小学奥数知识讲解-格点与面积

合集下载

小学数学五年级思维奥数寒假讲义-第2讲 格点与面积(教师版)

小学数学五年级思维奥数寒假讲义-第2讲 格点与面积(教师版)

第2讲 格点与面积【知识梳理】一. 正方形格点面积公式(1)定义:在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形。

(2)公式:右图中的乡村小屋图形就是一个格点多边形.下面就看一下其面积的计算。

用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,我们能发现如下规律:12LS N =+-.这个规律就是毕克定理。

二、三角形格点问题(1)定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形。

(2)公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2。

【典例精讲】【例1】图中每个最小正方形的面积都是1平方厘米,那么三个阴影图形的面积分别是多少平方厘米?【答案】4平方厘米;4平方厘米;12平方厘米【解析】左起第一个阴影图形可以分割成4个小正方形,面积为4平方厘米;左起第二个阴影图形可以分割成上、下两个三角形,上面三角形的面积为2×2÷2=2平方厘米,下面三角形的面积是2×2÷2=2平方厘米,则阴影部分的面积为2+2=4平方厘米;左起第三个阴影部分图形可以分割成上面一个三角形、下面一个梯形,上面三角形的面积为5×2÷2=5平方厘米,下面梯形的面积为(2+5)×2÷2=7平方厘米,则阴影部分的面积为5+7=12平方厘米。

【训练1】图中相邻两格点间的距离均为1厘米,那么阴影图形的面积分别为多少平方厘米?【答案】8平方厘米;8平方厘米【解析】左起第一个阴影部分可以分割成8个小正方形,面积为8平方厘米;左起第二个阴影部分可以分割成上、下两个三角形,上面三角形的面积是4×2÷2=4平方厘米,下面三角形的面积为4×2÷2=4平方厘米,则阴影部分的面积为4+4=8平方厘米。

小升初奥数几何问题之格点与面积知识点

小升初奥数几何问题之格点与面积知识点

小升初奥数几何问题之格点与面积知识点【篇一】知识点:(一)正方形格点图面积在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定为1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点。

多边形的所有顶点都在格点上,在方格网中,像图(a)这样的多边形,以格点为顶点画出的多边形叫做格点多边形。

多边形的顶点至少有一个顶点格点上,比如A点,像图(b)这样的多边形虽然除A点之外所有顶点都是格点,但我们还不能把它称为格点多边形。

(二)三角形格点图的面积三角形格点多边形是指:每相邻三点成“∴”或“∵”,形成的三角形都是等边三角形,规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形。

【篇二】常见解题方法:求格点图面积常见的几种方法:数格子法、分割法、扩展法、毕克定理。

(一)数格子法对于格点图里面的规则图形,我们有时可以直接通过数图形所占的正方形方格或者三角形方格的个数得出规则图形的面积,或者由图形得出规则图形相应的面积公式需要的量,代入公式解出面积即可!【详解】本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了。

第(1)图是正方形,边长是4,所以面积是4×4=16(面积单位);第(2)图是矩形,长是5,宽是3,所以面积是5×3=15(面积单位);第(3)图是三角形,底是5,高是4,所以面积是5×4÷2=10(面积单位);第(4)图是平行四边形,底是5,高是3,所以面积是5×3=15(面积单位);第(5)图是直角梯形,上底是3,下底是5,高是3,所以面积是(3+5)×3÷2=12(面积单位);第(6)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18(面积单位)。

下面几种方法主要针对的是格点图中的不规则图形,这也是本专题的重点!(二)分割法直接将格点图中的不规则图形分成若干个可求面积的规则图形,然后通过计算规则图形的面积来求原图形的面积。

小学奥数格点与面积

小学奥数格点与面积

这一讲我们主要介绍利用格点求几何图形的面积,先来介绍什么叫“格点”。

见右图:这是一张由水平线和垂直线组成的方格纸,我们把水平线和垂直线相交的点称为“格点”,水平线和垂直线围成的每个小正方形称为“面积单位”。

借助小格点,我们可以很快地比较和计算图形的面积大小。

利用格点求图形的面积有两种思路,一是直接将图形分成若干个面积单位,然后通过计算有多少个面积单位来求图形的面积;二是将某些图形转化成长方形的面积来求。

当然还可以将这两种方法结合起来,求出某些较复杂图形的面积。

格点面积公式=中间格点数+图形一周的格点数÷2﹢1【典型例题】例1:计算下列各图的面积。

分析:先仔细观察图中的每个图形,选择方法,显然第一、三、五图可以直接数出包含多少个面积单位,而二、四、六显然不适合用数单位面积的方法来求面积,可以采用虚线把这些图形扩展或割补成长方形,通过求长方形的面积来求这些图形的面积。

