解析几何:曲线与方程

合集下载

高考一轮复习第8章解析几何第8讲曲线与方程

高考一轮复习第8章解析几何第8讲曲线与方程

第八讲曲线与方程知识梳理·双基自测知识梳理知识点一曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线.知识点二求动点的轨迹方程的基本步骤重要结论1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(2)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (3)y =kx 与x =1ky 表示同一直线.( × )(4)动点的轨迹方程和动点的轨迹是一样的.( × ) 题组二 走进教材2.(必修2P 37T3)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D )A .双曲线B .椭圆C .圆D .抛物线[解析] 由已知|MF|=|MB|,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.3.(选修2-1P 37T1改编)已知A(-2,0),B(1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则点P 的轨迹方程是__x 2+y 2-4x =0(y≠0)__.[解析] 设P(x ,y),∵∠APO =∠BPO , ∴|PA||PB|=|OA||OB|=2, 即|PA|=2|PB|,∴(x +2)2+y 2=4[(x -1)2+y 2],(y≠0)化简整理得P 的轨迹方程为x 2+y 2-4x =0(y≠0). 题组三 走向高考4.(多选题)(2020·山东)已知曲线C :mx 2+ny 2=1.( ACD ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线[解析] A .若m >n >0,则1m <1n ,则根据椭圆定义,知x 21m +y21n =1表示焦点在y 轴上的椭圆,故A 正确;B .若m =n >0,则方程为x 2+y 2=1n ,表示半径为1n的圆,故B 错误;C .若m <0,n >0,则方程为x21m+y21n =1,表示焦点在y 轴的双曲线,故此时渐近线方程为y =±-m n x ,若m >0,n <0,则方程为x 21m +y 21n=1,表示焦点在x 轴的双曲线,故此时渐近线方程为y =±-mnx ,故C 正确;D .当m =0,n >0时,则方程为y =±1n表示两条直线,故D 正确;故选ACD . 5.(2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( C ) A .① B .② C .①②D .①②③[解析] 将x 换成-x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,-1); 当x >0时,方程变为y 2-xy +x 2-1=0,所以Δ=x 2-4(x 2-1)≥0,解得x ∈⎝⎛⎦⎥⎤0,233,所以x 只能取整数1,当x =1时,y 2-y =0, 解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(-1,0),(-1,1), 故曲线一共经过6个整点,故①正确. 当x >0时,由x 2+y 2=1+xy 得x 2+y 2-1=xy≤x 2+y22,(当x =y 时取等),∴x 2+y 2≤2,∴x 2+y 2≤2,即曲线C 上y 轴右边的点到原点的距离不超过2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误.故选C .考点突破·互动探究考点一 曲线与方程——自主练透例1 (多选题)关于x ,y 的方程x 2m 2+2+y 23m 2-2=1,⎝⎛⎭⎪⎫其中m 2≠23对应的曲线可能是( ABCD ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .圆[解析] 由题,若m 2+2>3m 2-2,解得-2<m <2,3m 2-2>0,解得m <-63或m >63,则当x ∈⎝ ⎛⎭⎪⎫-2,-63∪⎝ ⎛⎭⎪⎫63,2时,曲线是焦点在x 轴上的椭圆,A 正确;若3m 2-2>m 2+2,解得m <-2或m >2,此时曲线是焦点在y 轴上的椭圆,B 正确;若3m 2-2<0,解得-63<m <63,此时曲线是焦点在x 轴上的双曲线,C 正确;当m 2=2时,方程为x 2+y 2=4,所以D 正确.