2019-2020学年广东省广州市越秀区八年级(下)期末数学试卷
2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。
2019-2020学年广东省广州市越秀区八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省广州市越秀区八年级第二学期期末数学试卷一、选择题1.的计算结果是()A.2B.9C.6D.32.在下列计算中,正确的是()A.B.C.D.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.1804.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.125.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,137.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.189.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14二.填空题11.二次根式有意义,则x的取值范围是.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.13.将直线y=2x向上平移1个单位长度后得到的直线是.14.数据﹣2、﹣1、0、1、2的方差是.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是(请写出所有正确结论的序号).三、解答题17.计算:.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.参考答案一、选择题1.的计算结果是()A.2B.9C.6D.3【分析】求出的结果,即可选出答案.解:=3,故选:D.2.在下列计算中,正确的是()A.B.C.D.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:=3﹣=2,故选项A正确;=1,故选项B错误;,故选项C错误;==,故选项D错误;故选:A.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.180【分析】根据众数的概念求解可得.解:这组数据中176出现3次,次数最多,所以众数为176,故选:B.4.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.12【分析】根据菱形的面积等于对角线乘积的一半计算即可.解:∵四边形ABCD是菱形,∴S=×6×8=24.故选:C.5.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分【分析】根据题意和加权平均数的计算方法,可以计算出这个人的最终得分.解:90×20%+80×40%+85×40%=84(分),即这个人的最终得分是84分,故选:B.6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.解:A、()2+()2≠()2,不符合勾股定理的逆定理,故本选项符合题意;B、302+402=502,符合勾股定理的逆定理,故本选项不符合题意;C、12+()2=22,符合勾股定理的逆定理,故本选项不符合题意;D、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;故选:A.7.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选:D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.18【分析】先由ASA证明△AOE≌△COF,得OE=OF,AE=CF,再求得AB+BC=18,由平行四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为36,∴AB+BC=×36=18,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=18+6=24故选:B.9.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限【分析】根据一次函数的性质分别判断后即可确定正确的选项.解:A、∵k=﹣2<0,∴y的值随着x增大而减小,正确,不符合题意;B、∵k=﹣2<0,∴y的值随着x增大而减小,∴当x>0时,y<1,错误,符合题意;C、∵当x=0时,y=1,∴函数图象与y轴的交点坐标为(0,1),正确,不符合题意;D、∵k=﹣2<0,b=1>0,∴函数图象经过第一、二、四象限,正确,不符合题意,故选:B.10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14【分析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为6时,面积发生了变化,说明BC的长为6,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由6到14,说明CD的长为8.解:结合图形可以知道,P点在BC上,△ABP的面积为y增大,当x在6﹣﹣14之间得出,△ABP的面积不变,得出BC=6,CD=14﹣6=8,故选:B.二.填空题11.二次根式有意义,则x的取值范围是x≥5.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是25.【分析】求出大正方形的边长即可.解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.13.将直线y=2x向上平移1个单位长度后得到的直线是y=2x+1.【分析】先判断出直线经过坐标原点,然后根据向上平移,横坐标不变,纵坐标加求出平移后与坐标原点对应的点,然后利用待定系数法求一次函数解析式解答.解:直线y=2x经过点(0,0),向上平移1个单位后对应点的坐标为(0,1),∵平移前后直线解析式的k值不变,∴设平移后的直线为y=2x+b,则2×0+b=1,解得b=1,∴所得到的直线是y=2x+1.故答案为:y=2x+1.14.数据﹣2、﹣1、0、1、2的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.解:由题意可得,这组数据的平均数是:,∴这组数据的方差是:=2,故答案为:2.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是x>1.【分析】观察函数图象得到当x>1时,直线y=mx+n在直线y=kx+b的上方,于是得到不等式mx+n>kx+b的解集.解:根据图象可知,不等式mx+n>kx+b的解集为x>1.故答案为:x>1.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是①②④(请写出所有正确结论的序号).【分析】由正方形的性质可得BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,可判断①;由勾股定理可求BG的长,可判断②;由正方形的性质可得∠GEF=45°,可判断③;由“SAS”可证△BCG≌△DCE,可得BH⊥DE,可判断④,即可求解.解:∵四边形ABCD是正方形,BC=,∴BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,故①正确;∵BC=,CG=1,∴BG===2,故②正确,如图,连接GE,延长BG交DE于H,∵四边形CEFG是正方形,∴CG=CE,∠GCE=∠BCG=90°,∠GEF=45°,∵∠FED<∠GEF,∴∠FED<45°,故③错误,∵CG=CE,∠GCE=∠BCG=90°,BC=CD,∴△BCG≌△DCE(SAS),∴∠GBC=∠CDE,∵∠CDE+∠DEC=90°,∴∠GBC+∠DEC=90°,∴∠BHE=90°,∴BH⊥DE,故④正确,故答案为:①②④.三、解答题17.计算:.【分析】根据二次根式的乘除法和减法可以解答本题解:=﹣+2=2+.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.【分析】(1)根据勾股定理的逆定理求出即可;(2)设BH=x,则HC=25﹣x,由勾股定理得出方程152﹣x2=202﹣(25﹣x)2,求出x,再根据勾股定理求出AH即可.【解答】(1)证明:∵AB2+AC2=152+202=625,BC2=252=625,∴AB2+AC2=BC2,∴∠BAC=90°;(2)解:设BH=x,则HC=25﹣x,∵AH⊥BC,∴∠AHB=∠AHC=90°,在Rt△AHB和Rt△AHC中,由勾股定理得:AH2=AB2﹣BH2=AC2﹣CH2,即152﹣x2=202﹣(25﹣x)2,解得:x=10,即BH=10,由勾股定理得:AH===5.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.【分析】根据正方形的判定和性质定理即可得到结论.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是15.5;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.【分析】(1)根据平均数的概念,将所有数的和除以10即可;(2)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数;(3)用样本平均数估算总体的平均数.解:(1)根据题意得:×(0+7+9+12+15+16×3+22+27)=14(次),答:这10位居民一周内使用共享单车的平均次数是14次;(2)按照从小到大的顺序新排列后,第5、第6个数分别是15和16,所以中位数是(15+16)÷2=15.5,故答案为:15.5;(3)不能;∵15次小于中位数15.5次,∴某位居民一周内使用共享单车15次,不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.【分析】(1)先直线AB的解析式求出A点坐标,再根据点A与点C的坐标即可求得直线AD的解析式;(2)根据直线AB的解析式求得点B的坐标,根据直线AD的解析式求得点D的坐标,再根据点A的坐标即可求得△ABD的面积.解:(1)∵直线y=﹣2x+10与y轴交于点A,∴A(0,10).设直线AD的解析式为y=kx+b,∵直线AD过A(0,10),C(﹣2,8),∴,解得,∴直线AD的解析式为y=x+10;(2)∵直线y=﹣2x+10与x轴交于点B,∴B(5,0),∵直线AD与x轴交于点D,∴D(﹣10,0),∴BD=15,∵A(0,10),∴△ABD的面积=BD•OA=×15×10=75.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.【分析】(1)根据直角三角形的性质即可得到即可;(2)根据直角三角形的性质得到AD=DH=AB,AE=HE=AC,求得AD+AE=×30=15,得到DE=21﹣15=6,根据三角形中位线定理即可得到结论.解:(1)∵AH⊥BC,∴∠AHB=90°,∵点D是AB的中点,∴AD=DH=AB;(2)∵AH⊥BC,∴∠AHB=∠AHC=90°,∵点D,E分别是AB,AC的中点,∴AD=DH=AB,AE=HE=AC,∵四边形ADHE的周长是30,∴AD+AE=×30=15,∵△ADE的周长是21,∴DE=21﹣15=6,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=12.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?【分析】(1)根据甲、乙旅行社的不同的优惠方案,可求出函数关系式,(2)根据(1)的结论列方程或不等式解答即可.解:(1)由题意,得y1=2000×75%×x=1500x,y2=2000×80%(x﹣1)=1600x﹣1600;(2)①当y1=y2时,即:1500x=1600x﹣1600,解得,x=160,②当y1>y2时,即:1500x>1600x﹣1600,解得,x<160,③当y1<y2时,即:1500x<1600x﹣1600,解得,x>160,答:当x<160时,乙旅行社费用较少,当x=160,时,两个旅行社费用相同,当x>160时,甲旅行社费用较少.24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.【分析】(1)解析式联立,解方程组即可求得;(2)根据题意求得OP的长,从而求得P的坐标;(3)根据题意得到2m﹣(﹣2m+8)=1,求得m的值,即可求得M的坐标.解:(1)由,解得,∴点C的坐标为(2,4);(2)∵直线y=﹣2x+8与坐标轴跟别交于A,B两点,∴A(0,8),B(4,0),∴OA=8,∵点P在y轴上,且,∴OP=OA=4,∴P的坐标为(0,4)或(0,﹣4);(3)∵点M在直线y=2x上,点M横坐标为m,且m>2,∴M(m,2m),N(m,﹣2m+8),∵MN=1,∴2m﹣(﹣2m+8)=1,∴m=,∴点M的坐标为(,).25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.【分析】(1)由折叠的性质得出△ADE≌△ODE,△CFB≌△OFB,则∠ADE=∠ODE =ADB,∠CBF=∠OBF=∠CBD,则可得出结论;(2)证得四边形DEBF是平行四边形,由全等三角形的性质得出∠A=∠DOE=90°,则可得出结论;(3)过点P作PH⊥AD于点H,得出∠ADE=∠ODE=∠ODF=30°,得出2AP+PD =2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,求出OM的长,则可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,∵将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.∴△ADE≌△ODE,∴△CFB≌△OFB,∴∠ADE=∠ODE=∠ADB,∠CBF=∠OBF=∠CBD,∴∠EDO=∠FBO;(2)证明:∵∠EDO=∠FBO,∴DE∥BF,∵四边形ABCD是矩形,∴AB∥CD,AD=BC,∠A=90°,∵DE∥BF,AB∥CD,∴四边形DEBF是平行四边形,又∵△ADE△≌△ODE,∴∠A=∠DOE=90°,∴EF⊥BD,∴四边形DEBF是菱形;(3)解:过点P作PH⊥AD于点H,∵四边形DEBF是菱形,△ADE≌△ODE,∴∠ADE=∠ODE=∠ODF=30°,∴在Rt△DPH中,2PH=PD,∴2AP+PD=2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,∵△ADE≌△ODE,AD=2,∴AD=DO=2,在Rt△OMD中,∵∠ODA=2∠ADE=60°,∴∠DOM=30°,∴DM=DO=1,∵DM2+OM2=DO2,∴12+OM2=22,∴OM=,∴(2PA+PD)的最小值为2OM=2.。
2019-2020学年广东省广州市海珠区八年级(下)期末数学试卷

