深度学习详解

合集下载

深度学习概述

深度学习概述

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

目录1简介2基础概念▪深度▪解决问题3核心思想4例题5转折点6成功应用1简介深度学习的概念源于人工神经网络的研究。

含多隐层的多层感知器就是一种深度学习结构。

深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

[2]深度学习的概念由Hinton等人于2006年提出。

基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

[2]2基础概念深度:从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flow graph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算并且一个计算深度学习的值(计算的结果被应用到这个节点的孩子节点的值)。

考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。

输入节点没有孩子,输出节点没有父亲。

这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。

传统的前馈神经网络能够被看做拥有等于层数的深度(比如对于输出层为隐层数加1)。

SVMs有深度2(一个对应于核输出或者特征空间,另一个对应于所产生输出的线性混合)。

深度学习基础知识

深度学习基础知识

深度学习基础知识深度学习(Depth Learning)是机器学习的一个重要分支,旨在模仿人类大脑的工作方式,通过神经网络的构建和训练实现智能化的数据分析与决策。

在深度学习的背后,有一些基础知识需要我们掌握,才能更好地理解和应用深度学习技术。

一、神经网络的基本结构神经网络是深度学习的核心,它由多个神经元组成,每个神经元都有激活函数,能接收来自其他神经元的输入,并产生输出。

神经网络通常包括输入层、隐藏层和输出层,其中隐藏层可以有多个。

输入层接受外部数据输入,隐藏层负责对数据进行特征提取和转换,输出层产生最终的结果。

二、梯度下降算法梯度下降算法是深度学习中最基础且最常用的优化算法,用于调整神经网络中各个神经元之间的连接权重,以最小化损失函数。

在训练过程中,通过计算损失函数对权重的偏导数,不断地更新权重值,使得损失函数逐渐减小,模型的性能逐渐提升。

三、反向传播算法反向传播算法是神经网络中用于训练的关键算法,通过将误差从输出层倒推到隐藏层,逐层计算每个神经元的误差贡献,然后根据误差贡献来更新权重值。

反向传播算法的核心思想是链式法则,即将神经网络的输出误差按照权重逆向传播并进行计算。

四、卷积神经网络(CNN)卷积神经网络是一种主要用于图像处理和识别的深度学习模型。

它通过共享权重和局部感受野的方式,有效地提取图像中的特征。

卷积神经网络通常包括卷积层、池化层和全连接层。

其中卷积层用于提取图像中的局部特征,池化层用于降低特征的维度,全连接层用于输出最终的分类结果。

五、循环神经网络(RNN)循环神经网络是一种主要用于序列数据处理的深度学习模型。

它通过引入时间维度,并在每个时间步上传递隐藏状态,实现对序列数据的建模。

循环神经网络可以解决序列数据中的时序依赖问题,适用于音频识别、语言模型等任务。

六、生成对抗网络(GAN)生成对抗网络是一种通过让生成器和判别器相互博弈的方式,实现模型训练和生成样本的深度学习模型。

生成器负责生成与真实样本相似的假样本,判别器负责对真假样本进行分类。

深度学习概念