故选ABCD .〔变式训练1〕(多选题)(2021·山东青岛一中期末)已知点F(1,0)为曲线C 的焦点,则曲线C 的方程可能为( AD )A .y 2=4x B .x 2=4yC .x 2cos 2θ+y 2sin 2θ=1⎝ ⎛⎭⎪⎫0<θ<π2 D .x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2 [解析] y 2=4x 的焦点坐标为(1,0);x 2=4y 的焦点坐标为(0,1);当θ=π4时,sin 2θ=cos 2θ=12,x 2cos 2θ+y 2sin 2θ=1表示圆;双曲线x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2的焦点在x 轴上,且c =cos 2θ+sin 2θ=1,其焦点坐标为(1,0),(-1,0),故选AD .考点二 定义法求轨迹方程——自主练透例2 (1)(2021·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )A .圆B .椭圆C .双曲线D .抛物线(2)(2021·福州模拟)已知圆M :(x +5)2+y 2=36,定点N(5,0),点P 为圆M 上的动点,点Q 在NP 上,点G 在线段MP 上,且满足NP →=2NQ →,GQ →·NP →=0,则点G 的轨迹方程是( A )A .x 29+y24=1B .x 236+y231=1 C .x 29-y24=1D .x 236-y231=1 (3)(2021·江苏南京二十九中调研)已知两圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆圆心M 的轨迹方程为( D )A .x 2-y28=1B .x 28-y 2=1C .x 2-y28=1(x≥1)D .x 2-y28=1(x≤-1)[解析] (1)由题意知,|EA|+|EO|=|EB|+|EO|=r(r 为圆的半径)且r >|OA|,故E 的轨迹为以O ,A 为焦点的椭圆,故选B .(2)由NP →=2NQ →,GQ →·NP →=0知GQ 所在直线是线段NP 的垂直平分线,连接GN ,∴|GN|=|GP|,∴|GM|+|GN|=|MP|=6>25,∴点G 的轨迹是以M ,N 为焦点的椭圆,其中2a =6,2c =25,∴b 2=4,∴点G 的轨迹方程为x 29+y24=1,故选A .(3)设动圆M 的半径为r ,则|C 1M|=r +1,|C 2M|=3+r ,∴|C 2M|-|C 1M|=2<6=|C 1C 2|.∴动圆圆心M 的轨迹是以C 1、C 2为焦点的双曲线左支,且c =3,a =1,∴b 2=c 2-a 2=8,∴其轨迹方程为x 2-y28=1(x≤-1).故选D .[引申1]本例(3)中,若动圆M 与圆C 1内切,与圆C 2外切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≤-2)__.[引申2]本例(3)中,若动圆M 与圆C 1外切,与圆C 2内切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≥2)__.[引申3]本例(3)中,若动圆M 与圆C 1、圆C 2都内切,则动圆圆心M 的轨迹方程为__x 2-y28=1(x≥1)__.[引申4]本例3中,若动圆M 与圆C 1、圆C 2中一个内切一个外切,则动圆圆心M 的轨迹方程为__x 24-y25=1__.名师点拨定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.〔变式训练2〕(1)动圆M 经过双曲线x 2-y23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( B )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x(2)(多选题)(2021·湖南娄底质检)在水平地面上的不同两点处竖有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点P 的轨迹可能是( AB )A .直线B .圆C .椭圆D .抛物线[解析] (1)双曲线x 2-y23=1的左焦点为F(-2,0),由题意可知点M 的轨迹是以F 为焦点、原点为顶点、对称轴为x 轴的抛物线,故其方程为y 2=-8x .故选B .