2019-2020学年广东省广州市海珠区八年级(下)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中.只有一个是正确的)1.(3分)(2020春•海珠区期末)在▱ABCD中,AB=6,AD=4,则▱ABCD的周长为( )A.10B.20C.24D.122.(3分)(2020春•海珠区期末)下列二次根式中,是最简二次根式的是( )A.B.C.D.3.(3分)(常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是( )A.甲B.乙C.丙D.丁4.(3分)(2020春•海珠区期末)下列计算正确的是( )A.B.C.44D.45.(3分)(2020秋•三明期末)下列各组数中,能构成直角三角形的是( )A.4,5,6B.1,1,C.6,8,11D.5,12,23 6.(3分)(2020春•海珠区期末)下列各图象中,y不是x的函数的是( )A.B.C.D.7.(3分)(2011•黑龙江)某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的( )A.中位数B.众数C.平均数D.不能确定8.(3分)(2020春•海珠区期末)在下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC9.(3分)(2020春•海珠区期末)如图,一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),则关于x的不等式x+b>kx+4的解集是( )A.x>﹣2B.x<﹣2C.x<2D.x>210.(3分)(2020春•海珠区期末)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,若五边形MCNGF的面积是正方形EFGH 面积的2倍,则的值是( )A.B.C.D.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)(南京)若式子在实数范围内有意义,则x的取值范围是 .12.(3分)(2020春•海珠区期末)如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞 米.13.(3分)(2020春•海珠区期末)一组数据1,6,x,5,9的平均数是5,则x= .14.(3分)(2020春•海珠区期末)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的面积分别是3、5、2、3,则正方形E的边长是 .15.(3分)(2020春•海珠区期末)已知直线y=kx+b,若k+b+kb=0,且kb>0,那么该直线不经过第 象限.16.(3分)(2020春•海珠区期末)已知三角形一边上的中线,与三角形三边有如下数量关系:三角形两边的平方和等于第三边一半的平方与第三边中线平方之和的2倍.即:如图1,在△ABC中,AD是BC边上的中线,则有AB2+AC2=2(BD2+AD2).请运用上述结论,解答下面问题:如图2,点P为矩形ABCD外部一点,已知PA=PC=3,若PD=1,则AC的取值范围为 .三、解答题(本题有8个小题,共72分,解答要求写出文字说明.证明过程或计算步骤)17.(6分)(2020春•海珠区期末)计算:(1);(2)(1)(1).18.(8分)(2020春•海珠区期末)如图,在△ABC中,点D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是平行四边形;(2)若AB=BC,连接BE、DF.请判断BE与DF的位置关系,并说明理由.19.(8分)(2020春•海珠区期末)已知一次函数y=(m﹣3)x+m+1的图象经过点(1,2).(1)求此一次函数解析式,并画出函数图象;(2)求此一次函数图象与坐标轴围成图形的面积.20.(8分)(2020春•海珠区期末)某校为了解学生的课外阅读情况,随机抽查了八年级部分学生一学期阅读课外书册数的情况,并绘制出如图不完整的统计图.根据图中提供的信息,解答下列问题:(1)求被抽查的学生总人数,并补全条形图;(2)写出阅读书册数的众数和中位数;(3)若八年级共有800人,请你估计该年级阅读书册数为6册的同学约为多少人?21.(8分)(2020春•海珠区期末)如图,在四边形ABCD中,∠B=∠C=90°,BC=8,点E在BC上,且EC﹣EB=2,将△DCE沿DE折叠,点C恰好与点A重合.(1)求线段AB的长;(2)求线段DC的长.22.(10分)(2020春•海珠区期末)甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶.甲同学到达山顶休息1小时后再沿原路下山.他们离山脚的距离S(千米)随时间t(小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:(1)分别求出甲、乙两名同学上山过程中S与t的函数解析式;(2)若甲同学下山时在点F处与乙同学相遇,此时点F与山顶的距离为0.75千米;①求甲同学下山过程中S与t的函数解析式;②相遇后甲、乙两名同学各自继续下山和上山,求当乙到山顶时,甲离乙的距离是多少千米?23.(12分)(2020春•海珠区期末)已知菱形ABCD的边长为2,∠ABC=60°,对角线AC、BD相交于点O.点M从点B向点C运动(到点C时停止),点N为CD上一点,且∠MAN=60°,连接AM交BD于点P.(1)求菱形ABCD的面积;(2)如图1,过点D作DG⊥AN于点G,若BM=4﹣2,求NG的长;(3)如图2,点E是AN上一点,且AE=AP,连接BE、OE.试判断:在运动过程中,BE+OE是否存在最小值?若存在,请求出;若不存在,请说明理由.24.(12分)(2020春•海珠区期末)如图,在平面直角坐标系xOy中,已知直线l1:y=x﹣2和直线l2:y=2x﹣4相交于点A.(1)已知点P(1﹣t,9﹣3t),求证:无论t为何值,点P总在直线y=3x+6上;(2)直线y=3x+6分别与x轴、y轴交于B、C两点,平移线段BC,使点B、C的对应点M、N分别落在直线l1和l2上,请你判断四边形BMNC的形状,并说明理由;(3)在(2)问的条件下,已知直线y=mx﹣6m+8 把四边形BMNC的面积分成1:3两部分,求m的值.2019-2020学年广东省广州市海珠区八年级(下)期末数学试卷答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中.只有一个是正确的)1.(3分)(2020春•海珠区期末)在▱ABCD中,AB=6,AD=4,则▱ABCD的周长为( )A.10B.20C.24D.12【考点】平行四边形的性质.【分析】由平行四边形性质得出AB=CD=6,AD=BC=4,即可得出结果.解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC=4,∴▱ABCD的周长为:2×(AB+AD)=2×(6+4)=20,故选:B.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.2.(3分)(2020春•海珠区期末)下列二次根式中,是最简二次根式的是( )A.B.C.D.【考点】最简二次根式.【分析】利用最简二次根式的定义对各选项进行判断.解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.【点评】本题考查了最简二次根式:最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.(3分)(常州)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是( )A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(3分)(2020春•海珠区期末)下列计算正确的是( )A.B.C.44D.4【考点】二次根式的混合运算.【分析】根据二次根式的乘除运算法则及同类二次根式的概念逐一判断即可得.解:A.,此选项计算正确;B.与不是同类二次根式,不能合并,此选项错误;C.4与不是同类二次根式,不能合并,此选项错误;D.2,此选项错误;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.5.(3分)(2020秋•三明期末)下列各组数中,能构成直角三角形的是( )A.4,5,6B.1,1,C.6,8,11D.5,12,23【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.6.(3分)(2020春•海珠区期末)下列各图象中,y不是x的函数的是( )A.B.C.D.【考点】函数的概念.【分析】函数的定义:在某变化过程中,有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照对应法则,y都有唯一确定的值和它对应,则x叫自变量,y是x的函数.根据定义再结合图象观察就可以得出结论.解:根据函数定义,如果在某变化过程中,有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照对应法则,y都有唯一确定的值和它对应.而B中的y的值不具有唯一性,所以不是函数图象.故选:B.【点评】本题考查函数的定义,要熟练掌握函数的定义.7.(3分)(2011•黑龙江)某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的( )A.中位数B.众数C.平均数D.不能确定【考点】统计量的选择.【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.(3分)(2020春•海珠区期末)在下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC【考点】平行四边形的判定.【分析】依据一组对边平行且相等的四边形是平行四边形,即可得出结论.解:A.由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;B.由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不合题意;C.由AD∥BC,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D.由AB=AD,CD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;故选:C.【点评】本题主要考查了平行四边形的判定,解题时注意:一组对边平行且相等的四边形是平行四边形.9.(3分)(2020春•海珠区期末)如图,一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),则关于x的不等式x+b>kx+4的解集是( )A.x>﹣2B.x<﹣2C.x<2D.x>2【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【分析】结合函数图象,写出一次函数y1=x+b图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),∴当x>2时,x+b>kx+4,即关于x的不等式x+b>kx+4的解集是x>2.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.(3分)(2020春•海珠区期末)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,若五边形MCNGF的面积是正方形EFGH 面积的2倍,则的值是( )A.B.C.D.【考点】剪纸问题.【分析】连接HF,直线HF与AD交于点P,根据五边形MCNGF的面积是正方形EFGH面积的2倍,设正方形EFGH与五边形MCNGF的面积为x2,2x2,可得GF=2x,根据折叠可得正方形ABCD的面积为9x2,进而求出FM,最后求得结果.解:如图,连接HF,直线HF与AD交于点P,∵五边形MCNGF的面积是正方形EFGH面积的2倍,设正方形EFGH与五边形MCNGF的面积为x2,2x2,∴GF2=x2,∴GF=x,∴HFx,由折叠可知:正方形ABCD的面积为:x2+4×2x2=9x2,∴PM2=9x2,∴PM=3x,∴FM=PH(PM﹣HF)(3xx)(3)x,∴.故选:A.【点评】本题考查了剪纸问题,解决本题的关键是掌握对称的性质.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)(南京)若式子在实数范围内有意义,则x的取值范围是 x≥2 .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.解:由题意,得x﹣2≥0,解得x≥2,故x≥2.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.(3分)(2020春•海珠区期末)如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞 13 米.【考点】勾股定理的应用.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解:如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中,AC13.答:小鸟至少要飞13米.故13.【点评】本题考查了勾股定理的应用,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.13.(3分)(2020春•海珠区期末)一组数据1,6,x,5,9的平均数是5,则x= 4 .【考点】算术平均数.【分析】根据平均数的公式得到关于x的方程,解方程即可.解:由题意知,(1+6+5+x+9)÷5=5,∴x=25﹣6﹣1﹣9﹣5=4.故4.【点评】本题考查了平均数的概念.平均数等于所有数据的和除以数据的个数.14.(3分)(2020春•海珠区期末)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的面积分别是3、5、2、3,则正方形E的边长是 .【考点】勾股定理.【分析】分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=8,y2=5,z2=x2+y2,即最大正方形的面积为z2,可得结论.解:设中间两个正方形的边长分别为x、y,正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13;即最大正方形E的面积为:z2=13.则正方形E的边长是.故.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.(3分)(2020春•海珠区期末)已知直线y=kx+b,若k+b+kb=0,且kb>0,那么该直线不经过第 一 象限.【考点】一次函数的性质.【分析】根据k+b+kb=0,且kb>0,可以得到k、b的正负情况,然后根据一次函数的性质,即可得到直线y=kx+b经过哪几个象限,不经过哪个象限,本题得以解决.解:∵k+b+kb=0,且kb>0,∴k+b=﹣kb<0,k和b同号,∴k<0,b<0,∴直线y=kx+b经过第二、三、四象限,不经过第一象限,故一.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.16.(3分)(2020春•海珠区期末)已知三角形一边上的中线,与三角形三边有如下数量关系:三角形两边的平方和等于第三边一半的平方与第三边中线平方之和的2倍.即:如图1,在△ABC中,AD是BC边上的中线,则有AB2+AC2=2(BD2+AD2).请运用上述结论,解答下面问题:如图2,点P为矩形ABCD外部一点,已知PA=PC=3,若PD=1,则AC的取值范围为 1≤AC<2 .【考点】三角形三边关系;矩形的性质.【分析】,连接BD交AC于O,连接PO,由矩形的性质可得AC=BD,AO=CO=BO=DO,由三角形中线与三角形三边关系,可求PB的长,由三角形的三边关系可求解.解:如图,连接BD交AC于O,连接PO,∵四边形ABCD是矩形,∴AC=BD,AO=CO=BO=DO,∵PO是△ACP的中线,也是△PBD的中线,∴PA2+PC2=2(AO2+PO2),PB2+PD2=2(PO2+OD2),∴PA2+PC2=PB2+PD2,∴9+9=1+PB2,∴PB,在△PBD中,1≤BD1,∴1≤AC1,当点P在AD上时,CD2,∴AC2,故1≤AC<2.【点评】本题考查了矩形的性质,三角形的三边关系,理解新定义,并运用是本题的关键.三、解答题(本题有8个小题,共72分,解答要求写出文字说明.证明过程或计算步骤)17.(6分)(2020春•海珠区期末)计算:(1);(2)(1)(1).【考点】平方差公式;二次根式的混合运算.【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和二次根式的除法法则计算,再进一步计算加减可得.解:(1)原式=340;(2)原式=()2﹣1=2﹣1=1.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.18.(8分)(2020春•海珠区期末)如图,在△ABC中,点D、E、F分别是BC、AC、AB 边上的中点.(1)求证:四边形BDEF是平行四边形;(2)若AB=BC,连接BE、DF.请判断BE与DF的位置关系,并说明理由.【考点】三角形中位线定理;平行四边形的判定与性质.【分析】(1)易证DE是△CAB的中位线,EF是△ABC的中位线,得出DE∥AB,EF∥BC,即可得出结论;(2)由三角形中位线定理得出DEAB,EFBC,得出DE=EF,证得四边形BDEF是菱形,则BE⊥DF.(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE是△CAB的中位线,EF是△ABC的中位线,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形;(2)解:BE与DF的位置关系为:BE⊥DF,如图所示,理由如下:由(1)得:DE是△CAB的中位线,EF是△ABC的中位线,∴DEAB,EFBC,∵AB=BC,∴DE=EF,∵四边形BDEF是平行四边形,∴四边形BDEF是菱形,∴BE⊥DF.【点评】本题考查了平行四边形的判定、菱形的判定与性质、三角形中位线定理等知识;熟练掌握三角形中位线定理和菱形的判定是解题的关键.19.(8分)(2020春•海珠区期末)已知一次函数y=(m﹣3)x+m+1的图象经过点(1,2).(1)求此一次函数解析式,并画出函数图象;(2)求此一次函数图象与坐标轴围成图形的面积.【考点】一次函数的图象;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【分析】(1)利用待定系数法求出函数解析式,利用两点法画出函数图象;(2)利用三角形的面积求出一次函数图象与坐标轴围成图形的面积..解:(1)把x=1,y=2代入一次函数解析式,得(m﹣3)+m+1=2.解得m=2.所以一次函数解析式为:y=﹣x+3.函数图象见右图.(2)当x=0时,y=3;当y=0时,x=﹣3.所以直线和x、y轴围成的三角形的面积为:3×3.【点评】本题考查了待定系数法和三角形的面积公式.掌握待定系数法的一般步骤,是解决本题的关键.20.(8分)(2020春•海珠区期末)某校为了解学生的课外阅读情况,随机抽查了八年级部分学生一学期阅读课外书册数的情况,并绘制出如图不完整的统计图.根据图中提供的信息,解答下列问题:(1)求被抽查的学生总人数,并补全条形图;(2)写出阅读书册数的众数和中位数;(3)若八年级共有800人,请你估计该年级阅读书册数为6册的同学约为多少人?