烃源岩评价方法-3
烃源岩评价

<0.4
<0.01
<100
<1
岩石热解(Rock Eval)
系指烃源岩评价,其特点是利用热 解法,直接分析岩样,样品用量少, 简便、分析速度快、成本低。可对钻 井剖面做初步生油评价。
岩石热解分析仪
RockEval6
原理:测出岩石中的热蒸发及热裂解烃类的 绝对含量。利用程序升温将岩石样品中的烃 类物质热蒸发及热裂解分离出来,再由载气带 入FID分别检测
超临界抽提方法
有机质的转化率
岩样和煤样
对于岩屑,则先用镊子仔细挑选出真正有代 表性的岩石碎片,然后用水洗去表面沾污的泥 浆、泥土等杂质,在用氯仿或苯-甲醇混合溶 剂淋洗 1-2分钟,低温干燥后粉碎过筛,装 瓶待用。为防止碎样时因发热而使部分有机质 挥发、变质,我们一般用密封式化验制样粉碎 机或用铜研钵人工研碎。
古气候条件:温暖、湿润
氧化还原条件:还原条件
II 烃源岩地球化学
有机质的丰度 有机质的类型 成熟度指标 有机质的转化率 油源对比
有机质的丰度
主要的指标:有机碳
(干酪根 +可溶有机质) 氯仿沥青A
泥质岩石:0.5%--- 15% 碳酸盐岩: 0.1%---- 0.3%
有测机定元仪素
原理:将被测物质(固体、液体)放入高
的温H2O气炉、体燃N2物烧。质,将采生其用成它吸的的附气干体—扰混解气合吸体物装清主置除要分后为离,C,余O2再下、 用热导或红外检测器检测出各种气体含 量,最后利用化学反应原理计算出各种元 素的百分含量。
C/H=6~7.5 C/H=7.5~9
生油岩系指在相同的地质背景下 和一定地史阶段中形成的生油岩 与非生油岩石的组合
泥质岩石烃源岩
烃源岩石油地球化学评价方法

第 38 卷 第 2 期 2017 年 4 月
国 外 测 井 技 术 WORLD WELL LOGGING TECHNOLOGY
Vol.38 No.2 Apr. 2017
㊃ 新技术介绍 ㊃
烃源岩石油地球化学评价方法
Kevin McCarthy Katherine Rojas 美国得克萨斯州休斯敦 Daniel Palmowski 德国 Aachen Martin Niemann 法国 Roissy-en-France Artur Stankiewicz 法国 Clamart Kenneth Peters 美国加利福尼亚州 Mill Valley
第 38 卷 第 2 期
Kevin McCarthy 等: 烃源岩石油地球化学评价方法
65
和准确描述分析具有开发前景的含油气系统的所有 要素。因此, 除了要正确评价其远景构造中的储层、 圈闭和盖层, 勘探与生产公司还必须评估源岩的生 油能力。石油地球化学通过分析控制烃源岩丰度和 分布的要素和过程, 能够帮助提高勘探与开发效率, 为盆地和含油气系统建模提供宝贵的输人资料。本 文介绍了地学家用来评价源岩质量、 数量和成熟度 的基本地球化学原理和方法。
随着油气远景区的勘探日趋复杂, 越来越多的勘探与生产公司正在转向采用地球化学方法来 评价烃源岩这一决定一口井成败的关键要素。 每个油气远景区都源于烃源岩。每个远景区 (无论是常规还是非常规远景区, 也不管是石油还 是天然气远景区) 是否具有开发前景都取决于其烃 源岩。如果不具备油气来源, 开发远景区所必须研 究的所有其他要素和过程都变得无关紧要。 从广义上讲, 烃源岩是指富含有机质的细粒岩 石, 在一定程度的温度和压力下能够生成油气。生 成石油的潜力直接取决于其体积、 有机质丰度和热 成熟度。尽管烃源岩的体积 (取决于层厚和面积) 也很重要, 但本文将主要讨论其他两个特征要素。 有机质丰度是指岩石中蕴藏的有机质种类和含 量。热成熟度是指烃源岩暴露于热过程的时间。 烃源岩在沉积层下埋藏越深, 积热越高。其中的有 机质经过热变而生成石油。 不同盆地其油气生成机理也不一样, 具体取决 于沉积相、 埋藏史、 构造特征及其他地质过程; 但大 致都沿袭相当简单的模式。