解:(1)图中长方形的面积包括了3×2=6(个)面积单位,所以它的面积为6个面积单位。

(2)将图中的平行四边形割补成一个长方形,长方形的面积为3×2=6,而平行四边形的面积等于长方形的面积,所以平行四边形的面积是3×2=6(个)面积单位。

(3)将图中三角形用虚线分成3块,它包含1个单位面积和2个单位面积的一半,合起来有2个面积单位,所以它的面积是2个面积单位。

(4)图中三角形扩展成一个长方形,长方形的面积为3×2=6,而三角形面积为长方形面积的一半,则三角形面积为3个面积单位。

(5)将图中梯形用虚线分成3块,它包含了有5个单位面积和2个单位面积的一半。

合起来有6个面积单位。

所以它的面积为6个面积单位。

(6)将图中梯形互相平行的一组对边延长,补出一个与原来梯形方向颠倒,但面积一样的梯形,形成一个大的长方形。

长方形面积为(2+4)×3=18,而梯形的面积为长方形面积的一半,所以梯形的面积是(2+4)×3÷2=9(个)面积单位。

小学奥数-格点型面积.

小学奥数-格点型面积.

板块一正方形格点问题在一张纸上, 先画出一些水平直线和一些竖直直线, 并使任意两条相邻的平行线的距离都相等 (通常规定是 1个单位 ,这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用 N 表示多边形内部格点, L 表示多边形周界上的格点, S 表示多边形面积, 请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.毕克定理若一个格点多边形内部有 N 个格点,它的边界上有 L 个格点, 则它的面积为 12LS N =+-. 例题精讲格点型面积【例 1】用 9个钉子钉成相互间隔为 1厘米的正方阵 (如右图 .如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形, 这样得到的三角形中, 面积等于 1平方厘米的三角形的个数有多少?面积等于 2平方厘米的三角形有多少个?【解析】面积等于 1平方厘米的三角形有 32个. 面积等于 2平方厘米的三角形有 8个.(1 面积等于 1平方厘米的分类统计如下:①②③底为 2,高为 1 底为 2,高为 1 底为 1,高为 2 3×2=6(个 3×2=6(个 3×2=6(个④⑤⑥底为 1,高为 2 底为 2,高为 1 底为 1,高为 2 3×2=6(个 2×2=4(个 2×2=4(个所以,面积等于 1平方厘米的三角形的个数有:6+6+6+6+4+4=32(个 . (2 面积等于 2平方厘米的分类统计如下:3×2=6(个 1×2=2(个所以,面积等于 2平方厘米的三角形的个数有:6+2=8(个 .【例 2】如图, 44⨯的方格纸上放了 16枚棋子,以棋子为顶点的正方形有个.【解析】根据正方形的大小,分类数正方形.共能组成五种大小不同的正方形(如右图 .11⨯的正方形:9个; 22⨯的正方形:4个; 33⨯的正方形:1个;以 11⨯正方形对角线为边长的正方形:4个;以 12⨯长方形对角线为边长的正方形:2个. 故可以组成 9414220++++=(个正方形.【例 3】判断下列图形哪些是格点多边形?⑴⑵⑶【解析】根据格点多边形的定义可知,图形的边必须是直线段,顶点要在格点上!所以只有⑴是格点多边形.【例 4】如图,计算各个格点多边形的面积.【解析】本题所给的图形都是规则图形, 它们的面积运用公式直接可求, 只要判断出相应的有关数据就行了. 方法一:图⑴是正方形,边长是 4,所以面积是 4416⨯=(面积单位 ;图⑵是矩形,长是 5,宽是 3,所以面积是 5315⨯=(面积单位 ;图⑶是三角形,底是 5,高是 4,所以面积是 54210⨯÷=(面积单位 ;图⑷是平行四边形,底是 5,高是 3,所以面积是 5315⨯=(面积单位 ;图⑸是直角梯形,上底是 3,下底是 5,高是 3,所以面积是 353212+⨯÷=( (面积单位 ; 图⑹是梯形,上底是 3,下底是 6,高是 4,所以面积是 364218+⨯÷=( (面积单位 . 