【考点】用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据阅读6册的人数和百分比,可以求得本调查的学生总数,然后即可得到阅读5册的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出该年级阅读书册数为6册的同学约为多少人.解:(1)12÷30%=40(人),即被抽查的学生一共有40人,阅读5册的学生有:40﹣8﹣12﹣8=12(人),补全的条形统计图如右图所示;(2)由条形统计图可知,众数是6册、中位数是(5+6)÷2=5.5(册),即阅读书册数的众数是6册,中位数是5.5册;(3)800×30%=240(人),该年级阅读书册数为6册的同学约为240人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、众数、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)(2020春•海珠区期末)如图,在四边形ABCD中,∠B=∠C=90°,BC=8,点E在BC上,且EC﹣EB=2,将△DCE沿DE折叠,点C恰好与点A重合.(1)求线段AB的长;(2)求线段DC的长.【考点】勾股定理;翻折变换(折叠问题).【分析】(1)由BC=8=EC+EB,EC﹣EB=2,得出EC=5,EB=3,由折叠的性质得EA=EC=5,再由勾股定理即可求出AB的长;(2)作AF⊥CD于F,则四边形ABCF是矩形,得出FC=AB=4,AF=BC=8,由折叠的性质得DC=DA,∠BAE=∠C=90°,设DC=DA=x,则DF=DC﹣FC=x﹣4,在Rt△ADF中,由勾股定理得出方程,解方程即可.解:(1)∵BC=8=EC+EB,EC﹣EB=2,∴EC=5,EB=3,由折叠的性质得:EA=EC=5,∵∠B=90°,∴AB4;(2)作AF⊥CD于F,如图所示:则∠AFD=∠AFC=90°,∵∠B=∠C=90°,∴四边形ABCF是矩形,∴FC=AB=4,AF=BC=8,由折叠的性质得:DC=DA,∠BAE=∠C=90°,设DC=DA=x,则DF=DC﹣FC=x﹣4,在Rt△ADF中,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴DC=10.【点评】本题考查了翻折变换的性质、矩形的判定与性质以及勾股定理等知识;熟练掌握翻折变换的性质和勾股定理是解题的关键.22.(10分)(2020春•海珠区期末)甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶.甲同学到达山顶休息1小时后再沿原路下山.他们离山脚的距离S(千米)随时间t(小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:(1)分别求出甲、乙两名同学上山过程中S与t的函数解析式;(2)若甲同学下山时在点F处与乙同学相遇,此时点F与山顶的距离为0.75千米;①求甲同学下山过程中S与t的函数解析式;②相遇后甲、乙两名同学各自继续下山和上山,求当乙到山顶时,甲离乙的距离是多少千米?【考点】一次函数的应用.【分析】(1)由图可知,甲、乙两同学登山过程中路程s与时间t都成正比例函数,分别设为S甲=k1t,S乙=k2t,用待定系数法可求解.(2)①把y=4﹣0.75代入(1)中乙同学上山过程中S与t的函数解析式,求出点F 的横坐标,再利用待定系数法求解即可;②把y=4代入(1)中乙同学上山过程中S与t的函数解析式,求出乙到山顶所用时间,再代入①的关系式求解即可.解:(1)设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为S甲=k1t,S乙=k2t由题意,得2=4k1,2=6k2∴k1,k2,∴解析式分别为S甲t,S乙t;(2)①当y=4﹣0.75时,,解得t,∴点F,甲到山顶所用时间为:48(小时)由题意可知,点D坐标为(9,4),设甲同学下山过程中S与t的函数解析式为s=kt+b,则:,解答,∴甲同学下山过程中S与t的函数解析式为s=﹣t+13;②乙到山顶所用时间为:(小时),当x=12时,s=﹣12+13=1,当乙到山顶时,甲离乙的距离是:4﹣1=3(千米).【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,有一定的能力要求.23.(12分)(2020春•海珠区期末)已知菱形ABCD的边长为2,∠ABC=60°,对角线AC、BD相交于点O.点M从点B向点C运动(到点C时停止),点N为CD上一点,且∠MAN=60°,连接AM交BD于点P.(1)求菱形ABCD的面积;(2)如图1,过点D作DG⊥AN于点G,若BM=4﹣2,求NG的长;(3)如图2,点E是AN上一点,且AE=AP,连接BE、OE.试判断:在运动过程中,BE+OE是否存在最小值?若存在,请求出;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)证明△ABC,△ADC都是等边三角形,求出AC,BD即可解决问题.(2)过点A作AT⊥CD于T.解直角三角形求出AT,TN,AN,再利用面积法求出DG 即可解决问题.(3)如图2中,取CD的中点G,连接BG,CE,EG,过点G作GH⊥BD于H.想办法证明OE=EG,推出BE+OE=BE+EG≥BG,求出BG即可解决问题.解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=2,∠ABC=∠ADC=60°,AC⊥BD,∴△ABC,△ACD都是等边三角形,∵∠AOB=90°,∠ABO=∠CBO=30°,∴OAAB=1,OBOA,∴AC=2AO=2,BD=2OB=2,∴S菱形ABCD•BD•AC22=2.(2)如图1中,过点A作AT⊥CD于T.∵△ABC,△ACD都是等边三角形,∴∠ACN=∠ABM=60°,AB=AC,∵∠MAN=∠BAC=60°,∴∠BAM=∠CAN,∴△BAM≌△ACN(ASA),∴BM=CN=4﹣2,∵AC=AD,AT⊥CD,∴CT=DT=1,AT,∴TN=CT﹣CN=1﹣(4﹣2)=23,∴AN3,∵S△ADN•AN•DG•DN•AT,∴DG,∴GN2.(3)如图2中,取CD的中点G,连接BG,CE,EG,过点G作GH⊥BD于H.∵∠BAC=∠PAE=60°,∴∠BAP=∠CAE,∵AB=AC,AP=AE,∴△BAP≌△CAE(SAS),∴∠ABP=∠ACE=30°,∵∠ACD=60°,∴∠OCE=∠GCE,∵∠COD=90°,∠ODC∠ADC=30°,∴CD=2OC,∵CG=GD,∴OC=CG,∵CE=CE,∴△OCE≌△GCE(SAS),∴OE=EG,∴BE+OE=BE+EG≥BG,在Rt△BGH中,∵∠GHB=90°,GHDG,BH,∴BG,∴BE+OE,∴BE+OE的最小值为.【点评】本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.24.(12分)(2020春•海珠区期末)如图,在平面直角坐标系xOy中,已知直线l1:y=x﹣2和直线l2:y=2x﹣4相交于点A.(1)已知点P(1﹣t,9﹣3t),求证:无论t为何值,点P总在直线y=3x+6上;(2)直线y=3x+6分别与x轴、y轴交于B、C两点,平移线段BC,使点B、C的对应点M、N分别落在直线l1和l2上,请你判断四边形BMNC的形状,并说明理由;(3)在(2)问的条件下,已知直线y=mx﹣6m+8 把四边形BMNC的面积分成1:3两部分,求m的值.【考点】一次函数综合题.【分析】(1)利用待定系数法解决问题即可.(2)由直线y=3x+6分别与x轴、y轴交于B、C两点,可得B(﹣2,0),C(0,6),因为线段MN是由线段BC平移得到,可以假设M(t,t﹣2),N(t+2,t﹣2+6),即N(t+2,t+4),把点N代入直线l2中,求出m,再求出BC,BM即可解决问题.(3)首先证明直线y=mx﹣6m+8经过点N(6,8),因为直线y=mx﹣6m+8把四边形BMNC的面积分成1:3两部分,所以直线y=mx﹣6m+8经过BC的中点G或经过BM的中点H,求出点G,H的坐标,利用待定系数法即可解决问题.(1)证明:对于直线y=3x+6,当x=1﹣t时,y=3(1﹣t)+6=﹣3t+9,∴P(1﹣t,9﹣3t)在直线y=3x+6上.(2)解:∵直线y=3x+6分别与x轴、y轴交于B、C两点,∴B(﹣2,0),C(0,6),∵线段MN是由线段BC平移得到,∴可以假设M(t,t﹣2),N(t+2,t﹣2+6),即N(t+2,t+4),∵N(t+2,t+4)在直线y=2x﹣4上,∴t+4=2(t+2)﹣4,解得t=4,∴M(4,2),N(6,8),∴BM2,BC2,∴BM=BC,∵BC=MN,BC∥MN,∴四边形BMNC是平行四边形,∵BC=BM,∴四边形BMNC是菱形.(3)∵直线y=mx﹣6m+8,∴x=6时,y=8,∴直线y=mx﹣6m+8经过定点(6,8),∴直线y=mx﹣6m+8经过点N(6,8),∵直线y=mx﹣6m+8把四边形BMNC的面积分成1:3两部分,∴直线y=mx﹣6m+8经过BC的中点G或经过BM的中点H,∵G是BC的中点,H是BM的中点,∴G(﹣1,3),H(1,1),把G(﹣1,3)代入y=mx﹣6m+8得到m,把H(1,1)代入y=mx﹣6m+8得到m,。
2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷

2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2020春•桦南县期末)二次根式有意义的条件是( )A.x>2B.x≥2C.x<2D.x≤22.(2分)(2020春•番禺区期末)下列各组数中不能作为直角三角形的三边长的是( )A.3,4,5B.13,14,15C.5,12,13D.15,8,173.(2分)(2020春•番禺区期末)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )A.68B.43C.42D.404.(2分)(2020春•凤凰县期末)矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角5.(2分)(2020春•番禺区期末)一次函数y=﹣3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )A.16B.8C.D.47.(2分)(2020春•番禺区期末)下列各式计算正确的是( )A.B.C.D.3﹣2=18.(2分)(2020•海淀区校级一模)把直线y=﹣2x向上平移后得到直线AB,若直线AB 经过点(m,n),且2m+n=8,则直线AB的表达式为( )A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣89.(2分)(2010•柳州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为( )A.10°B.15°C.20°D.12.5°10.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD;其中正确的结论个数是( )A.1个B.2个C.3个D.4个二、填空题11.(2分)(柳州)计算: .12.(2分)(2020春•番禺区期末)在平行四边形ABCD中,若∠A=38°,则∠C= .13.(2分)(2020春•昆明期末)直线y=2x﹣3与y轴的交点坐标 .14.(2分)(2020春•番禺区期末)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距 m.15.(2分)(武汉模拟)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为 km.16.(2分)(2020春•番禺区期末)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积为 .三、解答题17.(8分)(2020春•番禺区期末)计算:(1)(2)(3)18.(8分)(2020春•番禺区期末)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9.乙的成绩如图所示(单位:环)(1)分别计算甲、乙两人射击成绩的平均数;(2)若要选拔一人参加比赛,应派哪一位?请说明理由.19.(8分)(2020春•番禺区期末)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?20.(8分)(2020春•番禺区期末)已知直线y=kx+b的图象经过点(2,4)和点(﹣2,﹣2).(1)求b的值;(2)求关于x的方程kx+b=0的解;(3)若(x1,y1)、(x2,y2)为直线上两点,且x1<x2,试比较y1、y2的大小.21.(8分)(2020春•番禺区期末)如图,在▱ABCD中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF;(2)若AB=9,AC=16,AE=4,BF=3,求四边形ABCD的面积.22.(6分)(2020春•番禺区期末)已知点A(8,0)及第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式,并写出x的取值范围;(2)画出函数S的图象,并求其与正比例函数S=2x的图象的交点坐标;(3)当S=12时,求P点坐标.23.(6分)(2020春•番禺区期末)如图,在平行四边形ABCD中,E,F分别是AB,CD 的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF;(2)判断四边形MENF是何特殊的四边形?并对结论给予证明.24.(8分)(2020春•番禺区期末)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y与x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?25.(8分)(2020春•番禺区期末)如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.2019-2020学年广东省广州市番禺区八年级(下)期末数学试卷答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分)(2020春•桦南县期末)二次根式有意义的条件是( )A.x>2B.x≥2C.x<2D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣2≥0,解得x≥2.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(2分)(2020春•番禺区期末)下列各组数中不能作为直角三角形的三边长的是( )A.3,4,5B.13,14,15C.5,12,13D.15,8,17【考点】勾股定理的逆定理.【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.解:A、∵32+42=52,∴以3,4,5为边能组成直角三角形,故本选项不符合题意;B、∵132+142≠152,∴以13,14,15为边不能组成直角三角形,故本选项符合题意;C、∵52+122=132,∴以5,12,13为边能组成直角三角形,故本选项不符合题意;D、∵82+152=172,∴以8,15,17为边能组成直角三角形,故本选项不符合题意;故选:B.【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.3.(2分)(2020春•番禺区期末)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )A.68B.43C.42D.40【考点】中位数.【分析】根据中位数的概念求解.解:这组数据按照从小到大的顺序排列为:35,36,38,40,42,42,68,则中位数为40.故选:D.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2分)(2020春•凤凰县期末)矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.【点评】此题考查了矩形、菱形、正方形的对角线的性质,注意掌握正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,正方形、矩形、菱形都具有的特征是对角线互相平分.5.(2分)(2020春•番禺区期末)一次函数y=﹣3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【分析】根据题目中的函数解析式和一次函数的性质,可以判断该函数的图象经过哪几个象限,不经过哪个象限,本题得以解决.解:∵一次函数y=﹣3x+1,k=﹣3,b=1,∴该函数图象经过第一、二、四象限,不经过第三象限,故选:C.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )A.16B.8C.D.4【考点】三角形中位线定理;菱形的性质.【分析】根据三角形的中位线定理求出BC,再根据菱形的四条边解答即可.解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∴菱形ABCD的周长=4×4=16.故选:A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记各性质是解题的关键.7.(2分)(2020春•番禺区期末)下列各式计算正确的是( )A.B.C.D.3﹣2=1【考点】分母有理化;二次根式的混合运算.