富含有机质的沉积物 沉积后、 发生微生物发酵过程, 把部分有机质转化 成生物甲烷气。随着埋藏深度越来越深, 依据盆地 的地热梯度, 积热越来越大, 有机质渐渐热变成不 溶性物质, 即干酪根。随着热量的进一步积聚, 干 酪根继续热变。上述系列热变导致后期生成的石 油化合物的演变。随着热量继续积聚, 干酪根继续 转变, 最终生成沥青和石油。变成石油后, 干酪根 更加贫氢。成熟度增加也使原来比较复杂的石油 化合物结构变得简单-通常一开始是油, 然后变成 湿气, 最后是干气。 这一基本模型是油气勘探最重要的概念之一 (即含油气系统) 。这一概念解释了油气生成、 排 出、 运移和积聚过程, 而烃源岩是其基础 (图 1) 。常
塔城盆地古生界烃源岩评价

塔城盆地古生界烃源岩评价摘要:从烃源岩的有机质丰度、有机质成熟度、有机质类型对塔城盆地古生界志留系、石炭系、二叠系的烃源岩进行评价,同时对烃源岩的地球化学特征进行了分析。
评价结果认为塔城盆地煤系烃源岩具有一定的生烃潜力,其他烃源岩为非-差烃源岩,不具备生烃潜力,为下一步的勘探提供依据。
关键词:烃源岩有机质丰度成熟度类型塔城盆地1 地质背景塔城盆地是在古生代褶皱基底上发育的新生代山间盆地,是一个多旋回的叠加复合型盆地,位于哈萨克斯坦板块东端,西准噶尔褶皱带内,周缘被海西期的褶皱山系环绕,盆地的西半部延伸至哈萨克斯坦境内。
2 烃源岩有机质丰度、类型及成熟度2.1 烃源岩有机质丰度志留系烃源岩以暗灰色灰岩、灰紫色凝灰礫岩、暗色泥岩、板岩为主。
该套地层露头暗色泥岩样品的有机质丰度很低,有机碳含量仅为0.07%,氯仿“A”含量为0.0021%,生烃潜量(S1+S2)为0.04mg/g,属于非生油岩。
泥盆系烃源岩为一套暗色泥岩、凝灰岩夹生物灰岩、沉凝灰岩夹煤层、煤线。
下泥盆地层露头泥岩样品的有机质丰度差,有机碳含量很低,其值小于0.10%,氯仿沥青“A”含量为0.0013%,生烃潜量为0.03mg/g,该套泥质烃源岩为非生油岩。
中泥盆地层露头泥岩样品的有机碳含量为0.38%~1.12%,氯仿沥青“A”含量0.0016%~0.0099%,生烃潜量为0.05~0.11mg/g,该套泥质烃源岩为差生油岩。
煤的有机碳含量较高,其含量为13.19%,氯仿沥青“A”含量为0.3393%,生烃潜量为39.65mg/g,煤系烃源岩为好的生油岩。
上泥盆地层露头泥岩样品的有机质丰度很低,有机碳含量为0.09%~0.13%,氯仿沥青“A”含量为0.0022%,生烃潜量为0.04~0.12mg/g,该套泥质烃源岩为非生油岩。
总体来看泥盆系泥质烃源岩的有机质丰度差,为非-差生油岩,而煤系烃源岩的有机质丰度好于泥岩。
石炭系主要为一套海陆交互相的碎屑岩和火山岩,其烃源岩为暗色泥岩、炭质泥岩及煤线。
烃源岩 评价ppt课件

演化阶段 成岩作用 深成作用
干酪根类型 Ⅰ Ⅱ 1.25 1.34 1.20 1.19
煤 Ⅲ 1.48 1.18
1.57
1.12
有机质丰度指标
从分析原理来看,有机碳即包括占岩石有机质发部分的干酪根中的 碳,也包括可溶有机质的碳,但不包括已经从烃源岩中所排出的油气中 的碳和虽然残留与岩石中,但相对分子质量较小、因而挥发性较强的轻 质油和天然气中的碳。
有机质丰度指标
3、生烃势
对岩石热解分析得到的S1称为残留烃,相当于岩石中已由有机质生 成但尚未排出的残留烃, 也被称为游离烃或热解烃。分析所得S2为裂解 烃,本质上是岩石中能够生烃但尚未生烃的有机质,对应着不溶有机质 中的可产烃部分。所以(S1+S2)被称为Genetic Potential,中文译为生烃 潜力或生烃潜量,本书建议译为生烃势(油气地球化学)。它包括烃源 岩中已经生成和潜在能生成的烃量之和,但不包括生成后已经从烃源岩 中排出的部分,单位是mg/g。
有机质丰度指标
2、氯仿沥青“A”和总烃(HC,10-60)