(2)如图两根电杆AB ,CD ,①当|AB|=|CD|时,∵∠BPA =∠DPC ,∴|PA|=|PC|, ∴P 的轨迹是AC 的中垂线,②当|AB|=λ|CD|(λ≠1,λ>0)时, 由∠BPA =∠DPC 知Rt △ABP ∽Rt △CDP , ∴|AP||CP|=|AB||CD|=λ, 以AC 所在直线为x 轴,线段AC 的中垂线为y 轴建立平面直角坐标系, 记A(-1,0),C(1,0),P(x ,y), 则x +12+y 2x -12+y2=λ,即⎝ ⎛⎭⎪⎫x -λ2+1λ2-12+y 2=⎝ ⎛⎭⎪⎫2λλ2-12, 轨迹为圆,故选AB .考点三 直接法求轨迹方程——师生共研例3 (1)(2021·四川、云南、贵州、西藏四省四校联考)已知圆C 过点A(0,2)且与直线y =-2相切,则圆心C 的轨迹方程为( B )A .x 2=4y B .x 2=8y C .x 2=-4yD .x 2=-8y(2)(2021·山东菏泽模拟)已知动圆过定点A(4,0),且在y 轴上截得的弦MN 的长为8. ①求动圆圆心的轨迹C 的方程;②已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.[解析] (1)设圆心C(x ,y), 由题意知x 2+y -22=|y +2|,化简得x 2=8y ,故选B .(2)①设动圆圆心P(x ,y),线段MN 的中点为E , 则|PA|2=|PE|2+42,即(x -4)2+y 2=x 2+16,化简得y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x . ②设直线l 的方程为y =kx +b ,联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +b ,得k 2x 2+2kbx +b 2=8x ,k 2x 2-(8-2kb)x +b 2=0(其中Δ>0), 设P(x 1,kx 1+b),Q(x 2,kx 2+b), 则x 1+x 2=8-2kb k 2,x 1x 2=b 2k 2, 若x 轴是∠PBQ 的角平分线, 则k PB +k QB =kx 1+b x 1+1+kx 2+bx 2+1=kx 1+b x 2+1+kx 2+b x 1+1x 1+1x 2+1=2kx 1x 2+k +b x 1+x 2+2bx 1+1x 2+1=8k +bk2x 1+1x 2+1=0,即k =-b .故直线l 的方程为y =k(x -1),直线l 过定点(1,0).名师点拨直接法求曲线方程的一般步骤(1)建立合适的直角坐标系.(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程.(3)化简整理这个方程,检验并说明所求方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要注意“翻译”的等价性.(4)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略. 〔变式训练3〕(1)已知两定点A(-2,0),B(1,0),如果动点P 满足|PA|=2|PB|,则动点P 的轨迹是( B ) A .直线 B .圆 C .椭圆D .双曲线(2)(2021·湖南湘潭模拟)在平面直角坐标系xOy 中,已知点Q(1,0),直线l :x =2.若动点P 在直线l 上的射影为R ,且|PR →|=2|PQ →|,设点P 的轨迹为C .①求C 的轨迹方程;②设直线y =x +n 与曲线C 相交于A 、B 两点,试探究曲线C 上是否存在点M ,使得四边形MAOB 为平行四边形,若存在,求出点M 的坐标;若不存在,请说明理由.[解析] (1)设P(x ,y), 则x +22+y 2=2x -12+y 2,化简得x 2+y 2-4x =0,即(x -2)2+y 2=4, 其表示以(2,0)为圆心,4为半径的圆,故选B . (2)①设P(x ,y),由|PR →|=2|PQ →|, 得|2-x|=2·x -12+y 2,平方化简得C 的轨迹方程为x 22+y 2=1.②设A(x 1,y 1),B(x 2,y 2),M(x 3,y 3), 联立⎩⎪⎨⎪⎧y =x +n x 22+y 2=1,得x 2+2(x +n)2-2=0,即3x 2+4nx +2n 2-2=0,所以x 1+x 2=-4n 3,y 1+y 2=x 1+x 2+2n =2n3.假设存在点M 使得四边形MAOB 为平行四边形, 则OM →=OA →+OB →,所以(x 3,y 3)=(x 1,y 1)+(x 2,y 2), 所以x 3=x 1+x 2=-4n 3,y 3=y 1+y 2=2n3.由点M 在曲线C 上得x 232+y 23=1,代入得8n 29+4n29=1,解得n 2=34,n =±32.