【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的性质对C进行判断;根据二次根式的乘法法则对D进行判断.解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式=2,所以C选项错误;D、原式3﹣2=1,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.(2分)(2020•海淀区校级一模)把直线y=﹣2x向上平移后得到直线AB,若直线AB 经过点(m,n),且2m+n=8,则直线AB的表达式为( )A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【考点】一次函数图象与几何变换.【分析】由题意知,直线AB的k是﹣2,又已知直线AB上的一点(m,n),所以用直线的解析式方程y﹣y0=k(x﹣x0)求得解析式即可.解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其K不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,K不变这一性质,再根据题意中的已知条件,来确定用哪种方程来解答.9.(2分)(2010•柳州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为( )A.10°B.15°C.20°D.12.5°【考点】等边三角形的性质;正方形的性质.【分析】根据等边三角形的性质及正方形的性质可得到AB=AE,从而可求得∠BAE的度数,则∠AEB的度数就不难求了.解:根据等边三角形和正方形的性质可知AB=AE,∴∠BAE=90°+60°=150°,∴∠AEB=(180°﹣150°)÷2=15°.故选:B.【点评】主要考查了正方形和等边三角形的特殊性质.10.(2分)(2020春•番禺区期末)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD;其中正确的结论个数是( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定;等边三角形的判定与性质;菱形的性质.【分析】证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE,可得∠BAF=∠ACE,EC=AF,由外角性质可得∠FHC=∠B,①②正确;由∠OAD=60°=∠EAC≠∠HAC,③△ADO≌△ACH不正确;求出△ABC的面积AB2,得菱形ABCD的面积,④不正确;即可得出结论.解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,∴AB=CA,∠EAC=∠B=60°,同理:△ADC是等边三角形∴∠OAD=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);∴∠BAF=∠ACE,EC=AF,∵∠FHC=∠ACE+∠FAC=∠BAF+∠FAC=∠BAC=60°,∴∠FHC=∠B,故①正确,②正确;∵∠OAD=60°=∠EAC≠∠HAC,故③△ADO≌△ACH不正确;∵△ABC是等边三角形,AB=AC=1,∴△ABC的面积AB2,∴菱形ABCD的面积=2△ABC的面积,故④不正确;故选:B.【点评】本题考查了全等三角形的判定与性质,菱形的性质,等边三角形的判定与性质等知识.熟练掌握菱形和等边三角形的判定与性质,证明三角形全等是解题的关键.二、填空题11.(2分)(柳州)计算: .【考点】二次根式的乘除法.【分析】原式利用二次根式乘法法则计算即可得到结果.解:原式,故【点评】此题考查了二次根式的乘除法,熟练掌握二次根式的乘法法则是解本题的关键.12.(2分)(2020春•番禺区期末)在平行四边形ABCD中,若∠A=38°,则∠C= 38° .【考点】平行四边形的性质.【分析】由平行四边形四边形的性质可得∠A=∠C=38°.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=38°,∴∠C=38°,故38°.【点评】本题考查了平行四边形的性质,掌握平行四边形的性质是本题的关键.13.(2分)(2020春•昆明期末)直线y=2x﹣3与y轴的交点坐标 (0,﹣3) .【考点】一次函数图象上点的坐标特征.【分析】求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.解:由题意得:当x=0时,y=2×0﹣3=﹣3,即直线与y轴交点坐标为(0,﹣3),故答案为(0,﹣3).【点评】本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.14.(2分)(2020春•番禺区期末)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距 300 m.【考点】勾股定理的应用.【分析】根据方位角可知两人所走的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得两人之间的距离.解:设10min后,OA=OB=30×10=300(m),甲乙两人相距AB300(m).答:10min后,甲乙两人相距300m,故300.【点评】本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.15.(2分)(武汉模拟)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为 60 km.【考点】一次函数的应用.【分析】由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9﹣6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=60×9﹣300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300﹣240=60km.解:如图,由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;乙车的平均速度为:300÷(9﹣6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),∴点A(7.5,150)由图可知点B(5,0)设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=60t﹣300,当t=9时,y=60×9﹣300=240,∴9点时,甲距离开A的距离为240km,∴则当乙车到达B城时,甲车离B城的距离为:300﹣240=60km.故60.【点评】本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.16.(2分)(2020春•番禺区期末)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积为 .【考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,所以AF=AB﹣BF.解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=6﹣x,在Rt△AFD′中,(6﹣x)2=x2+42,解之得:x,∴AF=AB﹣FB=6,∴S△AFC•AF•BC,故.【点评】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.三、解答题17.(8分)(2020春•番禺区期末)计算:(1)(2)(3)【考点】平方差公式;二次根式的混合运算.【分析】(1)直接合并同类二次根式即可;(2)利用平方差公式计算;(3)先把二次根式化为最简二次根式,然后合并即可.解:(1)原式=3;(2)原式=(2)2﹣()2=12﹣6=6;(3)原式=23=5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(2020春•番禺区期末)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9.乙的成绩如图所示(单位:环)(1)分别计算甲、乙两人射击成绩的平均数;(2)若要选拔一人参加比赛,应派哪一位?请说明理由.【考点】算术平均数;方差.【分析】(1)利用加权平均数的计算方法进行计算即可;(2)计算甲、乙两人的方差、中位数,通过比较得出答案.解:(1)甲8.5(环)8.5(环),乙答:甲、乙两人射击成绩的平均数都是8.5环;(2)[(7﹣8.5)2×2+(8﹣8.5)2×2+(9﹣8.5)2×5+(10﹣8.5)2]=0.85,═[(7﹣8.5)2×3+(8﹣8.5)2×2+(9﹣8.5)2×2+(10﹣8.5)2×3]=1.45,甲的中位数是9环,乙的中位数是8.5环,由于两人的平均数相同,甲的方差小于乙的方差,甲的中位数大于乙的中位数,所以应派甲去参加比赛.【点评】本题考查平均数、中位数、方差、的意义和计算方法,理解平均数、中位数、方差的意义是正确计算的前提,掌握计算方法是关键.19.(8分)(2020春•番禺区期末)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?【考点】勾股定理的应用.【分析】先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD﹣OB即可得出结论.解:∵Rt△OAB中,AB=2.5m,AO=2.4m,∴OB0.7m;同理,Rt△OCD中,∵CD=2.5m,OC=2.4﹣0.4=2m,∴OD1.5m,∴BD=OD﹣OB=1.5﹣0.7=0.8(m).答:梯子底端B向外移了0.8米.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(8分)(2020春•番禺区期末)已知直线y=kx+b的图象经过点(2,4)和点(﹣2,﹣2).(1)求b的值;(2)求关于x的方程kx+b=0的解;(3)若(x1,y1)、(x2,y2)为直线上两点,且x1<x2,试比较y1、y2的大小.【考点】一次函数与一元一次方程.【分析】(1)利用待定系数法求一次函数解析式,从而得到b的值;(2)利用k、b的值得到次函数解析式为yx+1,然后解方程x+1=0即可;(3)利用一次函数的性质解决问题.解:(1)根据题意得,解得,即b的值为1;(2)一次函数解析式为yx+1,当y=0时,x+1=0,解得x;(3)∵k0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.【点评】本题考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.也考查了一次函数的性质.21.(8分)(2020春•番禺区期末)如图,在▱ABCD中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF;(2)若AB=9,AC=16,AE=4,BF=3,求四边形ABCD的面积.【考点】三角形的面积;全等三角形的判定;平行四边形的性质.【分析】(1)首先由平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠BAE=∠DCF,∠BEC=∠DFA,然后根据AAS定理判定△ABE≌△CDF,即可证明得到AE=CF;(2)通过作辅助线求出△ABC的面积,即可得到四边形ABCD的面积.解:(1)证明:∵在平行四边形ABCD中,AB=CD,AB∥CD,∴∠BAC=∠DCA,又∵BE∥DF,∴∠BEF=∠DFE,∴∠BEA=∠DFC,∴在△ABE和△CDF中,,∴△ABE≌△CDF,∴AE=CF;(2)连接BD交AC于点O,作BH⊥AC交AC于点H,∵在平行四边形ABCD中,AC、BD是对角线,∴AO=CO=8,AF=12,∵AB2+BF2=92144,AF2=144,∴AB2+BF2=AF2,∴∠ABF=90°,∴BH,∴S平行四边形ABCD=2S△ABC.【点评】此题主要考查了平行四边形的性质,全等三角形的判定,以及利用面积法求三角形的高等知识,难度一般.22.(6分)(2020春•番禺区期末)已知点A(8,0)及第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式,并写出x的取值范围;(2)画出函数S的图象,并求其与正比例函数S=2x的图象的交点坐标;(3)当S=12时,求P点坐标.【考点】动点问题的函数图象.【分析】(1)根据△OAP的面积=OA×y÷2列出函数解析式,及点P(x,y)在第一象限内求出自变量的取值范围.(2)根据S=﹣4x+40画出函数图象,并与正比例函数S=2x联立方程组,即可求出交点坐标.(3)将S=12代入(1)求出的解析式中即可.解:(1)依题意有S8×(10﹣x)=﹣4x+40,∵点P(x,y)在第一象限内,∴x>0,y=10﹣x>0,解得:0<x<10,故关于x的函数解析式为:S=﹣4x+40 (0<x<10);(2)∵解析式为S=﹣4x+40(0<x<10);∴函数图象经过点(10,0)(0,40)(但不包括这两点的线段).所画图象如下:令,解得:,所以交点坐标为,(3)将S=12代入S=﹣4x+40,得:12=﹣4x+40,解得:x=7,故点P(7,3).【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.23.(6分)(2020春•番禺区期末)如图,在平行四边形ABCD中,E,F分别是AB,CD 的中点,DE,BF与对角线AC分别交于点M,N,连接MF,NE.(1)求证:DE∥BF;(2)判断四边形MENF是何特殊的四边形?并对结论给予证明.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】(1)由平行四边形的性质可得AB∥CD,AB=CD;由中点性质可得BE=AEABCD=DF=CF,由一组对边平行且相等的四边形是平行四边形,可证四边形EBFD为平行四边形,可得DE∥BF;(2)由“ASA”可证△AME≌△CNF,可得ME=FN,由一组对边平行且相等的四边形是平行四边形,可证四边形MENF为平行四边形,证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵E、F分别是AB、CD的中点,∴BE=AEABCD=DF=CF,∵BE∥DF,∴四边形EBFD为平行四边形,∴DE∥BF;(2)四边形MENF是平行四边形,理由如下:∵DE∥BF,∴∠CDM=∠CFN.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAC=∠DCA,∠CDM=∠AEM,∴∠AEM=∠CFN,在△AME和△CNF中,,∴△AME≌△CNF(ASA),∴ME=FN,又∵DE∥BF,∴四边形MENF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,全等三角形的判定,根据条件选择适当的判定方法是解题关键.24.(8分)(2020春•番禺区期末)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y与x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?【考点】一元一次不等式的应用;一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤300),y=0.7(x﹣300)+300=0.7x+90,即y=0.7x+90(x>300);(2)如图所示;(3)当0.8x=0.7x+90时,x=900,所以,x<900时,甲商场购物更省钱,x=900时,甲、乙两商场购物更花钱相同,x>900时,乙商场购物更省钱.【点评】本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.25.(8分)(2020春•番禺区期末)如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.【考点】四边形综合题.【分析】(1)利用勾股定理求出AC,再证明△FDQ≌△FPA得到QD=AP,结合CD=CP求出结果;(2)先证明DE∥PF,结合EP∥DF得到四边形DFPE是平行四边形,再由EF⊥DP 得到菱形;(3)根据菱形的性质得到2DG=DP,2GF=EF,再证明QD=DF,最后利用勾股定理证明线段关系;(4)证明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定关系.解:(1)AC,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC﹣PC=()a;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=()a,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.【点评】本题考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,菱形的判定,勾股定理,知识点较多,解题时应当注意各个小问之间的关系,找到能够利用的结论和条件.。
广东省广州市越秀区2021-2022学年八年级上学期期末数学试题

C 13cm,12cm,20cmD.5cm,5cm,11cm
【答案】C
3.若一个多边形的内角和与外角和之差是 ,则此多边形是()边形.