氯仿沥青“A” 是指用氯仿从沉积岩中溶解出来的有机质。反映了沉 积岩中可溶有机质的含量,通常用占岩石质量的百分比表示。严格地讲, 它作为生烃和排烃作用的综合结果,只能反映烃源岩中残余可溶有机质 的丰度而不能反映总有机质的丰度。 总烃 氯仿沥青“A”中饱和烃和芳香烃之和称为总烃。通常用占岩石 质量的百万分作单位。它反映的是烃源岩中烃类的丰度而不是总有机质 的丰度。 从本质上看,氯仿沥青“A”和总烃是一个残油、残烃量的指标,因 此,其价值高,可能不一定表明生烃条件好,反而可能只是烃源岩的排 烃条件不好,即指示这类烃源岩对成藏的贡献可能有限。
煤系烃源岩TOC测井资料评价方法

源岩
项目
TOC,%
S1+S2 (mg/g)
沥青A(%) 总烃
煤系泥岩 (ppm)
TOC(%)
HI(mg/g)
S1+S2 碳质泥岩 (mg/g)
HI,mg/g
S1+S2 (mg/g)
沥青A(%)
总烃
煤
(ppm)
非 <0.75
<0.5 <0.015
<50 <6 <60
<10 <150
<100 <0.75
J1b 16.08 30.62 38.92 1.24 0 13.03 0 0
差好烃烃源源岩岩 中等碳质泥岩
非烃源岩
煤层 中等烃源岩
J2x1+2
J2x1+2 J2x1+2
五、烃源岩测井评价 的实际应用
2.区域烃源岩测井评价(以温吉桑J1s层为例)
温 深 1井
GR TOC
岩分 性层 375 0
单 面 3 7 6 0
本次研究依据烃源岩有机
碳含量重新划分烃源岩岩性, 划分标准为王昌桂等(1998) 提出的划分标尺(TOC<6% 为泥岩,TOC介于6%~40% 之间为炭质泥岩,TOC>40% 为煤岩)。在重新划分岩性的 基础上,采用陈建平(1997) 提出的烃源岩有机质丰度评价 标准
煤系油源岩有机质丰度评价标准(陈建平等,1997)
LOM与Ro的关系
LOM Tmax(TypeⅡ)℃ Ro
1
421 0.24
2
423 0.28
3
425 0.32
4
426 0.36
5
427 0.38
陆相烃源岩地球化学评价方法

陆相烃源岩地球化学评价方法
陆相烃源岩地球化学评价方法主要包括以下几个方面:
1. 干酪根类型和成熟度评价:通过对干酪根化合物的热解实验和岩石地层学分析,确定干酪根类型和成熟度,进而预测其烃类生烃潜力。
2. 有机质含量评价:评价方法包括显微镜、电子显微镜、同位素和化学分析等方法,以确定岩石中有机质的含量和组成。
3. 烃类组成评价:通过色谱-质谱联用技术,确定岩石中烃类组成及其特征,包括碳数分布、烷基和环基组成等。
4. 有机地球化学参数评价:通过有机质含量、有机碳含量、含氮量、含硫量、同位素等参数,评价烃源岩的生烃和成藏潜力,预测油气形成的可能性。
综合以上评价指标,可以为油气勘探提供地质地球化学支持,指导勘探区块选取及井位规划。
2019烃源岩地球化学评价方法

2019烃源岩地球化学评价方法1.引言1.1 概述概述部分的内容如下:引言是一篇论文或研究报告的开篇部分,通过简洁扼要地介绍研究主题、目的、方法和结果,为读者提供一个整体的了解和认识。
对于2019烃源岩地球化学评价方法的文章,引言部分的概述将重点介绍烃源岩的重要性以及为什么评价烃源岩的地球化学特征非常重要。
烃源岩是地球上蕴含石油和天然气的主要来源,其重要性不言而喻。
对于石油和天然气勘探与开发而言,了解和评价烃源岩的地球化学特征对于确定勘探区的潜力和开发潜力具有重要意义。
通过对烃源岩地球化学特征的评价,可以揭示烃源岩中油气生成的潜能和资源量,并为石油和天然气的勘探和开发提供科学依据。
随着石油和天然气资源的逐渐枯竭和对可再生能源需求的增加,对于烃源岩的地球化学评价方法的研究和应用也得到了越来越多的关注。
通过地球化学评价方法,可以测定烃源岩中的有机质含量、有机质类型、成熟度、母质类型等重要地质参数,从而判断烃源岩的潜力和优势区。