【巩固】如果两格点之间的距离是 2,能利用刚计算的结果说出相应面积么? (教师总结:面积数值均扩大 4倍.方法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成长方形来求.这一种方法很重要, 在下面的题目中我们还将使用这种方法!如图⑶,我们利用“扩展法”将其转化,如图所示,从图中易知三角形面积是长方形面积的一半.如图⑷,我们利用“割补法”将其阴影部分面积平移到右边,转化成一个长方形,从中易得平行四边形面积.同理,图⑸、⑹也可利用同样的思想.【例 5】如图 (a ,计算这个格点多边形的面积.【解析】方法一 (扩展法 .这是个三角形,虽然有三角形面积公式可用,但判断它的底和高却十分困难,只能另想别的办法:这个三角形是处在长是 6、宽是 4的矩形内,除此之外还有其他三个直角三角形, 如下右图 (b ,这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积.矩形面积是 6424⨯=;直角三角形Ⅰ的面积是:6226⨯÷=;直角三角形Ⅱ的面积是 :4224⨯÷=; 直角三角形Ⅲ面积是 4224⨯÷=; 所求三角形的面积是 2464410-++=( (面积单位 .方法二 (割补法 .将原三角形分割成两个我们方便计算面积的三角形,如 (c 图.因此三角形的面积是:52252210⨯÷+⨯÷=(面积单位 .【例 6】(“新加坡小学数学奥林匹克”竞赛试题右图是一个方格网,计算阴影部分的面积.【解析】扩展法.把所求三角形扩展成正方形 ABCD 中.这个正方形中有四个三角形:一个是要求的 AEF ; 另外三个分别是:ABE 、 FEC 、 DAF ,它们都有一条边是水平放置的,易求它们的面积分别为 21.5cm , 22cm , 21.5cm .所以,图中阴影部分的面积为:331.5224⨯-⨯+=( (2cm .【例 7】分别计算图中两个格点多边形的面积.⑴⑵【解析】利用“扩展法”和“割补法”我们都可以简单的得到⑴的面积均为 9面积单位.⑵的面积均为 10面积单位.【点评】“一个格点多边形面积的大小很可能是由哪些因素决定呢?” “格点多边形内部的格点数和周界上的格点数与格点多边形的面积有没有什么内在联系呢?”下面我们就来探讨一下!在巩固中,我们发现两个图形面积相等.进一步还可以发现第一个图形边界上的格点数是 8个;第二个图形边界上的格点数是 10个,包含在图形内的格点数也相等,都是 6个.【巩固】求下列各个格点多边形的面积.⑵⑴⑷⑶【解析】⑴∵ 12L =; 10N =,∴ 1211011522L S N =+-=+-=(面积单位 ; ⑵∵ 10L =; 16N =,∴ 1011612022L S N =+-=+-=(面积单位 ;⑶∵ 6L =; 12N =,∴ 611211422L S N =+-=+-=(面积单位 ;⑷∵ 10L =; 13N =,∴ 1011311722L S N =+-=+-=(面积单位 .用 N 表示多边形内部格点, L 表示多边形周界上的格点, S 表示多边形面积, 请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 8】我们开始提到的“乡村小屋”的面积是多少?【解析】图形内部格点数 9N =;图形边界上的格点数 20L = ;根据毕克定理, 则1182LS N =+-=(单位面积 .【例 9】右图是一个 812⨯面积单位的图形.求矩形内的箭形 ABCDEFGH 的面积.毕克定理若一个格点多边形内部有 N 个格点,它的边界上有 L 个格点, 则它的面积为 12LS N =+-.FD B A【解析】箭形 ABCDEFGH 的面积 810214842121232246=+÷-+⨯+÷-⨯=++=( ( (面积单位 .【例 10】右图中每个小正方形的面积都是 1,那么图中这只“狗”所占的面积是多少?19.所以图形的面积为:54192162.5+÷-=(面积单位 .