A.6B.7C.8D.9
【答案】C
4.如图,AC=BC=10 cm,∠B=15°,若AD⊥BD于点D,则AD的长为()
(3)如图2,若D是AO的中点,DE BO,F在线段AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的关系.
【答案】(1)见解析(2)∠ACO=45°
(3)EF=OE,且EF⊥OE,见解析
(1)求一台零件检测机每小时检测零件多少个?
(2)现有一项零件检测任务,要求不超过8小时检测完成2720个零件.该厂调配了2台检测机和20名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?
【答案】(1)60(2)至少4台
24.如图,点P为 ABC的外角∠BCD的平分线上一点,PA=PB,PE⊥BC于点E.
【答案】B
二、填空题(本题共有6小题)
11.新型冠状病毒直径平均为100纳米,也就是大约0.0000001米,该直径用科学记数法表示为_______米.
【答案】
12.若分式 的值为0,则y=_______
【答案】-5
13.分解因式: _______.
【答案】2ab(c+2a)
14.计算: ______.
A.13B.14C.15D.16
【答案】B
10.如图,在平面直角坐标系中,B(0,1),C(0,-1),D为x轴正半轴上一点,A为第一象限内一动点,且∠BAC=2∠BDO,DM⊥AC于M.下列说法正确的是()
2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷

2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.(3分)已知一个三角形两边的长分别是2和5,那么第三边的边长可能是下列各数中的()A.1B.2C.3D.52.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.BC=AD C.∠C=∠D D.∠CAB=∠DBA3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a64.(3分)要使分式有意义,则x的取值范围是()A.x≠﹣3B.x≠3C.x≠0D.x≠±35.(3分)下列变形从左到右一定正确的是()A.B.C.D.=6.(3分)如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.47.(3分)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS8.(3分)若等腰三角形中的一个外角等于130°,则它的顶角的度数是()A.50°B.80°C.65°D.50°或80°9.(3分)如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC之间的距离是()A.5B.8C.10D.1510.(3分)若a,b,c是△ABC的三边长,且a2+b2+c2﹣ab﹣ac﹣bc=0,则△ABC的形状是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定二、填空题:本题共6小题,每小题3分,共18分.11.(3分)如果一个多边形的内角和是1800度,它是边形.12.(3分)若关于x的多项式x2+10x+k(k为常数是完全平方式,则k=.13.(3分)分式与的最简公分母是.14.(3分)若3m=5,3n=8,则32m+n=.15.(3分)点(﹣3,4)与点(a2,b2)关于y轴对称,则(a+b)(a﹣b)=.16.(3分)如图,△ABC是等边三角形,AD=AB,点E、F分别为边AC、BC上的动点,当△DEF的周长最小时,∠FDE的度数是.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(6分)解方程:.18.(8分)计算:(1)(﹣2x)3﹣3x(x﹣2x2)(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y19.(8分)分解因式:(1)a﹣6ab+9ab2(2)x2(x﹣y)+y2(y﹣x)20.(6分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.21.(10分)(1)先化简再求值:,其中x=﹣3;(2)如果a2+2a﹣1=0,求代数式的值.22.(8分)如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF =EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.23.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,点P是直线AC上的动点(不和A、C重合),CD⊥BP 于点D,交直线AB于点Q.(1)当点P在边AC上时,求证:AP=AQ(2)若点P在AC的延长线上时,(1)的结论是否成立?若成立,请画出图形(不写画法,画出示意图);若不成立,请直接写出正确结论.24.(8分)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?25.(10分)如图所示,点O是线段AC的中点,OB⊥AC,OA=9.(1)如图1,若∠ABO=30°,求证△ABC是等边三角形;(2)如图1,在(1)的条件下,若点D在射线AC上,点D在点C右侧,且△BDQ是等边三角形,QC的延长线交直线OB于点P,求PC的长度;(3)如图2,在(1)的条件下,若点M在线段BC上,△OMN是等边三角形,且点M沿着线段BC从点B运动到点C,点N随之运动,求点N的运动路径的长度.2019-2020学年广东省广州市越秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的. 1.【解答】解:设第三边的长度为x,由题意得:5﹣2<x<5+2,即:3<x<7,只有D选项在范围内.故选:D.2.【解答】解:A、当添加AC=BD时,且∠ABC=∠BAD,AB=BA,由“SSA”不能证得△ABC≌△BAD,故本选项符合题意;B、当添加BC=AD时,且∠ABC=∠BAD,AB=BA,由“SAS”能证得△ABC≌△BAD,故本选项不符合题意;C、当添加∠C=∠D时,且∠ABC=∠BAD,AB=BA,由“AAS”能证得△ABC≌△BAD,故本选项不符合题意;D、当添加∠CAB=∠DBA时,且∠ABC=∠BAD,AB=BA,由“ASA”能证得△ABC≌△BAD,故本选项不符合题意;故选:A.3.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.4.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故选:A.5.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A错误;B、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以x,分式的值不变,故D正确;故选:D.6.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故选:C.7.【解答】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.8.【解答】解:①当130°外角是底角的外角时,底角为:180°﹣130°=50°,∴顶角度数是180°﹣50°﹣50°=80°,②当130°外角是顶角的外角时,顶角为:180°﹣130°=50°,∴顶角为50°或80°.故选:D.9.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,∵AD∥BC,GE⊥AD,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.10.【解答】解:已知等式整理得:2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,即(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)=0,变形得:(a﹣b)2+(a﹣c)2+(b﹣c)2=0,∴a=b=c,则△ABC为等边三角形,故选:C.二、填空题:本题共6小题,每小题3分,共18分.11.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=1800°,解得:n=12,则这个正多边形是12.故答案为:12.12.【解答】解:∵关于x的多项式x2+10x+k是完全平方式,∴x2+10x+k=x2+2•x•5+52,∴k=52=25,故答案为:25.13.【解答】解:分式与的最简公分母是6a3b4c,故答案为:6a3b4c.14.【解答】解:∵3m=5,3n=8,∴32m+n=(3m)2×3n=52×8=200.故答案为:200.15.【解答】解:∵点(﹣3,4)与点(a2,b2)关于y轴对称,∴a2=3,b2=4,解得a=±,b=±2.∴(a+b)(a﹣b)=(+2)(﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣2)(+2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣+2)(﹣﹣2)=3﹣4=﹣1;或(a+b)(a﹣b)=(﹣﹣2)(﹣+2)=3﹣4=﹣1.故答案为:﹣1.16.【解答】解:作D关于AC的对称点G,D关于BC的对称点H,连接GH交AC于E交BC于F,则此时,△DEF的周长最小,∵∠A=∠B=60°,DG⊥AC,DH⊥BC,∴∠ADG=∠BDH=30°,∴∠GDH=120°,∴∠H+∠G=60°,∵EG=ED,DF=HF,∴∠G=∠GDE,∠H=∠HDF,∴∠HDF+∠GDE=60°,∴∠FDE=60°,故答案为:60°.三、解答题:本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解是x=2.18.【解答】解:(1)(﹣2x)3﹣3x(x﹣2x2)=﹣8x3﹣3x2+6x3=﹣2x3﹣3x2;(2)[(x+2y)2﹣(x﹣2y)(x+2y)]÷4y=(x2+4y2+4xy﹣x2+4y2)÷4y=(8y2+4xy)÷4y=x+2y.19.【解答】解:(1)原式=a(1﹣6b+9b2)=a(1﹣3b)2;(2)原式=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)2(x+y).20.【解答】解:∵∠1=∠2,∠3=∠4,而∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1,在△ADC中,∠DAC+∠3+∠4=180°,∴∠DAC+4∠1=180°,∵∠BAC=∠1+∠DAC=69°,∴∠1+180°﹣4∠1=69°,解得∠1=37°,∴∠DAC=69°﹣37°=32°.21.【解答】解:(1)原式=•=•=,当x=﹣3时,原式=﹣2;(2)∵a2+2a﹣1=0,∴a2+2a=1,则原式=•=•=a2+2a=1.22.【解答】解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.23.【解答】解:(1)∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;(2)成立理由如下:如图,∵CD⊥BP∴∠BAC=∠BDQ=90°∴∠Q+∠QBD=90°,∠Q+∠ACQ=90°,∴∠QBD=∠ACQ,且AB=AC,∠BAC=∠QAC=90°,∴△ABP≌△ACQ(ASA)∴AP=AQ;24.【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y+0.8×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.25.【解答】解:(1)∵∠ABO=30°,OB⊥AC,∴∠BAO=60°,∵O是线段AC中点,OB⊥AC,∴BA=BC,又∠BAO=60°,∴△ABC是等边三角形;(2)∵△ABC和△BDQ为等边三角形,∴BA=BC,BD=BQ,∠BAC=60°,∠DBQ=60°,∴∠ABD=∠CBQ,在△BAD和△BCQ中,,∴△BAD≌△BCQ(SAS)∴∠BCQ=∠BAD=60°,∵∠BCA=60°,∴∠OCP=60°,∵∠POC=90°,∴∠OPC=30°,∴PC=2OC=18;(3)取BC的中点H,连接OH,连接CN,则OH=BC=BH=CH,∴△HOC为等边三角形,∴∠HOC=∠OHC=60°,OH=OC,当M在BH上时,∠MON=60°,∠HOC=60°,∴∠MOH=∠NOC,在△OMH和△ONC中,,∴△OMH≌△ONC(SAS),∴∠OCN=∠OHM=120°,当点M与点B重合时,在△OBC和△N′BC中,,∴△OBC≌△N′BC(SAS)∴∠BCN′=∠BCO=60°,∴∠OCN′=120°,即C、N、N′在同一条直线上,∴CN′=OC=9,∴点N从起点到C作直线运动路径为9,当M在HC上时,△OCN为等边三角形,∴CN=OC=9,∴点N从C到终点作直线运动路径长为9综上所述,N的路径长度为:9+9=18.。
2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷(含解析)