所以当n =±32时,曲线C 上存在点M 使得四边形MAOB 为平行四边形, 此时点M 的坐标为⎝ ⎛⎭⎪⎫-233,33或者M ⎝ ⎛⎭⎪⎫233,-33,当n≠±32,曲线C 上不存在点M 使得四边形MAOB 为平行四边形. 考点四 代入法(相关点法)求轨迹方程——师生共研例4 (2021·河南新乡模拟)在直角坐标系xOy 中,点M(-2,0),N 是曲线x =14y 2+2上的任意一点,动点C 满足MC →+NC →=0.(1)求点C 的轨迹方程;(2)经过点P(1,0)的动直线l 与点C 的轨迹交于A ,B 两点,在x 轴上是否存在定点D(异于点P),使得∠ADP =∠BDP ?若存在,求出D 的坐标;若不存在,请说明理由.[解析] (1)设C(x ,y),N(x 0,y 0), 则MC →=(x +2,y),NC →=(x -x 0,y -y 0), MC →+NC →=(2x -x 0+2,2y -y 0).又MC →+NC →=0,则⎩⎪⎨⎪⎧2x -x 0+2=0,2y -y 0=0,即⎩⎪⎨⎪⎧x 0=2x +2,y 0=2y.因为点N 为曲线x =14y 2+2上的任意一点,所以x 0=14y 20+2,所以2x +2=14(2y)2+2,整理得y 2=2x ,故点C 的轨迹方程为y 2=2x . (2)设存在点D(t,0),使得∠ADP =∠BDP , 所以k DA +k DB =0.由题易知,直线l 的倾斜角不可能为0°, 故设直线l 的方程为x =my +1,将x =my +1代入y 2=2x ,得y 2-2my -2=0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2m ,y 1y 2=-2. 因为k DA +k DB =y 1x 1-t +y 2x 2-t =y 1my 1+1-t +y 2my 2+1-t =0,所以2my 1y 2+(1-t)(y 1+y 2)=0, 即-4m +2m·(1-t)=0,所以t =-1. 故存在点D(-1,0),使得∠ADP =∠BDP .名师点拨代入法(相关点法)求轨迹方程(1)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化;③在变化过程中P 和M 满足一定的规律.(2)代入法(相关点法)的基本步骤①设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1);②求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧ x 1=f x ,y ,y 1=g x ,y ;③代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程;④检验:注意检验所求方程是否符合题意.〔变式训练4〕(2021·河北石家庄模拟)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OQ →=12(OF 1→+OP →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( D )A .圆B .抛物线C .双曲线D .椭圆 [解析] 设P(x ,y),Q(x 0,y 0),椭圆C 的左焦点F 1(-2,0),由题意知⎩⎪⎨⎪⎧ x 0=x -22,y 0=y 2 又x 2016+y 2010=1,∴x -2264+y 240=1,故选D . 考点五,参数法求轨迹方程——师生共研例5 (2021·河北衡水中学调研)已知圆C 1:x 2+y 2=2,圆C 2:x 2+y 2=4,如图,C 1,C 2分别交x 轴正半轴于点E ,A .射线OD 分别交C 1,C 2于点B ,D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点M ,N ,射线OH ⊥l 于点H ,且交曲线C 于点Q .问:1|MN|+1|OQ|2的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.[分析] 显然点P(x ,y)的变动由∠AOD 的大小α(或k OD )决定,故可通过α(或k OD )建立x ,y 间的关系,即点P 的轨迹方程.[解析] (1)解法一:如图设∠BOE =α,则B(2cos α,2sin α),D(2cos α,2sin α),所以x P =2cos α,y P =2sin α.所以动点P 的轨迹C 的方程为x 24+y 22=1. 