交换器适用于不同的工况条件,需要根据实际情况进行合理选择。

在热交换器的设计过程中,需要进行热力学计算、流体力学分析、材料选型等工作。

通过这些工作,可以确定热交换器的尺寸、结构、材料等参数,确保热交换器在实际工作中能够达到预期的换热效果。

此外,还需要考虑热交换器的清洗维护、安装调试等问题,确保热交换器的长期稳定运行。

总的来说,热交换器是一种重要的传热设备,它在工业生产和日常生活中都有着重要的应用。

热交换器的原理基于热传导和对流传热,设计时需要考虑多种因素,如流体性质、温度、压力、换热面积、传热系数等。

合理的热交换器设计可以提高能源利用效率,降低生产成本,对于工业生产和环境保护都具有重要意义。

因此,热交换器的原理与设计是一个值得深入研究的课题,也是工程技术人员需要掌握的重要知识。

热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)

热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)
例如 对于壳侧为一个流程、管程为偶数流程的壳管式热交换器, 其 值为:(推导得出)
两种流体中只有一种横向混合的错流式热交换器,其 值为:
能源与动力工程教研室
对于某种特定的流动形式, 是辅助参数P、R的函 数 f ( P, R) 该函数形式因流动方式而异。
对于只有一种流体有横向混合的错流式热交换器, 可将辅助参数的取法归纳为:
t m ,算术
t max t min 2
使用条件:如果流体的温度沿传热面变化不大, 范围在
t max 2 内可以使用算数平均温差。 t min
能源与动力工程教研室
算术平均与对数平均温差
t m ,算术
t max t min 2
t m ,对数
t max t min t max ln t min
R 1 t t 2 2 1 P ln 1 PR
的函数
t1m,c
能源与动力工程教研室
为了简化 的计算,引入两辅助参数:
t 2 t2 p t2 t1
t1 t1 R t 2 t2

冷流体的加热度 两种流体的进口温差
能源与动力工程教研室
1.2 平均温差
1.2.2 顺流和逆流情况下的平均温差
简单顺流时的对数平均温差 假设:
(1)冷热流体的质量流量qm2、qm1 以及比热容c2, c1是常数; (2)传热系数是常数;
(3)换热器无散热损失; (4)换热面沿流动方向的导热量 可以忽略不计。 下标1、2分别代表热冷流体。 上标1撇和2撇分别代表进出口
能源与动力工程教研室
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:

热交换器原理与设计

热交换器原理与设计

热交换器原理与设计热交换器是一种广泛应用于工业生产和生活领域的热传递设备,其原理和设计对于提高能源利用效率和改善环境保护具有重要意义。

热交换器的工作原理主要是利用流体之间的热量传递,通过热传导、对流和辐射等方式,实现热量的传递和平衡。

在设计热交换器时,需要考虑流体的性质、流动状态、传热面积和传热系数等因素,以达到最佳的传热效果。

首先,热交换器的原理是基于热量传递的基本规律,即热量会自高温区流向低温区,直至两者温度相等。

这一原理是热交换器能够实现热量传递的基础,也是设计热交换器时需要遵循的核心原则。

通过合理的设计和优化,可以最大限度地提高热交换器的传热效率,从而节约能源和降低生产成本。

其次,热交换器的设计需要考虑流体的性质和流动状态。

不同的流体具有不同的传热特性,包括传热系数、比热容、粘度等,这些参数对于热交换器的设计和选择具有重要影响。

同时,流体的流动状态也会影响传热效果,包括流速、流态、流向等因素都需要在设计中进行充分考虑,以确保热交换器能够实现预期的传热效果。

另外,传热面积是影响热交换器传热效果的重要因素之一。

通过增大传热面积,可以增加热交换器与流体之间的热量交换,从而提高传热效率。

在设计热交换器时,需要根据实际工况和传热要求确定合适的传热面积,同时考虑传热面积的布置方式和结构形式,以实现最佳的传热效果。

最后,传热系数是评价热交换器传热效果的重要参数之一。

传热系数受到多种因素的影响,包括流体性质、流动状态、传热面积和传热方式等。

在设计热交换器时,需要通过合理的布置和优化结构,以提高传热系数,从而实现更高效的热量传递。

总之,热交换器的原理和设计是一个复杂而又重要的课题,需要综合考虑流体性质、流动状态、传热面积和传热系数等因素,以实现最佳的传热效果。

通过深入研究和不断优化,可以不断提高热交换器的性能,为工业生产和生活提供更加高效和环保的热传递解决方案。

热交换器原理与设计

热交换器原理与设计

t1 t1 (t1 t2 )