2022-2023学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若二次根式a+1在实数范围内有意义,a的取值范围是( )A. a>1B. a≥1C. a>−1D. a≥−12. 下列四个二次根式中,最简二次根式是( )A. 40B. 32C. 2D. 273. 直线y=2x+n经过点(1,5),则n=( )A. 1B. 2C. 3D. 44. 在▱ABCD中,∠A=3∠B,则∠C的度数是( )A. 45°B. 60°C. 120°D. 135°5. 下列计算正确的是( )A. 2+3=5B. 32−2=3C. 3×2=5D. 23=636. 某射击队准备挑选运动员参加射击比赛.下表是其中一名运动员10次射击的成绩(单位:环):成绩7.58.5910频数2233则该名运动员射击成绩的平均数是( )A. 8.9B. 8.7C. 8.3D. 8.27. 一次函数y=mx+n(m≠0,m,n是常数)的图象经过两点A(0,3),B(2,0),则关于x的不等式mx+n>0的解集是( )A. x>2B. x<2C. x>0D. x<08. 甲、乙两人先后从A地出发开车到相距300千米的B地,在整个匀速行程中,两人行驶的路程y与时刻t的对应关系如图所示,则甲、乙两车相遇的时刻是( )A. 9:15B. 9:30C. 9:45D. 10:009.如图,矩形ABCD的对角线AC,BD相交于点O,点E是线段AC上一点,连接EB,ED.若△BED的面积等于△BEC的面积,则△ABE和△CDE的E面积比等于( )A. 2:1B. 3:1C. 3:2D. 9:410. 已知一次函数y=kx+3k−2(k≠0,k是常数),则下列结论正确的是( )A. 若点A(2,8)在一次函数y=kx+3k−2的图象上,则它的图象与两个坐标轴围成的三角形面积是2B. 若3k−2>0,则一次函数y=kx+3k−2图象上任意两点E(a1,b1)和F(a2,b2)满足:(a1−a2 )(b1−b2)<0C. 一次函数y=kx+3k−2的图象不一定经过第三象限D. 若对于一次函数y=tx+7(t≠0)和y=kx+3k−2,无论x取任何实数,总有tx+7>kx+ 3k−2,则k的取值范围是0<k<3或k<0二、填空题(本大题共6小题,共18.0分)11. 若y=(m−2)x+1是一次函数,则m的取值范围是______ .12.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD使其不变形.若AF=1米,AE=2米,则木条EF=______ 米.(结果保留根号)13. 一组数据2,1,x,1,6的平均数是3,则这组数据的中位数是______ .14.如图,四边形ABCD是菱形,DE⊥AB于点E,点O是对角线AC的中点,连接OE.若AB=5,AC=8,则OE等于______ .15. 在平面直角坐标系xOy中,直线y=kx−2(k≠0)与x轴,y轴分别相交于A,B两点,若∠O BA=30°,则点A的坐标是______ .16. 如图,Rt△ABC的两条直角边AB>AC,分别以AB,AC为边作正方形ABDE和正方形AC GF.点H是线段DE上一点,连接HB,作矩形BCKH.线段HK与EA交于点P,线段KC与BF交于点Q,连接线段BQ和CP的中点M,N.△ABC,△HEP和四边形CGFQ的面积分别记为S1S2和S3给出下列四个结论:①HB2=AB2+AC2②EP=QF;③S1>S2+S3;④∠NMA+∠ABC=45°;其中正确的结论是______ .(填写所有正确结论的序号)三、解答题(本大题共9小题,共72.0分。
2022-2023学年广东省广州市越秀区执信中学八年级上学期期末数学试卷及参考答案

2022-2023学年广州市越秀区执信中学初二数学第一学期期末试卷一、选择题(本大题共10小题,每小题3分,共30分.每题只有一项是符合题目要求的)1.下面是科学防控知识的图片,其中是轴对称图形的是( )A .B .C .D .2.用下列长度的三条线段,首尾相连,不能组成三角形的是( )A .3cm ,3cm ,2cmB .7cm ,2cm ,4cmC .4cm ,9cm ,7cmD .3cm ,5cm ,4cm 3.下列运算正确的是( )A .527()a a =B .246a a a ⋅=C .824x x x ÷=D .236()ab ab =4.如图,若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件( )A .BAC BAD ∠=∠B .AC AD =C .ABC ABD ∠=∠ D .以上都不正确 5.若分式11a a +−有意义,则a 的取值范围为( ) A .1a > B .1a = C .1a ≠ D .0a ≠6.若多项式235x mx +−分解因式为(7)(5)x x −+,则m 的值是( )A .2B .2−C .12D .12−7.一个正多边形的每个外角都是36︒,这个正多边形的边数是( )A .9B .10C .11D .128.若2m n −=,则代数式222m n m m m n−⋅+的值是( ) A .2− B .2 C .4− D .49.如图,在ABC ∆中,BC 的垂直平分线分别交AC ,BC 于点D ,E .若ABC ∆的周长为24,4CE =,则ABD ∆的周长为( )A .16B .18C .20D .2410.如图,在ABC ∆中,BAC ∠和ABC ∠的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O作OD BC ⊥于D ,下列三个结论:①1902AOB C ∠=︒+∠;②当60C ∠=︒时,AF BE AB +=;③若OD a =,2AB BC CA b ++=,则ABC S ab ∆=.其中正确的是( )A .①②B .②③C .①②③D .①③二、填空题(本大题共6小题,每小题3分,共18分)11.将数0.0002022用科学记数法表示为 .12.分解因式:xm xn −= .13.如图,一副直角三角板如图放置,//AB EF ,30B ∠=︒,45F ∠=︒,则1∠= .14.若228a b +=,2ab =,则2()a b −= .15.如图,已知ABC ∆为等边三角形,BD 为中线,延长BC 至E ,使CE CD =,连接DE ,则BDE ∠= ︒.16.如图,18AOB ∠=︒,点M 、N 分别是边OA 、OB 上的定点,点P 、Q 分别是边OB 、OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++最小时,则βα−= .三、解答题(本大题共9小题,共72分)17.如图,AB AD =,BC CD =.求证:B D ∠=∠.18.计算:(1)(34)(21)x x +−;(2)22(1510)5x y xy xy −÷.19.如图,在平面直角坐标系中,已知(3,3)A ,(1,1)B ,(4,1)C −.(1)画出ABC ∆关于y 轴的轴对称图形△111A B C ,并写出1A 、1B 、1C 坐标;(2)在(1)的条件下,连接1AA 、1AB ,直接写出△11AA B 的面积.20.如图,在ABC ∆中,30A ∠=︒,60B ∠=︒.(1)作B ∠的平分线BD ,交AC 于点D .(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)设3CD =,求AC .21.先化简,再求值222442111m m m m m m −+−+÷−−+,其中2m =−. 22.接种疫苗是预防新冠肺炎的一种有效办法,截至2021年12月29日,我国新冠疫苗接种总剂次约占全球总剂次的三分之一.某社区组织甲、乙两支医疗队开展疫苗接种工作,甲队比乙队每小时多接种20人,甲队接种2250人与乙队接种1800人用时相同,问:甲队每小时接种多少人?23.如图,ABC ∆中,AB AC =.O 是ABC ∆内一点,OD 是AB 的垂直平分线,OF AC ⊥,OD OF =.(1)当126DOF ∠=︒时,求:OBC ∠的度数.(2)判断AOC ∆的形状,并证明.24.阅读材料:若22228160m mn n n −+−+=,求m ,n 的值.解:22228160m mn n n −+−+=,222(2)(816)0m mn n n n ∴−++−+=.22()(4)0m n n ∴−+−=.2()0m n ∴−=,2(4)0n −=,4n ∴=,4m =.根据你的观察,探究下面的问题:(1)已知2222440a b ab b +−++=,求ab 的值;(2)已知ABC ∆的三边长a ,b ,c 都是正整数,且满足22812520a b a b +−−+=,求ABC ∆的最长边c 的值;(3)已知8a b −=,216800ab c c +−+=,求a b c ++的值.25.已知:ABC ∆中,90ACB ∠=︒,AC BC =.(1)如图1,点D 在BC 的延长线上,连AD ,过B 作BE AD ⊥于E ,交AC 于点F .求证:AD BF =;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且AE AD =,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,AE AD =且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若3AC MC =,请直接写出DB BC的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分.每题只有一项是符合题目要求的)1.解:B ,C ,D 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A .2.解:A 、233+>,能构成三角形,不符合题意;B 、247+<,不能构成三角形,符合题意;C 、479+>,能构成三角形,不符合题意;D 、345+>,能构成三角形,不符合题意.故选:B .3.解:A 、5210()a a =,计算错误,不符合题意;B 、246a a a ⋅=,计算正确,符合题意;C 、826x x x ÷=,计算错误,不符合题意;D 、2336()ab a b =,计算错误,不符合题意.故选:B .4.解:若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件AC AD =或BC BD =, 故选:B .5.解:由题意得:10a −≠,解得:1a ≠,故选:C .6.解:多项式235x mx +−分解因式为(7)(5)x x −+,即235(7)(5)x mx x x +−=−+,2235235x mx x x ∴+−=−−,系数对应相等,2m ∴=−,故选:B .7.解:3603610︒÷︒=,则这个正多边形的边数是10.故选:B .8.解:原式()()2m n m n m m m n+−=⋅+ 2()m n =−.当2m n −=时.原式224=⨯=.故选:D .9.解:4CE =,DE 是线段BC 的垂直平分线,28BC CE ∴==,BD CD =,ABC ∆的周长为24,2424816AB AC BC ∴+=−=−=,ABD ∴∆的周长16AD BD AB AD CD AB AC AB =++=++=+=,故选:A .10.解:BAC ∠和ABC ∠的平分线相交于点O ,12OBA CBA ∴∠=∠,12OAB CAB ∠=∠, 1111180180180(180)902222AOB OBA OAB CBA CAB C C ∴∠=︒−∠−∠=︒−∠−∠=︒−︒−∠=︒+∠,①正确; 60C ∠=︒,120BAC ABC ∴∠+∠=︒, AE ,BF 分别是BAC ∠与ABC 的平分线,1()602OAB OBA BAC ABC ∴∠+∠=∠+∠=︒, 120AOB ∴∠=︒,60AOF ∴∠=︒,60BOE ∴∠=︒,如图,在AB 上取一点H ,使BH BE =, BF 是ABC ∠的角平分线,HBO EBO ∴∠=∠,在HBO ∆和EBO ∆中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,()HBO EBO SAS ∴∆≅∆,60BOH BOE ∴∠=∠=︒,180606060AOH ∴∠=︒−︒−︒=︒,AOH AOF ∴∠=∠,在HAO ∆和FAO ∆中,HAO FAO AO AOAOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()HAO FAO ASA ∴∆≅∆,AF AH ∴=,AB BH AH BE AF ∴=+=+,故②正确;作OH AC ⊥于H ,OM AB ⊥于M ,BAC ∠和ABC ∠的平分线相交于点O ,∴点O 在C ∠的平分线上,OH OM OD a ∴===,2AB AC BC b ++=,1111()2222ABC S AB OM AC OH BC OD AB AC BC a ab ∆∴=⨯⨯+⨯⨯+⨯⨯=++⋅=,③正确. 故选:C .二、填空题(本大题共6小题,每小题3分,共18分)11.解:将数0.0002022用科学记数法表示为42.02210−⨯. 故答案为:42.02210−⨯.12.解:()xm xn x m n −=−.故答案为:()x m n −.13.解://AB EF ,180E EDB ∴∠+∠=︒,90E ∠=︒,18090EDB E ∴∠=︒−∠=︒,45EDF F ∠=∠=︒,90904545BDF EDF ∴∠=︒−∠=︒−︒=︒,1B BDF ∠=∠+∠,30B ∠=︒,1304575∴∠=︒+︒=︒.故答案为:75︒.14.解:因为222()2a b a b ab −=+−,228a b +=,2ab =, 所以2()8224a b −=−⨯=,故答案为:4.15.解:ABC ∆为等边三角形,BD 为中线,90BDC ∴∠=︒,60ACB ∠=︒180********ACE ACB ∴∠=︒−∠=︒−︒=︒,CE CD =,30CDE CED ∴∠=∠=︒,9030120BDE BDC CDE ∴∠=∠+∠=︒+︒=︒,故答案为:120.16.解:如图,作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N ''交OA 于Q ,交OB 于P ,则MP PQ QN ++最小,OPM OPM NPQ ∴∠=∠'=∠,OQP AQN AQN ∠=∠'=∠,11(180)18(180)22QPN AOB MQP αβ∴∠=︒−=∠+∠=︒+︒−, 18036(180)αβ∴︒−=︒+︒−,36βα∴−=︒,故答案为36︒.三、解答题(本大题共9小题,共72分)17.证明:在ADC ∆和ABC ∆中CD CB AC AC AD AB =⎧⎪=⎨⎪=⎩,()ADC ABC SSS ∴∆≅∆,B D ∴∠=∠.18.解:(1)原式26384x x x =−+− 2654x x =+−.(2)原式22155105x y xy xy xy =÷−÷ 32x y =−.19.解:(1)如图所示:△111A B C 即为所求,1(3,3)A −,1(1,1)B −,1(4,1)C −−;(2)△11AA B 的面积为:16262⨯⨯=.20.解:(1)如图射线BD 即为所求;(2)90C ∠=︒,30A ∠=︒,60ABC ∴∠=︒,BD 平分ABC ∠,30A ABD DBC ∴∠=∠=∠=︒,26BD CD ∴==,6AD ∴=,639AC AD CD ∴=+=+=.21.解:原式22(2)11(1)(1)2m m m m m m −+=+⋅−+−− 2211m m m −=+−− 1m m =−, 当2m =−时,原式22213−==−−. 22.解:设甲队每小时接种x 人,则乙队每小时接种(30)x −人, 依题意得2250180020x x =−, 解得:100x =,经检验,100x =是原方程的解,且符合题意. 答:甲队每小时接种100人.23.