【巩固】如图,每一个小方格的面积都是 1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【解析】方法一:正方形格点阵中多边形面积公式:(N +L2-1 ×单位正方形面积,其中 N 为图形内格点数, L 为图形周界上格点数.有 N =4, L =7,则用粗线围成图形的面积为:(4+72-1 ×1=6. 5(平方厘米方法二:如右上图,先求出粗实线外格点内的图形的面积,有①=3÷2=1. 5,② =2÷2=1,③=2÷2=1,④=2÷2=1,⑤=2÷2=l ,⑥=2÷2=1,还有三个小正方形, 所以粗实线外格点内的图形面积为 1. 5+l +1+1+1+1+3=9. 5,而整个格点阵所围成的图形的面积为 16,所以粗线围成的图形的面积为:16-9. 5=6. 5平方厘米.【例 11】(“小学数学奥林匹克”竞赛试题 55⨯的方格纸,小方格的面积是 1平方厘米,小方格的顶点称为格点.请你在图上选 7个格点,要求其中任意 3个格点都不在一条直线上,并且使这 7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【解析】为了使这 7个点围成最大的面积,这 7个点应尽量在正方形的边或顶点上,如图选取 7个点,围成面积最大.最大面积为 550.5323.5⨯-⨯=(平方厘米 .【例 12】(“保良局亚洲区城市小学数学”竞赛试题第一届保良局亚洲区城市小学数学邀请赛在 7月 21日开幕, 下面的图形中, 每一个小方格的面积是 1, 那么 7、 2、 1三个数字所占的面积之和是多少?【解析】要计算三个数字所占的面积之和,可以先分别求出每个数字所占的面积.显然,图中的三个数字都可以看作格点多边形,根据毕克定理,可以很方便地求出每个数字所占的面积.值得注意的是:数字“7”内部有两个格点,而数字“2”和“1”内部都没有格点. 7 所占的面积为:; 2 所占的面积为:; 1 所占的面积为:.所以,这三个数字所占的面积之和为:.【例 13】 (第六届“从小爱数学” 邀请赛试题两个边长相等的正方形各被分成 25 个大小相同的小方格.现 2 将这两个正方形的一部分重叠起来,若左上角的阴影部分 (块状面积为5.12cm ,右下角的阴影部分(线状面积为 7.4cm 2 ,求大正方形的面积.【解析】块状部分与线状部分之间的部分称为 D,则 D 与前者共 14 个方格,与后者共 17 个方格,因此每个 19 方格的面积是()()(cm2 )25 大正方形的面积为 19cm2 .【例 14】 (第六届“华杯赛”试题图中正六边形ABCDEF 的面积是 54,AP=2PF,CQ=2BQ,求阴影四边形 CEPQ 的面积. A P F A P F B Q C D E B Q C D E 【解析】如图,将正六边形 ABCDEF 等分为 54 个小正三角形.根据平行四边形对角线平分平行四边形面积, PEF 面积, CDE 面积,四边形 ABQP 面积.上述三块面积之和为.因此,阴影四边形 CEPQ 面积为.板块二三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为 1,以这样的点为顶点画出的多边形为三角形格点多边形.关于三角形格点多边形的面积同样有它的计算公式:如果用 S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有,就是格点多边形面积等于图形内部所包含格点数的 2 倍与周界上格点数的和减去 2.【例 15】如图(a,有 21 个点,每相邻三个点成“∵”或“∴” ,所形成的三角形都是等边三角形.计算三角形 ABC 的面积. page 6 of 9A CB B A E F D (bC B A Ⅱ' Ⅰ ' ⅠⅢⅡⅢ' A E C R B H FD (d G C (a (c 【解析】方法一:如图(b所示,在 ABC 内连接相邻的三个点成 DEF,再连接 DC、EA、FB 后是 ABC 可看成是由 DEF 分别延长 FD、DE、EF 边一倍、一倍、二倍而成的,由等积变换不难得到,,,所以 S面积单位.