深度学习概念

深度学习概念深度学习是一种基于人工神经网络的机器学习方法,它模仿人类大脑的结构和工作原理,通过多个神经网络层的组合和训练来实现对大规模数据的分析和处理。

深度学习以其出色的性能和广泛的应用领域而备受关注。

本文将从深度学习的定义、原理、应用以及存在的挑战等方面进行深入探讨。

一、深度学习的定义深度学习是机器学习领域中的一个重要分支,它通过构建和训练多层神经网络来提取和学习数据的特征。

与传统的机器学习算法相比,深度学习通过增加网络的深度,能够更好地处理具有复杂结构和高维度的数据。

深度学习的核心思想是模拟人脑中神经元之间相互连接的复杂关系,从而实现对数据的有效表示和分析。

二、深度学习的原理深度学习的实现依赖于人工神经网络,尤其是深度神经网络。

深度神经网络由多个神经网络层组成,每一层都包含多个神经元。

网络的输入层接收原始数据,随着数据通过每一层的传递,神经元将对数据的特征进行抽象和提取。

最后,网络的输出层将产生对数据进行分类、识别或预测的结果。

深度学习通过反向传播算法来训练神经网络,即通过不断调整网络参数来最小化预测结果与实际结果之间的误差。

这一过程需要大量的标记数据和计算资源,但可以通过GPU加速来提高训练效率。

同时,深度学习还可以利用无监督学习的方法来进行特征学习,从而减少对大量标记数据的依赖。

三、深度学习的应用深度学习在各个领域都有广泛的应用,包括计算机视觉、自然语言处理、语音识别、推荐系统等。

在计算机视觉领域,深度学习能够对图像进行分类、目标检测和图像生成等任务。

在自然语言处理领域,深度学习可以实现文本分类、机器翻译和情感分析等任务。

在语音识别领域,深度学习可以提高语音识别的准确度和稳定性。

在推荐系统领域,深度学习能够通过分析用户兴趣和行为来实现个性化推荐。

四、深度学习的挑战虽然深度学习在许多领域取得了重大突破,但仍然存在一些挑战。

首先,深度学习需要大量的标记数据来进行训练,这对于一些领域来说可能存在数据获取的难题。

深度学习介绍 ppt课件

深度学习介绍 ppt课件

自编码器的建立
建立AutoEncoder的方法是:
对于m个数据的输入,有:
Code编码:使用非线性激活函数,将维输入数据映射到维隐含层(隐含节点表示特 征)
其中W是一个的权重矩阵,b是一个d'维的偏移向量 Decode解码:通过反向映射,对映射后的数据进行重建
hi
yi
SAE网络每一次训练输入都会得到映射后的 与解码后的 。通过对代价函数的最优
深层带来的好处
为什么采用层次网络
预训练与梯度消失现象
主要内容
自编码器结构
单层自动编码器网络(AutoEncoder)实质上是一个三层的反向传播神经网络。它逐 层采用无监督学习的方式,不使用标签调整权值,将输入映射到隐含层上,再经过反 变换映射到输出上,实现输入输出的近似等价。
X1 X2 X3 X4 X5 +1
RBM网络有几个参数,一个是可视层与隐含 层之间的权重矩阵,一个是可视节点的偏移 量b,一个是隐含节点的偏移量c,这几个参 数决定了RBM网络将一个m维的样本编码成 一个什么样的n维的样本。
受限玻尔兹曼机
RBM介绍

RBM训练
一般地,链接权重Wij可初始化为来自正态分布N(0,0.01)的随机数,隐 单元的偏置cj初始化为0; 对于第i个可见单元,偏置bj初始化为log[pi/(1-pi)] 。pi表示训练样本中 第i个特征处于激活状态所占的比率 学习率epsilon至关重要,大则收敛快,但是算法可能不稳定。小则 慢。为克服这一矛盾引入动量,使本次参数值修改的方向不完全由当 前样本似然函数梯度方向决定,而是上一次参数值修改方向与本次梯 度方向的结合可以避免过早的收敛到局部最优点
激活函数
y f (x)