除了经典的地球化学分析手段外,随着科技的快速发展,新的分析技术和方法也应运而生,为烃源岩地球化学评价提供了更多的选择和可能。
因此,本文将系统地总结和探讨2019年最新的烃源岩地球化学评价方法,包括传统的地球化学分析方法以及新兴的技术和方法,并对其优势和应用进行详细介绍。
通过本文的研究,我们希望能够为石油和天然气勘探和开发提供更准确、更可靠的烃源岩地球化学评价方法,推动石油工业的可持续发展。
概述部分的目的在于引导读者了解本文的研究背景和重要性,为后续的文章结构和内容做好铺垫。
同时,也激发了读者对于烃源岩地球化学评价方法的兴趣,并期待本文的研究能够对于石油工业的发展产生积极的影响。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文主要通过探讨烃源岩地球化学评价方法,旨在为烃源岩资源评价提供科学依据。
全文内容分为引言、正文和结论三部分。
引言部分主要概述了烃源岩地球化学评价方法的背景和意义,介绍了烃源岩地球化学评价的研究现状以及存在的问题和不足之处。
烃源岩的定性评价

烃源岩地化特征评价烃源岩地化特征评价摘要:烃源岩对应的英文为Source rock,从本意上讲,它应该既包括能生油的油源岩,也包括能生气的气源岩,但过去多将它译为生油岩。
其中的重要原因可能在于国内早期的油气勘探主要瞄准着对油的勘探。
因此,油气地球化学所关注和研究的对象主要是油而不是气。
这可能是早期的有关专著和教材也多冠以“石油”而不是“油气”的原因所在。
相应地,生油岩这一术语在地化文献中得到了相当广泛的沿用。
随着我国对天然气重视程度的逐步、大幅提高,有关天然气的勘探和地球化学研究也越来越多,很多时候,需要区分油、气源岩。
因此,本文中以烃源岩替代早期的生油岩来涵盖油源岩和气源岩。
关键词:机质的丰度;有机质的类型;有机质的成熟度。
前言烃源岩是控制油气藏形成与分布的关键性因素之一。
确定有效烃源岩是含油气系统的基础。
烃源岩评价涉及许多方面,虽然在不同勘探阶段以及不同的沉积盆地,评价重点也有所不同,但是总体上主要包括两大方面:(l)烃源岩的地球化学特征评价,如有机质的丰度、有机质的类型、有机质的成熟度;(2)烃源岩的生烃能力评价,如生烃强度、生烃量、排烃强度等。
本人主要介绍烃源岩的地球化学特征评价方面:1.有机质的丰度有机质丰度是指单位质量岩石中有机质的数量。
在其它条件相近的前提下,岩石中有机质的含量(丰度)越高,其生烃能力越高。
目前,衡量岩石中有机质的丰度所用的指标主要有总有机碳(TOC)、氯仿沥青“A”、总烃和生烃势(或生烃潜量Pg,Pg=S1+S2)。
1.1有机质丰度指标1.1.1总有机碳(TOC,%)有机碳是指岩石中存在于有机质中的碳。
它不包括碳酸盐岩、石墨中的无机碳。
通常用占岩石重量的%来表示。
从原理上讲,岩石中有机质的量还应该包括H、O、N、S等所有存在于有机质中的元素的总量。
但要实测各种有机元素的含量之后求和,并不是一件轻松、经济的工作。
考虑到C元素一般占有机质的绝大部分,且含量相对稳定,故常用有机碳的含量来反映有机质的丰度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
**地区**组烃源岩喜山期末热演化分布(Ro等值线图)
提纲
一、概述 二、 烃源岩评价标准 三、烃源岩分布 四、烃源岩静态地化特征 五、烃源岩动态地化特征 六、盆地资源潜力分析
六、盆地资源潜力分析
目的:烃源岩各构造时期生烃量有多大?主要生烃区在哪儿?有多少可聚集成藏?资源量多大? 常用方法:盆地类比法、成因发、盆地模拟法 盆地类比法:由已知单元(盆地、凹陷)含油气丰度远景类比求取评价单元油气远景资源量 Q=S×K×a
-1 96 8 .7 -2 00 0
? ? ?
-1 8 0 0 -1 6 8 7 .3 -1 6 0 0 -1 4 0 0 -1 2 0 0
? ? ?