(1)解:180DOF BAC ∠+∠=︒,126DOF ∠=︒, 54BAC ∴∠=︒,AB AC =,63ABC ACB ∴∠=∠=︒,OD AB ⊥,OF AC ⊥,OD OF =,1272DAO BAC ∴∠=∠=︒, OD 垂直平分AB ,OA OB ∴=,27OBA DAO ∴∠=∠=︒,632736OBC ABC OBA ∴∠=∠−∠=︒−︒=︒;(2)AOC ∆是等腰三角形,证明:OD OF =,AO AO =, Rt ADO Rt AFO(HL)∴∆≅∆,12AF AD AB ∴==, CA BA =,12AF AC ∴=, OF ∴垂直平分AC ,OA OC ∴=,AOC ∴∆是等腰三角形.24.解:(1)2222440a b ab b +−++=, 22()(2)0a b b ∴−++=,0a b ∴−=,20b +=,解得:2a b ==−,则4ab =;(2)22812520a b a b +−−+=,22(816)(1236)0a a b b ∴−++−+=,即22(4)(6)0a b −+−=, 40a ∴−=,60b −=,解得:4a =,6b =,6464c −<<+,即210c <<, a ,b ,c 为正整数,∴最长边c 的值为9;(3)8a b −=,8a b ∴=+,216800ab c c +−+=,2(8)16800b b c c ∴++−+=,即22(4)(8)0b c ++−=,40b ∴+=,80c −=,解得:4b =−,8c =,4a =,则4848a b c ++=−++=.25.(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC CA =,BCF ACD ∴∆≅∆,BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒, DAC AEH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =, EHF BCF ∴∆≅∆,FH CF∴=,2BD CH CF∴==.(3)如图3中,同法可证2BD CM=.3AC CM=,设CM a=,则3AC CB a==,2BD a=,∴2233 DB aBC a==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年广东省广州市越秀区八年级(下)期末数学试卷一、选择题1.(3分)2(3)的计算结果是( ) A .23 B .9 C .6 D .32.(3分)在下列计算中,正确的是( )A .18222-=B .2(1)1-=-C .527⨯=D .114293= 3.(3分)在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为( )A .175B .176C .179D .1804.(3分)若菱形的两条对角线长分别为8和6,则这个菱形的面积是( )A .96B .48C .24D .125.(3分)在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是( )A .82分B .84分C .85分D .86分6.(3分)在下列各组数中,不能作为直角三角形的三边长的是( )A .3,4,5B .30,40,50C .1,3,2D .5,12,137.(3分)如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A .2.5B .22C .3D .58.(3分)如图,EF 过平行四边形ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若平行四边形ABCD 的周长是36,3OE =,则四边形ABFE 的周长为( )A .21B .24C .27D .189.(3分)下列有关一次函数21y x =-+的说法中,错误的是( )A .y 的值随着x 增大而减小B .当0x >时,1y >C .函数图象与y 轴的交点坐标为(0,1)D .函数图象经过第一、二、四象限10.(3分)如图1,四边形ABCD 为一块矩形草坪,小明从点B 出发,沿BC CD DA →→运动至点A 停止.设小明运动路程为x ,ABP ∆的面积为y ,y 关于x 的函数图象如图2所示.矩形草坪ABCD 的边CD 的长度是( )A .6B .8C .10D .14二.填空题11.(3分)二次根式5x -有意义,则x 的取值范围是 .12.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若4a =,3b =,则大正方形的面积是 .13.(3分)将直线2y x =向上平移1个单位长度后得到的直线是 .14.(3分)数据2-、1-、0、1、2的方差是 .15.(3分)如图,一次函数y mx n =+与一次函数y kx b =+的图象交于点(1,2)A ,则关于x 的不等式mx n kx b +>+的解集是 .16.(3分)如图,四边形ABCD是正方形,3BC=,点G为边CD上一点,1CG=,以CG 为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②2BG=;③45FED∠=︒;④BG DE⊥.其中正确的结论是(请写出所有正确结论的序号).三、解答题17.(6分)计算:124310202÷-⨯+.18.(7分)如图,在ABC∆中,15AB=,20AC=,25BC=.(1)求证:90BAC∠=︒;(2)作AH BC⊥,H为垂足,求AH的长.19.(7分)如图,四边形ABCD是正方形,对角线AC、BD相交于点F,90E∠=︒,ED EC=.求证:四边形DFCE是正方形.20.(8分)为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.21.(8分)如图,在平面直角坐标系中,直线210=-+与y轴交于点A,与x轴交于点B,y x另一条直线经过点A和点(2,8)C-,且与x轴交于点D.(1)求直线AD的解析式;(2)求ABD∆的面积.22.(8分)如图,ABC⊥于点H,点D,E分别是AB,AC的中点,连接DH,∆中,AH BCEH,DE.(1)求证:AD DH=;(2)若四边形ADHE的周长是30,ADE∆的周长是21,求BC的长.23.(8分)某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x 人,选择甲旅行社所需费用为1y 元,选择乙旅行社所需费用为2y 元.请解答下列问题:(1)请分别写出1y ,2y 与x 之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?24.(10分)如图,已知直线28y x =-+与坐标轴跟别交于A ,B 两点,与直线2y x =交于点C .(1)求点C 的坐标;(2)若点P 在y 轴上,且12OCP OCA S S ∆∆=,求点P 的坐标; (3)若点M 在直线2y x =上,点M 横坐标为m ,且2m >,过点M 作直线平行于y 轴,该直线与直线28y x =-+交于点N ,且1MN =,求点M 的坐标.25.(10分)如图1,四边形ABCD 是矩形,点O 位于对角线BD 上,将ADE ∆,CBF ∆分别沿DE 、BF 翻折,点A ,点C 都恰好落在点O 处.(1)求证:EDO FBO ∠=∠;(2)求证:四边形DEBF 是菱形:(3)如图2,若2AD =,点P 是线段ED 上的动点,求2AP DP +的最小值.2019-2020学年广东省广州市越秀区八年级(下)期末数学试卷参考答案与试题解析一、选择题1.(3分)2的计算结果是()A.B.9C.6D.3【考点】75:二次根式的乘除法【分析】求出2的结果,即可选出答案.【解答】解:23=,故选:D.【点评】本题考查了二次根式的性质的应用,注意:23=.2.(3分)在下列计算中,正确的是()A B1-C D1 2 3【考点】79:二次根式的混合运算【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】==,故选项A正确;1,故选项B错误;,故选项C错误;,故选项D错误;故选:A.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.(3分)在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.180【考点】5W:众数【分析】根据众数的概念求解可得.【解答】解:这组数据中176出现3次,次数最多,所以众数为176,故选:B .【点评】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.(3分)若菱形的两条对角线长分别为8和6,则这个菱形的面积是( )A .96B .48C .24D .12【考点】8L :菱形的性质【分析】根据菱形的面积等于对角线乘积的一半计算即可.【解答】解:四边形ABCD 是菱形,168242S ∴=⨯⨯=. 故选:C .【点评】本题主要考查菱形的面积的求法,熟记菱形的面积等于对角线乘积的一半是解题的关键.5.(3分)在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是( )A .82分B .84分C .85分D .86分【考点】2W :加权平均数【分析】根据题意和加权平均数的计算方法,可以计算出这个人的最终得分.【解答】解:9020%8040%8540%84⨯+⨯+⨯=(分),即这个人的最终得分是84分,故选:B .【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.6.(3分)在下列各组数中,不能作为直角三角形的三边长的是( )A B .30,40,50C .12D .5,12,13【考点】KS :勾股定理的逆定理【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A 、222(3)(4)(5)+≠,不符合勾股定理的逆定理,故本选项符合题意; B 、222304050+=,符合勾股定理的逆定理,故本选项不符合题意;C 、2221(3)2+=,符合勾股定理的逆定理,故本选项不符合题意;D 、22251213+=,符合勾股定理的逆定理,故本选项不符合题意;故选:A .【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.(3分)如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A .2.5B .22C .3D .5【考点】29:实数与数轴【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,22215OB =+=,∴这个点表示的实数是5.故选:D .【点评】本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出OB 的长.8.(3分)如图,EF 过平行四边形ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若平行四边形ABCD 的周长是36,3OE =,则四边形ABFE 的周长为( )A .21B .24C .27D .18 【考点】5L :平行四边形的性质;KD :全等三角形的判定与性质【分析】先由ASA 证明AOE COF ∆≅∆,得OE OF =,AE CF =,再求得18AB BC +=,由平行四边形ABFE 的周长2AB AE BF EF AB BF CF OE =+++=+++,即可求得答案.【解答】解:四边形ABCD 为平行四边形,对角线的交点为O ,AB CD ∴=,AD BC =,OA OC =,//AD BC ,EAO FCO ∴∠=∠,在AOE ∆和COF ∆中,EAO FCO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOE COF ASA ∴∆≅∆,OE OF ∴=,AE CF =,平行四边形ABCD 的周长为36,136182AB BC ∴+=⨯=, ∴四边形ABFE 的周长22318624AB AE BF EF AB BF CF OE AB BC =+++=+++=++⨯=+=故选:B .【点评】本题考查了平行四边形的性质及全等三角形的判定与性质,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.9.(3分)下列有关一次函数21y x =-+的说法中,错误的是( )A .y 的值随着x 增大而减小B .当0x >时,1y >C .函数图象与y 轴的交点坐标为(0,1)D .函数图象经过第一、二、四象限【考点】5F :一次函数的性质【分析】根据一次函数的性质分别判断后即可确定正确的选项.【解答】解:A 、20k =-<,y ∴的值随着x 增大而减小,正确,不符合题意; B 、20k =-<,y ∴的值随着x 增大而减小,∴当0x >时,1y <,错误,符合题意; C 、当0x =时,1y =,∴函数图象与y 轴的交点坐标为(0,1),正确,不符合题意; D 、20k =-<,10b =>,∴函数图象经过第一、二、四象限,正确,不符合题意, 故选:B .【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.10.(3分)如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC CD DA→→运动至点A停止.设小明运动路程为x,ABP∆的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14【考点】7E:动点问题的函数图象【分析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为6时,面积发生了变化,说明BC的长为6,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由6到14,说明CD的长为8.【解答】解:结合图形可以知道,P点在BC上,ABP∆的面积为y增大,当x在614--之间得出,ABP∆的面积不变,得出6CD=-=,BC=,1468故选:B.【点评】本题考查了动点问题的函数图象,根据矩形的性质和函数图象,能根据图形得出正确信息是解此题的关键.二.填空题x.11.(35x-有意义,则x的取值范围是5【考点】72:二次根式有意义的条件【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.x-,【解答】解:根据题意得:50x.解得5x.故答案为:5【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若4a =,3b =,则大正方形的面积是 25 .【考点】KR :勾股定理的证明;9K :全等图形【分析】求出大正方形的边长即可.【解答】解:由勾股定理可知大正方形的边长2222435a b =++=,∴大正方形的面积为25,故答案为25.