深度学习技术及其应用场景详解

深度学习技术及其应用场景详解

深度学习技术及其应用场景详解深度学习是一种计算机科学中的人工智能(AI)领域的技术,通过多层神经网络模拟人脑的运作方式,从而实现对大数据的深层次分析和学习。

它的发展在过去几年内取得了巨大的进展,并在多个领域展现出了广泛的应用前景。

本文将详细介绍深度学习的技术原理以及它在图像识别、自然语言处理和医疗等领域的应用场景。

一、深度学习技术原理深度学习的基本原理是通过构建多层神经网络来模拟人脑神经元之间的连接和信息传递。

神经网络由输入层、隐藏层和输出层组成,每个神经元都与前一层和后一层的神经元相连。

每个神经元都有一个权重和一个激活函数,通过不断调整权重和激活函数的参数,神经网络能够自动学习提取特征和进行模式识别。

深度学习的训练过程通常使用反向传播算法,即通过将预测结果与实际结果进行比较,并根据误差调整权重和激活函数的参数。

这个过程通常需要大量的标记数据和计算资源来进行模型的训练和优化。

随着深度学习算法的不断发展和优化,深度学习模型在处理图像、语音、文本等各种形式的数据方面取得了出色的表现。

二、深度学习在图像识别中的应用场景深度学习在图像识别领域的应用可以说是最为广泛和成熟的。

通过深度学习技术,计算机可以自动识别和分类图像中的各种对象。

例如,在无人驾驶汽车中,深度学习模型可以通过分析与地标、交通信号和其他车辆相关的图像来实现环境感知和智能驾驶。

在医学影像分析中,深度学习可以帮助医生识别疾病特征,提高诊断准确率。

另一个重要的应用场景是人脸识别。

深度学习模型可以通过学习大量的人脸图像来实现高精度的人脸识别,这在安全领域、手机解锁等方面有着广泛的应用。

三、深度学习在自然语言处理中的应用场景自然语言处理(NLP)是指计算机处理和理解人类语言的技术。

深度学习在NLP领域的应用也逐渐成为研究的热点。

通过深度学习技术,计算机可以对文本进行情感分析、机器翻译、问答等任务。

例如,机器翻译是NLP领域的一个重要应用。

深度学习模型可以通过大量平行语料库来学习源语言和目标语言之间的映射关系,从而实现准确的翻译。

深度学习技术的使用方法和步骤详解

深度学习技术的使用方法和步骤详解

深度学习技术的使用方法和步骤详解深度学习技术是人工智能领域中的一种重要技术,采用多层神经网络模型来模拟人类的神经系统,具备自动学习和自动调整参数的能力。

在各个行业中,深度学习技术被广泛应用于图像识别、语音识别、自然语言处理等领域。

本文将详细介绍深度学习技术的使用方法和步骤,帮助读者了解如何应用深度学习技术解决实际问题。

第一步:数据准备深度学习技术对数据的质量和数量要求较高,因此第一步是准备数据。

这包括数据收集、数据清洗和数据预处理等过程。

数据收集可以通过爬虫技术获取互联网上的公开数据,也可以通过传感器等设备采集物理世界中的数据。

数据清洗是指对原始数据进行去噪、去重、格式转换等处理,以保证数据的质量。

数据预处理则包括对数据进行标准化、归一化、特征提取等操作,以便于后续深度学习模型的训练和预测。

第二步:选择合适的深度学习模型深度学习模型有多种类型,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。