-1 80 0 -1 60 0 -1 40 0 -1 20 0 -1 00 0 -8 0 0 -6 0 0 -4 0 0 -2 0 0 10 0
Y = -3 7 4 6 .1 6 *ln X + 2 2 4 7 5 .9 7
6 3 2 .7 9
1 0 00
A C (u s /m )
深度(m)
1500
200
A C (u s /m )
0
400 600 800 10 0 0 12 0 0 14 0 0 E P3
200 400 600
2000
剥蚀面 ? ? ?
800 10 0 0 12 0 0 14 0 0 1 07 7 N
2500
20 0 40
地层剥蚀厚度恢复 常用方法
是重建沉积埋藏史的重要参数
声波时差法、镜质体反射率(Ro)法和 地层对比法
? ? **井测剥蚀厚度恢复图 3? ? ? ? ? ? ? ?
温度(℃) 60 80 100
120 140
-2 0 0 0
? **测剥蚀厚度恢复图 ? ? 7? ? ? ? ? ? ?
2000 3000 480 360 240
时间(Ma) C.盆地热流史
2000 3000
1000
50
深度(m)
70 90
成熟早期 0.70-1.00
120
0
0.0 0.2 0.4 0.6 0.8 1.0
Ro值(%) 井号: yuxi t0=0.00Ma t1=145.50Ma t2=207.54Ma t3=460.90Ma t4=488.30Ma
350 300
产烃率(mg/g.Toc)
产烃率(mg/g.TOC)
180 150 120 90 60 30 0 0.4
250 200 150 100 50 0
0.6
0.8
Ro(%)
1
1.2
1.4
0.5
1
1.52 Ro(%)2.533.5
产烃率(mg/g.Toc)
产烃率(mg/g.Toc)
Ro(%) 海相泥页岩产烃率图版 1:总产烃率;2:油产率;3:残留油
80.0
热流值(mW/m^2)
反演分段总数:5 Q0= 53.27 He1= 160.0 He2= 540.0 He3= 260.0 He4= 150.0 Q1= 53.27 Q2= 80.86 Q3= 47.94 Q4= 39.69
2000
110 130 150
D.有机质成熟史
成熟晚期 1.00-1.30
5-15
20-30 40-60 15-35 40-60 15-35 40-60 15-35
34
309 79 93 140 177 622 156 2985
68
387 99 156 175 295 778 259 4811
103
464 118 218 210 413 933 363 6637
0.024
成熟度史 模拟器 数据 图形 输出 参数 文件 输入 构造-热演化 模拟器
热史反演模拟器 目标函数 反演优化搜索 E
地温梯度模拟器
Q
地史模拟器 地温史模拟器
古温标 计算值
Ro、AFT、ZFT 正演模型
样品热史 地层热史
古热流法热史恢复流程图
模拟系统整体构架和模拟器间相互关系图
不整合面剥蚀量恢复方法 ★ 构造横剖面法
某一时期 初始Ro
某一时期 终止Ro
烃源岩氯仿沥青“A”:原则上同有效烃源岩有机碳方法,%
油气运聚系数:根据盆地构造运动的强弱及保存条件,不同生烃期次采用不同的系数, 一般油取1-5%,天然气取1-5‰
六、盆地资源潜力分析
**地区***组资源量计算表
地区
1 2 3 面积 (km2) 1 2 3 4 5
0.382 0.256 0.068 0.329 0.078 0.810 0.173 10
资源潜力分析
根据资源量计算结果,从资源规模、资源层位分布、平均资源丰度上分析盆地的 资源潜力,结合热构造演化、生烃期次等因素综合分析,指出盆地油气勘探的最有利 区、较有利区和远景区。
谢谢!