方法二:如图(c所示,作辅助线把图Ⅰ ′、Ⅱ ′、Ⅲ ′分别移拼到Ⅰ、Ⅱ、Ⅲ的位置,这样可以通过数小正三角形的方法,求出 ABC 的面积为 10.方法三:如图(d所示:作辅助线可知:平行四边形 ARBE 中有 6 个小正三角形,而 ABE 的面积是平行四边形 ARBE 面积的一半,即 S AEB ,平行四边形 ADCH 中有 4 个小正三角形,而 ADC 的面积是平行四边形ADCH 面积的一半,即面积单位..平行四边形 FBGC 中有 8 个 FBC 小正三角形,而 FBC 的面积是平行四边形 FBGC 的一半,即:.所以【巩固】如图,每相邻三个点所形成的三角形都是面积为 1 的等边三角形,计算 ABC 的面积. A C 【解析】因为;:所以面积单位.【例 16】求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为 1 的等边三角形. B 【解析】⑴⑵⑶⑷⑴∵;,∴ S ∵;,∴ S ∵; N7 ,∴ S ∵;,∴⑵⑷⑶面积单位;面积单位;面积单位;面积单位.【例 17】把大正三角形每边八等分,组成如右图所示的三角形网.如果大三角形的面积是 128,求图中粗线所围成的三角形的面积.【解析】图中有个小三角形,那么一个小三角形的面积是,图形内部格点数为 12,图形周界上格点数为 4;图形的面积为:面积单位,进而得图形的面积为:52 .【例 18】如图,如果每一个小三角形的面积是 1 平方厘米,那么四边形ABCD 的面积是多少平方厘米? page 7 of 9【解析】法一:正三角形方形格点阵中多边形面积公式:(2N+L-2x 单位正三角形面积,其中 N 为图形内格点数,L 为图形周界上格点数.有 N=9,L=4,所以用粗线围成的图形的面积为:(9×2+4-2×1=20(平方厘米.法二:如下图,我们先数出粗实线内完整的小正三角形有 10 个,而将不完整的小正三角形分成 4 部分计算,其中①部分对应的平行四边形面积为 4,所以①部分的面积为 2,②、③、④部分对应的平行四边形面积分别为 2,8,6,所以②、③、④部分的面积分别为1,4,3.所以粗实线内图形的面积为 10+2+1+4+3=20(平方厘米.【例 19】把同一个三角形的三条边分别 5 等分、7 等分(如图 1,图 2,然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图 1 中阴影部分面积是 294 平方分米,那么图 2 中阴影部分的面积是______平方分米.【解析】图 1 中阴影部分占整个三角形面积的部分的面积为 294÷【例 20】 12 16 ,图 2 中阴影部分占整个三角形面积的,故图 2 中阴影平方分米. 25 49 将图中的图形分割成面积相等的三块.【解析】如右图所示.【例 21】如图涂阴影部分的小正六角星形面积是 16 平方厘米,问:大正六角星形面积是多少平方厘米?【解析】如图,涂阴影部分的小正六角星形可分成 12 个与三角形 PMN 全等(能完全重叠地放在一起的小三角形.而图中的大正六角星形除去小正六角星形后.有6×4=24 个与三角形 PMN 全等的小三角形,所以大正六角星形的面是小正六角星形的 3 倍,即 48 平方厘米. page 8 of 9【例 22】 (第五届“华杯赛”试题正六边形 ABCDEF 的面积是 6 平方厘米.M 是 AB 中点,N 是 CD 中点,P 是 EF 中点.问:三角形 MNP 的面积是多少平方厘米? A M B F P E B R C N D C N D S M A Q F P E 【解析】将正六边形分成六个面积为 1 平方厘米的正三角形,再取它们各边的中点将每个正三角形分为 4 个小正三角形.于是正六边形 ABCDEF 被分成了 24 个小正三角形,每一个小正三角形的面积是平方厘米,三角形 MNP 由 9 个小正三角形所组成,所以三角形 MNP 的面积平方厘米.【例 23】如果下图中任意相邻的三个点构成的三角形面积都是 2 平方厘米.那么,三角形 ABC 的面积是_____平方厘米.【解析】平方厘米 page 9 of 9。