根据热平衡式得: W1(t1 t1) W2 (t2 t2 )
于是
t2
t2
W1 W2
(t1
t1)

式①, ②相加整理:
1 t1 t2 (1 W1 )
t1 t2
W2

1.3.3 其他流动方式时的
1)<1-2>型换热器
该型换热器的可直接按式(1.18)作进一步分析求解。
ቤተ መጻሕፍቲ ባይዱ
t1
t1
expma expma
L L
expmb expmb
L L
t1
t1
t2
t2
;
式(1.18)
S为每一流程单位长度上的传热面积,
ma
L=
KF 2W1
1
1
W1 W2
2
mb L=
KF 2W1
1-
1
W1 W2
2
为推导方便,假定热流体为小热容量流体
1.4 换热器热计算方法的比较
设计性热计算和校核性热计算的基本方程都是:
1.2.3、复杂布置时换热器平均温差的计算
壳管式换热器及交叉流式换热器的平均温差一般 采用以下公式来计算:
tm tlmc
式1-13
tlmc 按逆流情况下的对数平 均温差
修正系数
1前.2述.4推流导体过比程热中,或皆传假热定系比数热变c为化常时数的,平此时均流温体差温
度变化与吸收(或放出)的热量成正比即是线性关 系;
1.1 热计算基本方程式
设计性热计算
目的在于确定换热器的F
校和性热计算
针对现成的换热器,其目的在于确定流体的出口温度。 两种热计算采用的基本关系式一致

第1章_热交换器基本原理【《热交换器原理与设计》课件】

第1章_热交换器基本原理【《热交换器原理与设计》课件】

逆流
1.2 平均温差
对顺、逆流的传热温差分析,作如下假设:
1. 冷热流体的质量流量和比热保持定值; 2. 传热系数是常数; 3. 热交换器没有热损失; 4. 沿流动方向的导热量可以忽略不计; 5. 同一种流体从进口到出口,不能既有相变又
有单相对流换热。
要计算整个换热的平均温差,首先需要知道 温差随换热面的变化,即 Δtx= f(Fx),然后再沿 整个换热面积进行平均。
过冷
t1″ t2′
t1′ t2″
放热
过热 沸腾
t1′
部分冷凝
t1″
吸热
t2″
吸热
t1″ t2′
t2′
g :一种流体有相变
h:可凝蒸气和非凝结性 气体混合物的冷凝
1.2.2 顺流、逆流下的平均温差
以顺流为例:已知冷热流体的进出口温度, 针对微元换热面dF一段的传热,温差为:
Δt=t1 – t2

dΔt=dt1 – dt2
Fx dΔt μk dF 0 Δt
dΔt μkdF Δt
Δtx ln μkFx Δt

Δtx
Δt
Δtx Δt e
μkFx
Δtx Δt e
Δt Δt e
"
μkFx
当 Fx = F 时,Δtx =Δt"
μkF
1 1 μ W1 W2
' 2

热容量:
W = M· C
(W/℃)
Q = W1 · Δt1 =W2 · Δt2
W1 Δt2 W2 Δt1
平行流:顺流和逆流
Hot fluid Cold fluid
Hot fluid Cold fluid

热交换器原理与设计

热交换器原理与设计

绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。

3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。

过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。

第一章1.Mc1℃是所需的热量,用W表示。

两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。

2.W—对应单位温度变化产生的流动流体的能量存储速率。

4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。

5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。

6.R—冷流体的热容量与热流体的热容量之比。

(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。

除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。

(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。

9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。

意义:以温度形式反映出热、冷流体可用热量被利用的程度。

10.根据ε的定义,它是一个无因次参数,一般小于1。

其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论
1.
2.热交换器的分类:
1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等
2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。

3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式
4)按照传送热量的方法来分:间壁式,混合式,蓄热式
恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。