**盆地**测线现今成熟度模拟图
五、烃源岩动态地化特征
主要构造时期烃源岩平面热演化恢复
**地区**组烃源岩印支期末热演化分布(Ro等值线图)
五、烃源岩动态地化特征
主要构造时期烃源岩平面热演化恢复
**地区**组烃源岩燕山期末热演化分布(Ro等值线图)
五、烃源岩动态地化特征
主要构造时期烃源岩平面热演化恢复
Ro(%) 海相灰岩和泥灰岩产烃率图版 1:总产烃率;2:油产率;3:残留油
不同类型烃源岩烃源岩产烃率对比图版
六、盆地资源潜力分析
计算参数
产烃率:根据烃源岩热模拟实验结果,在热演化史分析基础上,按不同时期的终止成熟度扣除初 始成熟度相应的产烃率取值,mg/g.Toc。 有效烃源岩面积、厚度 :根据有效烃源岩分布确定, km2、m 烃源岩密度:泥页岩一般2.2-2.4g/cm3, 碳酸盐岩一般2.4-2.6g/cm3
Y = -3 02 1.42 *ln X + 1 75 19 .9
500
-1 0 0 0 -8 0 0 -6 0 0
1000
-4 0 0 -2 0 0 0 1 00 6 3 2 .7 9
剥蚀厚度2903.8m ? ? ? ? ? 2903.8m
1 0 00
剥蚀厚度3045.7m ? ? ? ? ? 3045.7m
产烃率(mg/g.Toc)
350 300 250 200 150 100 50 0 0.5 1 1.5 2 Ro(%) 2.5 3 3.5
某一时期烃产率 (100mg/g.Toc)
烃源岩有机碳:按探井钻揭有效烃源岩有机碳厚度加 权平均值,没有钻井的凹陷,以构造活动相似凹陷的 有机碳替代,% 烃源岩成熟度:按钻井、野外样品Ro分析值为依据, 结合构造演化及地层埋藏史、烃源岩热演化史确定其 初始及终止成熟度,%
有机碳法:利用有机碳含量及有机碳转化系数计算油气远景资源量 Q=s×h× r×Toc×Kc×k
Q:评价单元油气总资源量, h:烃源岩有效厚度,s:烃源岩面积,r:烃源岩密度,Toc:烃源岩有机碳含量, kc:有机碳转化系数(一般采用1%~1.2%, 较有利取1%),k:运聚系数。
烃产率法:利用有机碳含量及烃源岩热模拟烃产率数据计算油气远景资源量 Q=s×h× r×Toc×Kh×k
平均资源丰度 (×108m3/km2) 0.202 0.183 0.537 0.021 0.233
6
4 7 8 5 6 7 合计 9 10 11 12 13 100
印支
燕山 喜山 印支 喜山 印支 喜山 前喜山
6834
15463 1971 6221 3504 11799 15552 10368 310410
60.0 40.0 20.0 0.0 480 360 240
时间(Ma)
3000
高成熟 1.30130
120 0 t=0
170
120
0
480
360
240
时间(Ma)
**地区热史反演结果
五、烃源岩动态地化特征
二维烃源岩热演化生烃史模拟
TN TE
TN
TK 南部凹陷 中部凸起 北部凹陷
TE TK
**盆地**测线现今成熟度模拟图
烃源岩评价方法—之三
王荣新
河南油田分公司石油勘探开发研究院
2011.12
提纲
一、概述 二、 烃源岩评价标准 三、烃源岩分布 四、烃源岩静态地化特征 五、烃源岩动态地化特征 六、盆地资源潜力分析
五、烃源岩动态地化特征
目的:解决烃源岩何时开始生烃?何时大量排烃?何时枯竭?与构造活动的关系如何? 沉积盆地的热史就是盆地形成至今的地热流史、地温史和地温梯度史。 盆地热史与油气形成密切相关,控制着盆地内烃源岩的热演化以及油气的生成过程、 赋存状态和分布规律。对确定烃源层生烃期次、成熟度史和初次运移量及区带评价等具 有重要意义,为成藏条件的时空配置及油气资源潜力等研究奠定基础。 热史研究的原理是利用古温标所记录的热史信息,反演古地温、古地温梯度、古热 流值等,重建盆地热史。 古温标指示地质作用过程中曾经历过的温度,目前用以指示高温及高-中温的地质 “温度计”较多,指示低温及中低温的很少。现已取得一定成效的低温地质温度计有以 下五种:①镜质体反射率Ro及其它有机质成熟度指标(固体沥青反射率、甲基菲指数 等);②牙形石色变指数;③自生成岩矿物;④矿物流体包裹体;⑤矿物裂变径迹。
Q:评价单元油气总资源量,S:评价单元面积,K:类比单元油气资源丰度,a:类比系数
成因法(包括氯仿沥青“A”法、有机碳法、烃产率法、烃源岩体积法、热解法等): 氯仿沥青“A”法:利用烃源岩氯仿沥青“A” 含量和沥青化系数计算油气远景资源量 Q=h×s×r×A×Ka×k
Q:评价单元油气总资源量, h:烃源岩有效厚度,s:烃源岩面积,r:烃源岩密度,A:烃源岩氯仿沥青含量, ka:沥青转化系数(一般采用15%~20%,最有利取20%,较有利取15%),k:运聚系数。