奥数培优 五年级 第3讲 格点与面积

奥数培优  五年级 第3讲  格点与面积

第三讲格点与面积例1、下面是一个格点图,图中有长方形,三角形,平行四边形和梯形各一个,请你利用方格网计算出他们的面积是多少(如图所示阴影部分的校正方形的面积是1平方厘米).例2、图中正方形格点中,这个宝塔图形的面积是多少?(单位:厘米)例3、观察下面四个多边形,计算下列各多边形的面积,并统计每个多边形边界上的格点数和图形内的格点数。

比克定理:任何一个正方形格点多边形的面积都等于图形内部的格点数加上图形边界的格点数除以2的和。

例4、下图是一个四角形,每个小正方形的面积均为1平方厘米,求图中阴影部分的面积。

例5、下面是一个正三角形格点图,共有21个点,其中每相邻的3个点“∴”和“∵”构成的都是面积为1平方厘米的等边三角形,请你计算图中三角形的面积。

思考与练习1、求下面个图形的面积(相邻格点距离1厘米)2、求下图中各图形的面积(相邻格点距离1厘米)3、求下图中各图形的面积(相邻格点距离1厘米)4、下面是一个5×5的方格图,每个小方格的面积是1平方厘米,小方格的顶点为格点。

请你在图中选择7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用线段顺次连接后所围城的面积尽可能大,那么,所围图形的面积是多少平方厘米?5、下图中每相邻3个点所形成的三角形面积均为1,试计算多边形ABCDE的面积。

6、下面是一个5×5的方格图,求出图中阴影部分面积的和(每小格的面积是1平方厘米).7、在下面5×10的方格图中,连接格点,画出4个面积为7的图形,要求每个图形形状都不相同(每个小方格的面积都是1平方厘米).8、如下图所示,正六边形ABCDEF的面积是6平方厘米。

M是AB的中点,N是CD的中点,P是EF的中点,问:三角形MNP 的面积是多少平方厘米?。

奥数格点与面积解题法【三篇】

奥数格点与面积解题法【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《奥数格点与⾯积解题法【四篇】》供您查阅。

【第⼀篇】 直接将格点图中的不规则图形分成若⼲个可求⾯积的规则图形,然后通过计算规则图形的⾯积来求原图形的⾯积。

例:如图所⽰,计算下⾯格点多边形的⾯积 【详解】这虽然是⼀个规则的三⾓形,但是可以直接⽤⾯积公式计算,或者通过数格⼦么?好像不⾏,因为我们现在不能直接算出相应边的长度和⾼!现在尝试⽤扩展法来解! 解题:如图②将原图扩展成⼀个长⽅形,很明显这个长⽅形的长、宽分别为6、4个单位长度,⽽三个扩展的三⾓形A、B、C的⾯积也是很容易求的!A:6×2÷2=6、B:4×2÷2=4、C:2×4÷2=4,所以原三⾓形的⾯积为:6×4-6-4-4=10(⾯积单位)。

【第⼆篇】 直接将格点图中的不规则图形分成若⼲个可求⾯积的规则图形,然后通过计算规则图形的⾯积来求原图形的⾯积。

例:如图所⽰,计算下⾯格点多边形的⾯积 【详解】这虽然是⼀个规则的三⾓形,但是可以直接⽤⾯积公式计算,或者通过数格⼦么?好像不⾏,因为我们现在不能直接算出相应边的长度和⾼!现在尝试⽤分割法和扩展法来解! 解题:如图①做辅助线,将原图分割成两个⼩三⾓形。

这两个⼩三⾓形都以辅助线为底的话,⾼也是很容易就观察出来的,都是2个单位长度,所以原三⾓形的⾯积为:5×2÷2×2=10(⾯积单位)。

【第三篇】 对于格点图⾥⾯的规则图形,我们有时可以直接通过数图形所占的正⽅形⽅格或者三⾓形⽅格的个数得出规则图形的⾯积,或者由图形得出规则图形相应的⾯积公式需要的量,代⼊公式解出⾯积即可! 例:如下图,计算下列各个格点多边形的⾯积: 【详解】本题所给的图形都是规则图形,它们的⾯积运⽤公式直接可求,只要判断出相应的有关数据就⾏了。

三年级升四年级数学暑假奥数班第15讲 格点与面积

三年级升四年级数学暑假奥数班第15讲       格点与面积

第十二站 格点与面积月 日 姓 名【知识要点】 1.格点的意义 如下图所示,是一张方格纸,这种方格纸是由水平线和垂直线相交而组成的。

图中水平 线和垂直线的交点称为格点。

E A D B D C D D2.面积单位的意义 面积相等的每个小正方形称为面积单位, 例如上图中带阴影的小方格就是一个面积单位。

3.利用格点求面积 通常用到“扩展法”或“割补法” 。

“扩展法”通常是根据图形将其扩展为规则图形,利 用规则图形面积减去所求图形以外面积,从而得到图形的面积。

“割补法”通常是把图形通过 割补的方式变为规则图形,从而求得解。

同学们,下面是一道全国希望杯竞赛试题,看起来是不是很难?让我们一起来想想如何 解决它吧! 请将图中所示的三角形 ABC 分成面积相等的六个部分,请给出三种不同的分法。