根据具体的任务需求,选择合适的深度学习模型是非常重要的。

例如,在图像识别领域,通常使用CNN模型,而在自然语言处理领域,往往使用RNN或LSTM模型。

选择合适的模型可以提高模型的准确性和效率。

第三步:设计神经网络结构在选择了深度学习模型之后,需要设计神经网络的具体结构。

一个典型的神经网络结构由输入层、隐藏层和输出层组成。

输入层用于接收原始数据,隐藏层用于提取数据中的特征,输出层用于进行分类或回归等任务。

神经网络的结构设计需要根据具体问题进行调整,例如调整隐藏层的数量和神经元的个数等。

根据问题复杂度的不同,神经网络的结构也可以非常复杂。

第四步:模型训练与参数调优当数据准备和神经网络结构设计完成后,就可以进行模型的训练和参数调优。

模型的训练是指通过大量的数据样本,让网络逐渐调整参数,使其拟合输入数据。

通常采用梯度下降算法来优化模型参数,以最小化预测误差。

在模型训练过程中,可以使用交叉验证方法来评估模型的性能,并根据评估结果进行参数的调优。

深度学习详解37页PPT文档

深度学习详解37页PPT文档
深度学习与浅层学习的区别
强调了模型结构的深度,通常有5-10多层的隐层节点;
明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
深度学习的训练方法
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往 顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习
基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
深度学习的几种常用模型
Auto Encoder(自动编码器) Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机) Deep Belief Networks (深度信任网络) Convolutional Neural Networks (卷积神经网络)
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
Convolutional Neural Networks(CNN)
Convolutional Neural Networks(CNN)
卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领 域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网 络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现 的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的 特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层 感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度 不变性。

深度学习基础教程

深度学习基础教程

深度学习基础教程
1. 什么是深度学习?
深度学习是一种机器学习技术,它模拟了人脑神经网络的工作原理,通过大量的数据训练神经网络模型,来实现对复杂问题的自动学习和解决。