过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。

第一章
1.Mc1℃是所需的热量,用W表示。

两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。

2.W—对应单位温度变化产生的流动流体的能量存储速率。

4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。

5.P(定义式P12)
物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。

6.R—冷流体的热容量与热流体的热容量之比。

(定义式P12)
7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。

除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。

(P22 例1.1)
8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。

9.实际传热量Q与最大可能传热量Qmax=Q/Qmax。

意义:以温度形式反映出热、冷流体可用热量被利用的程度。

10.根据ε的定义,它是一个无因次参数,一般小于1。

其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。

11.带翅片的管束,在管外侧流过的气体被限制在肋片之间形成各自独立的通道,在垂直于
流动方向上(横向)不能自由运动,也就不可能自身进行混合,
12.
13.在同样的传热单元数时,逆流热交换器的传热有效度总是大于顺流的,且随传热单元数的增加而增加。

在顺流热交换器中则与此相反,气传热有效度一般随传热单元数的增加而趋于定值。

14.在设计性热计算时,最好采用平均温差法;而在校核性热计算时,传热单元数法更优越。

第二章
1.管壳式换热器流体的流程:
一种流体走管内,另一种流体走管外,管内流体从换热管一端流向另一
端一次,对U形管换热器,管内流体从换热管一端经过U形弯曲段流向另一端一次,称为两程。

较常用的是单管程、两管程和四管程。

1、2、4、6、8、10、12等。

3.折流板的作用:使流体横过管束流动,支承管束,防止管束振动和弯曲。

常用的形式有弓形折流板和盘环形折流板。

4.防冲挡板的作用:减小流体的不均匀分布和对管束的侵蚀和震动。

在壳程进口接管(焊在壳体上,供壳程流体进出)处设置防冲挡板。

5.四种热交换器的区别
6.定性温度的取法大致有:①取流体的平均温度为定性温度;②取壁面温度为定性温度;
③取流体和壁面的平均温度为定性温度;④卡路里温度
7.螺旋板式热交换器的构造包括螺旋形传热板、隔板、头盖、连接管。

8.可拆卸办事热交换器有三个主要部件传热板片、密封垫片、压紧装置组成。

9.板翅式热交换器由隔板、翅片和封条三部分构成。

10.四种管壳式热交换器的区别:
1)固定管板式热交换器:结构简单,重量轻,在壳程程数相同的条件下,可排的管数多。

2)U形管式热交换器:清除管子内壁的污垢困难,管板的有效利用率低,损坏的管子难于调换,管束的中心部分空间对热交换器工作有着不利的影响。

3)浮头式热交换器:能很好适应管子和壳体间温差大、壳程介质腐蚀性强、易结垢的情况;结构复杂,金属消耗量多。

4)填料函式热交换器:填料密封处容易泄漏,故不适用于易挥发、易燃、易爆、有毒和高压流体的热交换,制造复杂,安装不便。

第三章
1.隔板、翅片及封条三部分构成了板翅式热交换器的结构基本单元。

2.冷水塔由淋水装置、配水系统和通风筒组成。

3.喷射式热交换器的主要部件有工作喷管、引入室、混合室和扩散管。

4.热管的工作原理:热管是一种依靠管内工质的蒸发、凝结和循环流动而传递热量的部件。

5.热管传热能力的限制因素:粘性极限,声速极限,携带极限,毛细极限,沸腾极限,连续流动极限,冷冻启动极限。

第六章
1,增强传热的基本途径:1)扩展传热面积F;2)加大传热温差△t;3)提高传热系数K 2.增强传热的方法:1)改变流体的流动情况2)改变流体的物性3)改变换热表面情况3.污垢热阻的成因:
1)钙镁类盐,在水中的溶解度随温度升高而降低,在壁面上形成结晶型污垢。

2)壁面上的锈、杂物、悬浮在燃烧产物中的灰和而未燃尽的颗粒等,一旦进入热交换器就会因流速下降而沉积下来;另一种带负电荷的胶体颗粒与传热面上一层溶于水中的带正电的铁离子互相作用形成沉积型污垢。

3)藻类、菌类本身或其剥落物附着在传热面上形成生物型污垢。

相关文档
最新文档