【点评】本题考查正方形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(3分)将直线2y x =向上平移1个单位长度后得到的直线是 21y x =+ .【考点】9F :一次函数图象与几何变换【分析】先判断出直线经过坐标原点,然后根据向上平移,横坐标不变,纵坐标加求出平移后与坐标原点对应的点,然后利用待定系数法求一次函数解析式解答.【解答】解:直线2y x =经过点(0,0),向上平移1个单位后对应点的坐标为(0,1),平移前后直线解析式的k 值不变,∴设平移后的直线为2y x b =+,则201b ⨯+=,解得1b =,∴所得到的直线是21y x =+.故答案为:21y x =+.【点评】本题考查了一次函数图象与几何变换,利用点的变化解答图形的变化是常用的方法,一定要熟练掌握并灵活运用.14.(3分)数据2-、1-、0、1、2的方差是 2 .【考点】7W :方差【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得, 这组数据的平均数是:2(1)01205x -+-+++==, ∴这组数据的方差是:222222(20)(10)(00)(10)(20)25s --+--+-+-+-==, 故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.15.(3分)如图,一次函数y mx n =+与一次函数y kx b =+的图象交于点(1,2)A ,则关于x 的不等式mx n kx b +>+的解集是 1x > .【考点】FD :一次函数与一元一次不等式;FF :两条直线相交或平行问题【分析】观察函数图象得到当1x >时,直线y mx n =+在直线y kx b =+的上方,于是得到不等式mx n kx b +>+的解集.【解答】解:根据图象可知,不等式mx n kx b +>+的解集为1x >.故答案为:1x >.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.(3分)如图,四边形ABCD 是正方形,3BC =点G 为边CD 上一点,1CG =,以CG 为边作正方形CEFG ,对于下列结论:①正方形ABCD 的面积是3;②2BG =;③45FED ∠=︒;④BG DE ⊥.其中正确的结论是 ①②④ (请写出所有正确结论的序号).【考点】LE :正方形的性质;KD :全等三角形的判定与性质【分析】由正方形的性质可得BC CD =,90BCD ∠=︒,正方形ABCD 的面积23BC ==,可判断①;由勾股定理可求BG 的长,可判断②;由正方形的性质可得45GEF ∠=︒,可判断③;由“SAS ”可证BCG DCE ∆≅∆,可得BH DE ⊥,可判断④,即可求解.【解答】解:四边形ABCD 是正方形,3BC =,BC CD ∴=,90BCD ∠=︒,正方形ABCD 的面积23BC ==,故①正确;3BC =,1CG =,22312BG BC CG ∴=+=+=,故②正确,如图,连接GE ,延长BG 交DE 于H ,四边形CEFG 是正方形,CG CE ∴=,90GCE BCG ∠=∠=︒,45GEF ∠=︒,FED GEF ∠<∠,45FED ∴∠<︒,故③错误,CG CE =,90GCE BCG ∠=∠=︒,BC CD =,()BCG DCE SAS ∴∆≅∆,GBC CDE ∴∠=∠,90CDE DEC ∠+∠=︒,90GBC DEC ∴∠+∠=︒,90BHE ∴∠=︒,BH DE ∴⊥,故④正确,故答案为:①②④.【点评】本题考查了正方形的性质,全等三角形的性质,掌握正方形的性质是本题的关键.三、解答题17.(6分)计算:124310202÷-⨯+. 【考点】79:二次根式的混合运算【分析】根据二次根式的乘除法和减法可以解答本题【解答】解:124310202÷-⨯+ 8525=-+225=+. 【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.(7分)如图,在ABC ∆中,15AB =,20AC =,25BC =.(1)求证:90BAC ∠=︒;(2)作AH BC ⊥,H 为垂足,求AH 的长.【考点】3K :三角形的面积;KS :勾股定理的逆定理【分析】(1)根据勾股定理的逆定理求出即可;(2)设BH x =,则25HC x =-,由勾股定理得出方程22221520(25)x x -=--,求出x ,再根据勾股定理求出AH 即可.【解答】(1)证明:22221520625AB AC +=+=,2225625BC ==,222AB AC BC ∴+=,90BAC ∴∠=︒;(2)解:设BH x =,则25HC x =-,AH BC ⊥,90AHB AHC ∴∠=∠=︒,在Rt AHB ∆和Rt AHC ∆中,由勾股定理得:22222AH AB BH AC CH =-=-,即22221520(25)x x -=--,解得:10x =,即10BH =, 由勾股定理得:2222151055AH AB BH =-=-=.【点评】本题考查了勾股定理的逆定理和勾股定理,能熟记勾股定理和勾股定理的逆定理的内容是解此题的关键.19.(7分)如图,四边形ABCD 是正方形,对角线AC 、BD 相交于点F ,90E ∠=︒,ED EC =.求证:四边形DFCE 是正方形.【考点】LG :正方形的判定与性质【分析】根据正方形的判定和性质定理即可得到结论.【解答】解:四边形ABCD 是正方形,45FDC DCF ∴∠=∠=︒,90E ∠=︒,ED EC =,45EDC ECD ∴∠=∠=︒,90FCE FDE E ∴∠=∠=∠=︒,∴四边形DFCE 是矩形,DE CE =,∴四边形DFCE 是正方形.【点评】本题考查了正方形的判定和性质,熟练掌握正方形的判定和性质定理是解题的关键.20.(8分)为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是15.5;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.【考点】1W:算术平均数;4W:中位数【分析】(1)根据平均数的概念,将所有数的和除以10即可;(2)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数;(3)用样本平均数估算总体的平均数.【解答】解:(1)根据题意得:1⨯+++++⨯++=(次),(07912151632227)1410答:这10位居民一周内使用共享单车的平均次数是14次;(2)按照从小到大的顺序新排列后,第5、第6个数分别是15和16,所以中位数是(1516)215.5+÷=,故答案为:15.5;(3)不能;15次小于中位数15.5次,∴某位居民一周内使用共享单车15次,不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.21.(8分)如图,在平面直角坐标系中,直线210=-+与y轴交于点A,与x轴交于点B,y x另一条直线经过点A和点(2,8)C-,且与x轴交于点D.(1)求直线AD的解析式;(2)求ABD∆的面积.【考点】8F :一次函数图象上点的坐标特征;FA :待定系数法求一次函数解析式【分析】(1)先直线AB 的解析式求出A 点坐标,再根据点A 与点C 的坐标即可求得直线AD 的解析式;(2)根据直线AB 的解析式求得点B 的坐标,根据直线AD 的解析式求得点D 的坐标,再根据点A 的坐标即可求得ABD ∆的面积.【解答】解:(1)直线210y x =-+与y 轴交于点A ,(0,10)A ∴.设直线AD 的解析式为y kx b =+,直线AD 过(0,10)A ,(2,8)C -,∴1028b k b =⎧⎨-+=⎩,解得110k b =⎧⎨=⎩, ∴直线AD 的解析式为10y x =+;(2)直线210y x =-+与x 轴交于点B ,(5,0)B ∴,直线AD 与x 轴交于点D ,(10,0)D ∴-,15BD ∴=,(0,10)A ,ABD ∴∆的面积1115107522BD OA ==⨯⨯=. 【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用数形结合的思想解答.22.(8分)如图,ABC ∆中,AH BC ⊥于点H ,点D ,E 分别是AB ,AC 的中点,连接DH ,EH ,DE .(1)求证:AD DH =;(2)若四边形ADHE 的周长是30,ADE ∆的周长是21,求BC 的长.【考点】KX :三角形中位线定理;KP :直角三角形斜边上的中线【分析】(1)根据直角三角形的性质即可得到即可;(2)根据直角三角形的性质得到12AD DH AB ==,12AE HE AC ==,求得130152AD AE +=⨯=,得到21156DE =-=,根据三角形中位线定理即可得到结论. 【解答】解:(1)AH BC ⊥,90AHB ∴∠=︒, 点D 是AB 的中点,12AD DH AB ∴==; (2)AH BC ⊥,90AHB AHC ∴∠=∠=︒,点D ,E 分别是AB ,AC 的中点,12AD DH AB ∴==,12AE HE AC ==, 四边形ADHE 的周长是30,130152AD AE ∴+=⨯=, ADE ∆的周长是21,21156DE ∴=-=,点D ,E 分别是AB ,AC 的中点,DE ∴是ABC ∆的中位线,212BC DE ∴==.【点评】本题考查了三角形的中位线定理,直角三角形的性质,平行四边形的判定和性质,正确的识别图形是解题的关键.23.(8分)某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x 人,选择甲旅行社所需费用为1y 元,选择乙旅行社所需费用为2y 元.请解答下列问题:(1)请分别写出1y ,2y 与x 之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?【考点】FH :一次函数的应用;9C :一元一次不等式的应用【分析】(1)根据甲、乙旅行社的不同的优惠方案,可求出函数关系式,(2)根据(1)的结论列方程或不等式解答即可.【解答】解:(1)由题意,得1200075%1500y x x =⨯⨯=,2200080%(1)16001600y x x =⨯-=-;(2)①当12y y =时,即:150016001600x x =-,解得,160x =,②当12y y >时,即:150016001600x x >-,解得,160x <,③当12y y <时,即:150016001600x x <-,解得,160x >,答:当160x <时,乙旅行社费用较少,当160x =,时,两个旅行社费用相同,当160x >时,甲旅行社费用较少.【点评】本题考查一次函数的应用,正确地求出函数关系式是正确解答的关键,分情况讨论是函数问题常用的方法.24.(10分)如图,已知直线28y x =-+与坐标轴跟别交于A ,B 两点,与直线2y x =交于点C .(1)求点C 的坐标;(2)若点P 在y 轴上,且12OCP OCA S S ∆∆=,求点P 的坐标; (3)若点M 在直线2y x =上,点M 横坐标为m ,且2m >,过点M 作直线平行于y 轴,该直线与直线28y x =-+交于点N ,且1MN =,求点M 的坐标.【考点】5F :一次函数的性质;FF :两条直线相交或平行问题【分析】(1)解析式联立,解方程组即可求得;(2)根据题意求得OP 的长,从而求得P 的坐标;(3)根据题意得到2(28)1m m --+=,求得m 的值,即可求得M 的坐标.【解答】解:(1)由282y x y x =-+⎧⎨=⎩, 解得24x y =⎧⎨=⎩, ∴点C 的坐标为(2,4);(2)直线28y x =-+与坐标轴跟别交于A ,B 两点, (0,8)A ∴,(4,0)B ,8OA ∴=,点P 在y 轴上,且12OCP OCA S S ∆∆=, 142OP OA ∴==, P ∴的坐标为(0,4)或(0,4)-;(3)点M 在直线2y x =上,点M 横坐标为m ,且2m >, (,2)M m m ∴,(,28)N m m -+,1MN =,2(28)1m m ∴--+=,94m ∴=,∴点M 的坐标为9(4,9)2. 【点评】本题考查了两条直线相交或平行问题,一次函数图象上点的坐标特征,表示出点的坐标是解题的关键.25.(10分)如图1,四边形ABCD 是矩形,点O 位于对角线BD 上,将ADE ∆,CBF ∆分别沿DE 、BF 翻折,点A ,点C 都恰好落在点O 处. (1)求证:EDO FBO ∠=∠;(2)求证:四边形DEBF 是菱形:(3)如图2,若2AD =,点P 是线段ED 上的动点,求2AP DP +的最小值.【考点】LO :四边形综合题【分析】(1)由折叠的性质得出ADE ODE ∆≅∆,CFB OFB ∆≅∆,则12ADE ODE ADB ∠=∠=∠,12CBF OBF CBD ∠=∠=∠,则可得出结论; (2)证得四边形DEBF 是平行四边形,由全等三角形的性质得出90A DOE ∠=∠=︒,则可得出结论;(3)过点P 作PH AD ⊥于点H ,得出30ADE ODE ODF ∠=∠=∠=︒,得出2222()AP PD PA PH AP PH +=+=+,过点O 作OM AD ⊥,与DE 的交点即是2AP PD +的值最小的点P 的位置.而此时(2)AP PD +的最小值2OM =,求出OM 的长,则可得出答案.【解答】(1)证明:四边形ABCD 是矩形,//AD BC ∴,ADB CBD ∴∠=∠,将ADE ∆,CBF ∆分别沿DE 、BF 翻折,点A ,点C 都恰好落在点O 处.ADE ODE ∴∆≅∆,CFB OFB ∴∆≅∆,12ADE ODE ADB ∴∠=∠=∠,12CBF OBF CBD ∠=∠=∠,(2)证明:EDO FBO ∠=∠,//DE BF ∴,四边形ABCD 是矩形,//AB CD ∴,AD BC =,90A ∠=︒,//DE BF ,//AB CD ,∴四边形DEBF 是平行四边形,又ADE ∆△ODE ≅∆,90A DOE ∴∠=∠=︒,EF BD ∴⊥,∴四边形DEBF 是菱形;(3)解:过点P 作PH AD ⊥于点H ,四边形DEBF 是菱形,ADE ODE ∆≅∆,30ADE ODE ODF ∴∠=∠=∠=︒,∴在Rt DPH ∆中,2PH PD =,2222()AP PD PA PH AP PH ∴+=+=+,过点O 作OM AD ⊥,与DE 的交点即是2AP PD +的值最小的点P 的位置.而此时(2)AP PD +的最小值2OM =,ADE ODE ∆≅∆,2AD =,2AD DO ∴==,在Rt OMD ∆中,260ODA ADE ∠=∠=︒,30DOM ∴∠=︒,112DM DO ∴==, 222DM OM DO +=,∴=OM∴+的最小值为2OM=(2)PA PD【点评】本题是四边形综合题,考查了矩形的性质,翻折变换的性质,平行四边形的判定和性质,菱形的判定与性质等知识,熟练掌握菱形的判定定理和性质定理、翻折变换的性质是解题的关键.。