2. 神经网络的基础结构
神经网络由多层神经元组成,每个神经元接收上一层神经元的输出,并将其加权求和后通过激活函数进行非线性转换。

3. 激活函数的作用
激活函数在神经元中引入非线性,增加了网络的表达能力。

常见的激活函数有ReLU、Sigmoid和Tanh等。

4. 误差函数和损失函数
误差函数用于衡量网络预测值与真实值之间的差异,而损失函数则是对整个样本集上误差函数的平均或总和。

5. 反向传播算法
反向传播算法是深度学习中的核心算法,通过计算误差函数关于参数的梯度,然后利用梯度下降法来更新参数,实现网络的训练。

6. 优化方法
为了加速网络的训练过程,常常使用一些优化方法,如随机梯度下降、动量法、学习率衰减等。

7. 卷积神经网络(CNN)
卷积神经网络是一种特殊的神经网络结构,它通过卷积操作和池化操作来提取图像等数据的特征,并在分类、目标检测等任务上取得了巨大成功。

8. 递归神经网络(RNN)
递归神经网络是一种具有记忆功能的神经网络结构,主要用于处理序列数据,如自然语言处理和语音识别等任务。

9. 预训练和迁移学习
预训练和迁移学习是利用已经训练好的神经网络模型,来加速和改进新任务的训练过程。

10. 深度学习应用领域
深度学习在计算机视觉、自然语言处理、语音识别、推荐系统等众多领域都取得了显著的成果,且正在不断拓展应用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CNN的Pooling过程
图像具有一种“静态性(stationarity)”的属性,可以对图像某一个区 域上的特征取平均值 (或最大值)。这种聚合的操作就叫做池化 (pooling)。
如果人们选择图像中的连续范围作为池化区域,并且只是池化相同(重复) 的隐藏单元产生的特征,那么,这些池化单元就具有平移不变性 (translation invariant)。这就意味着即使图像经历了一个小的平移之后,依然会产生相同 的 (池化的) 特征。
深度学习
自2006年,深度学习(Deep Learning)已经成为机器
学习研究中的一个新兴领域,通常也被叫做深层结构 学习或分层学习。其动机在于建立、模拟人脑进行分 析学习的神经网络,它模拟人脑的机制来解释数据, 例如图像,声音和文本,深度学习是无监督学习的一 种。 深度学习的概念源于人工神经网络的研究,含多隐层 的多层感知器就是一种深度学习结构。深度学习通过 组合低层特征形成更加抽象的高层表示属性类别或特 征,已发现数据的分布式特征表示。
经典例子:文字识别系统LeNet-5
1. 输入图像是32x32的大小,卷积核的大小是5x5的,则C1层的大小是28x28。这 里设定有6个不同的C1层,每一个C1层内的权值是相同的。 2. S2层是一个下采样层,由4个点下采样为1个点,也就是4个数的加权平均, 加权系数也需要通过学习得到。这个过程也叫做Pool。 3.我们很容易得到C3层的大小为10x10,不过,C3层有16个10x10网络! 我们只 需要按照一定的规则来组合S2的特征图。具体的组合规则在 LeNet-5 系统中给 出了下面的表格:
1.从EEG信号样本中提取子样本,从而降低数据的大小以便分析。 等同于把信号用120HZ的抽样率采样。 2.用0.1到20HZ的带通滤波器处理输入数据 CNN的输入: 一个 矩阵。其中 是我们采集EEG信号时所 有的电极的数量。 是每个电极采集到的EEG信号正则化以后 长度。我们令 。 每个样本代表一部分经过650ms频闪灯后采集的信号。
神经网络拓扑结构
网络拓扑结构是分类器的关键特征。 网络由五层组成,每一层由一个或多个特征图组成。一个特征
图代表一层的本质,含有一个特殊的语义:
1.第一层隐层的每个特征图代表一个电极通道的特征。 2.第二层隐层时间域上对信号进行下采样和变换。
神经网络拓扑结构
CNN的学习规律
在卷积神经网络的学习过程当中,主要运用前向传播和反向传播两种学 习法则来优化权值,学习到一个最优的滤波器来提取特征。 (1) 前向传播 如果用l来表示当前的网络层,那么当前网络层的输出为:
受到大脑结构分层的启发,神经网络的研究发现多隐
层的人工神经网络具有优异的特征学习能力,学习得 到的特征对数据有更本质的刻画,从而有利于可视化 或分类;而深度神经网络在训练上的难度,可以通过 “逐层初始化”来有效克服。 深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces
P300检测
P300检测:检测P300的响应。
二分类:信号呈一个P300波形,则认为检测到;否则,检
特征的自学习
传统的模式识别方法:
通过传感器获取数据,然后经过预处理、特征提取、特 征选择、再到推理、预测或识别。 特征提取与选择的好坏对最终算法的确定性齐了非常关 键的作用。而特征的样式目前一般都是靠人工提取特征。 而手工选取特征费时费力,需要专业知识,很大程度上 靠经验和运气,那么机器能不能自动的学习特征呢?深 度学习的出现就这个问题提出了一种解决方案。
CNN的优点
参数减少与权值共享 如下图所示,如果我们有1000x1000像素的图像,有1百万个隐层神经元, 那么他们全连接的话(每个隐层神经元都连接图像的每一个像素点),就有 1000 1000 1000000=1012 个连接,也就是10^12个权值参数。 局部连接网络,每一个节点与上层节点同位置附近10x10的窗口相连接, 6 8 则1百万个隐层神经元就只有 10 100 10 ,即10^8个参数。其权值连 接个数比原来减少了四个数量级。