A A ABCBCBC有点难度是不是?不用怕,认真听讲、多动脑,学完本节课这道题就是小 Case 啦!【典型例题】 例 1 在下列格点里面分别连出一个正方形,一个长方形,一个三角形,一个平行四边形和 一个梯形,并且这些图形的所有顶点都要在格点上。

例 2 个。

下面的格点间距都是 1 厘米,请分别画出面积为 36 平方厘米的正方形、长方形各一例3用割补法求出下图中各个图形的面积。

(单位面积为 1)例4用扩展法求下列图中多边形的面积。

(单位面积为 1)随堂小测姓 名 成 绩1.用“割补”或“扩展”法求下图中各图形的面积。

(单位面积为 1)①②2.下图中四个图形的面积各是多少?(单位面积为 1)3.如图,每个小方格为 1 个单位,则阴影部分的三角形面积为单位面积。

课后作业姓 名 成 绩1.求下图中各图形的面积; (单位面积为 1)2.请在下面的格点中分别画出面积为 8 个单位、12 个单位的两个图形。

(单位面积为 1)3.求下图中各图形的面积。

(单位面积为 1)①②③。

小升初奥数几何问题之格点与面积知识点

小升初奥数几何问题之格点与面积知识点

小升初奥数几何问题之格点与面积知识点【篇一】知识点:(一)正方形格点图面积在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定为1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点。

多边形的所有顶点都在格点上,在方格网中,像图(a)这样的多边形,以格点为顶点画出的多边形叫做格点多边形。

多边形的顶点至少有一个顶点格点上,比如A点,像图(b)这样的多边形虽然除A点之外所有顶点都是格点,但我们还不能把它称为格点多边形。

(二)三角形格点图的面积三角形格点多边形是指:每相邻三点成“∴”或“∵”,形成的三角形都是等边三角形,规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形。

【篇二】常见解题方法:求格点图面积常见的几种方法:数格子法、分割法、扩展法、毕克定理。

(一)数格子法对于格点图里面的规则图形,我们有时可以直接通过数图形所占的正方形方格或者三角形方格的个数得出规则图形的面积,或者由图形得出规则图形相应的面积公式需要的量,代入公式解出面积即可!【详解】本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了。

第(1)图是正方形,边长是4,所以面积是4×4=16(面积单位);第(2)图是矩形,长是5,宽是3,所以面积是5×3=15(面积单位);第(3)图是三角形,底是5,高是4,所以面积是5×4÷2=10(面积单位);第(4)图是平行四边形,底是5,高是3,所以面积是5×3=15(面积单位);第(5)图是直角梯形,上底是3,下底是5,高是3,所以面积是(3+5)×3÷2=12(面积单位);第(6)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18(面积单位)。

下面几种方法主要针对的是格点图中的不规则图形,这也是本专题的重点!(二)分割法直接将格点图中的不规则图形分成若干个可求面积的规则图形,然后通过计算规则图形的面积来求原图形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲 格点与面积
在一张方格图中,每个方格都是一个小正方形,并且大小都相等,我们称为一个面积单位。

例如:右图中带阴影的小方格就是一个面积单位。

借助格点图,我们可以很快的比较或计算图形的面积大小。

典型例题
例[1] 下图是用皮筋在钉板上分别围成的正方形、长方形、平行四边形和三角形。

它们的面积分别是多少?
· · · · · · · · · · · · · · · · · · ·
·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(1) (2) (3) (4)
分析 题中所给的几个图形都是规则图形,它们的面积可以运用公式求得。

而要运用公式,首先要结合点子图计算出有关的边长和高。

解 图(1)是正方形,边长是2,它的面积是2×2=4。

图(2)是长方形,长是4,宽是2,它的面积是4×2=8。

图(3)是平行四边形,从平行四边形的左边移动一个直角三角形到右边,使得平行四边形变成一个长方形,所求的面积是3×F C B E D A。

相关文档
最新文档