测不到。 挑战性: 尽管我们可以从实验中的范例得知P300的预期响应在什么 时候,但是P300的响应取决于被试者。 实际上,即使一个P300响应可以被预测为在一个特定的时 间点,但是被试者很可能不会在像人工产品一样在正确的 时刻产生P3电极采集的EEG信号 输入数据正则化:
Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机)
Deep Belief Networks (深度信任网络)
Convolutional Neural Networks (卷积神经网络)
Convolutional Neural Networks(CNN)
Deep Learning
目录
深度学习简介 深度学习的训练方法 深度学习常用的几种模型和方法 Convolutional Neural Networks卷积神经网络
卷积神经网络(CNN)在脑机接口中的应用
What is Deep Learning?
A brief introduce of deep learning
深度学习的实质 通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。 深度学习与浅层学习的区别 强调了模型结构的深度,通常有5-10多层的隐层节点; 明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
卷积神经网络原理图
如图所示,输入图像(Input)通过和三个可训练的卷积核和可加偏置进行 卷积,卷积后在C1层产生三个特征映射图(Feature map)然后,C1层的 Feature map在经过子采样(Subsampling)后,加权值,加偏置,再通过一个 Sigmoid函数得到三个S2层的特征映射图。
深度学习的训练方法
与神经网络的异同
深度学习与神经网络的异同
神经网络 深度学习
深度学习与神经网络的异同
相同点 二者均采用分层结构,系统包括输入层、隐层(多层)、 输出层组成的多层网络,只有相邻层节点之间有连接,同 一层以及跨层节点之间相互无连接,每一层可以看作是一 个logistic 回归模型。 不同点:采用不同的训练机制 神经网络:采用BP算法调整参数,即采用迭代算法来训 练整个网络。随机设定初值,计算当前网络的输出,然后 根据当前输出和样本真实标签之间的差去改变前面各层的 参数,直到收敛; 深度学习:BP算法不适合深度神经网络,如果对所有层 同时训练,时间复杂度会太高,如果每次训练一层,偏差 逐层传递会出现过拟合。因此深度学习整体上是是一个分 层训练机制。
CNN的Convolution过程
如图,原图像是5*5大 小,有25个神经元,用一 个3*3的卷积核对它进行 卷积,得到了如右图所示 的卷积后的Feature map。 该特征图大小为3*3。
假设一种卷积核只提取出图像的一种特征,所以一般要多个卷积核 来提取不同的特征,所以每一层一般都会有多张Feature map。 同一张Feature map上的神经元共用一个卷积核,这大大减少了网络 参数的个数。
卷积神经网络避免了显式的特征取样,隐式地从训练数据中进行学习。 这使得卷积神经网络明显有别于其他基于神经网络的分类器,通过结构重组 和减少权值将特征提取功能融合进多层感知器。它可以直接处理灰度图片, 能够直接用于处理基于图像的分类。
卷积神经网络较一般神经网络在图像处理方面有如下优点: a)输入图像和网络的拓扑结构能很好的吻合; b)特征提取和模式分类同时进行,并同时在训练中产生; c)权重共享可以减少网络的训练参数,使神经网络结构变得更简单,适应 性更强。
人脑的视觉机理
1981年的诺贝尔医学奖获得者 David Hubel和Torsten Wiesel发现了视觉系统的信息处理机制,他们发现了一 种被称为“方向选择性细胞的神经元细胞,当瞳孔发现 了眼前的物体的边缘,而且这个边缘指向某个方向时, 这种神经元细胞就会活跃。
由此可知人的视觉系统的信息处理是分级的,高层的特 征是低层特征的组合,从低层到高层的特征表示越来越 抽象,越来越能表现语义或者意图,抽象层面越高,存 在的可能猜测就越少,就越利于分类。
4. S4 层是在C3层基础上进行下采样,前面已述。在后面的层中每一层节 点个数比较少,都是全连接层,这里不再赘述。 小结: 经过计算,LeNet-5系统总共需要大约13万个参数,这与前面提到的全 连接系统每个隐藏层就需要百万个参数有着天壤之别,极大地减少了计算 量。 在以上的识别系统中,每个特征图提取后都紧跟着一个用来求局部平均 与二次提取的亚取样层。这种特有的两次特征提取结构使得网络对输入样 本有较高的畸变容忍能力。也就是说,卷积神经网络通过局部感受野、共 享权值和亚取样来保证图像对位移、缩放、扭曲的鲁棒性。
浅层学习与深度学习
传统机器学习和信号处理技术探索仅含单层非线性变
换的浅层学习结构。浅层模型的一个共性是仅含单个 将原始输入信号转换到特定问题空间特征的简单结构。 典型的浅层学习结构包括传统隐马尔科夫模型(HMM)、 条件随机场(CRFs)、最大熵模型(Max Ent)、支持向量 机(SVM)、核回归及仅含单隐层的多层感知器(MLP)等。 浅层结构的局限性在于有限的样本和计算单元情况下 对复杂的函数表示能力有限,针对复杂分类问题其泛 化能力受到一定的制约。
相关文档
最新文档