解法二:当射线OD 的斜率存在时,设斜率为k ,OD 方程为y =kx ,由⎩⎪⎨⎪⎧ y =kx x 2+y 2=2得y 2P =2k 21+k 2, 同理得x 2P =41+k 2, 所以x 2P +2y 2P=4即有动点P 的轨迹C 的方程为x 24+y 22=1. 当射线OD 的斜率不存在时,点(0,±2)也满足.(2)由(1)可知E 为C 的焦点,设直线l 的方程为x =my +2(斜率不为0时)且设点M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧x =my +2x 2+2y 2=4,得(m 2+2)y 2+22my -2=0, 所以⎩⎪⎨⎪⎧y 1+y 2=-22m m 2+2y 1y 2=-2m 2+2, 所以1|MN|=11+m 2|y 1-y 2|=m 2+24m 2+1, 又射线OQ 方程为y =-mx , 代入椭圆C 的方程得x 2+2(mx)2=4, 即x 2Q =41+2m 2,y 2Q =4m 21+2m 2,1|OQ|2=1+2m 24m 2+1, 所以1|MN|+1|OQ|2=m 2+24m 2+1+1+2m 24m 2+1=34, 又当直线l 的斜率为0时,也符合条件.综上,1|MN|+1|OQ|2为定值,且为34.名师点拨(1)在选择参数时,参数可以具有某种物理或几何意义,如时间、速度、距离、角度、直线的斜率、点的横(纵)坐标等,也可以没有具体的意义,但要特别注意它的取值范围对动点坐标取值范围的影响.(2)参数法求轨迹方程的适用条件动点所满足的条件不易得出或不易转化为等式,也没有明显的相关点,但却较易发现(或经过分析可发现)这个动点的运动与某一个量或某两个变量(角、斜率、比值、截距等)有关.〔变式训练5〕若过点P(1,1)且互相垂直的两条直线l 1,l 2分别与x 轴、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为__x +y -1=0__.[解析] 当直线l 1的斜率存在时,l 2的斜率也存在,设直线l 1的方程是y -1=k(x -1),则直线l 2的方程是y -1=-1k (x -1),所以直线l 1与x 轴的交点为A ⎝ ⎛⎭⎪⎫1-1k ,0,l 2与y 轴的交点为B ⎝⎛⎭⎪⎫0,1+1k ,设AB 的中点M 的坐标为(x ,y),则有⎩⎪⎨⎪⎧ x =12⎝ ⎛⎭⎪⎫1-1k ,y =12⎝ ⎛⎭⎪⎫1+1k ,两式相加消去k ,得x +y =1⎝ ⎛⎭⎪⎫x ≠12,即x +y -1=0(x≠12),所以AB 中点M 的轨迹方程为x +y -1=0⎝ ⎛⎭⎪⎫x ≠12. 当直线l 1(或l 2)的斜率不存在时,点M 的坐标为⎝ ⎛⎭⎪⎫12,12,此点在直线x +y -1=0上. 综上,AB 中点M 的轨迹方程为x +y -1=0.另解:由题意易知|MP|=|MO|,∴M 的轨迹为线段OP 的中垂线,其方程为y -12=-⎝ ⎛⎭⎪⎫x -12, 即x +y -1=0.名师讲坛·素养提升高考中的轨迹问题例6 (2019·课标Ⅱ)已知点A(-2,0),B(2,0),动点M(x ,y)满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.[解题思路] (1)由题直译得关系→化简,观察方程形式得结论(2)①设直线PQ :y =kx →与C 的方程联立得P ,Q 两点坐标→得直线QG 的方程→与C 的方程联立得G 的坐标→求PG 的斜率→得结论 ②利用公式求面积→得关于k 的函数→判断单调性求最值→得结论 [解析] (1)由题设得y x +2·y x -2=-12, 化简得x 24+y 22=1(|x|≠2), 所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)①证明:设直线PQ 的斜率为k ,则其方程为y =kx(k >0),由⎩⎪⎨⎪⎧ y =kx ,x 24+y 22=1得x =±21+2k 2. 记u =21+2k 2,则P(u ,uk),Q(-u ,-uk),E(u,0).于是直线QG 的斜率为k 2,方程为y =k 2(x -u). 由⎩⎪⎨⎪⎧ y =k 2x -u x 24+y 22=1, 得(2+k 2)x 2-2uk 2x +k 2u 2-8=0.①设G(x G ,y G ),则-u 和x G 是方程①的解,故x G =u 3k 2+22+k 2,由此得y G =uk 32+k 2.从而直线PG 的斜率为uk 32+k 2-uk u 3k 2+22+k 2-u =-1k . 所以PQ ⊥PG ,即△PQG 是直角三角形.②由①得|PQ|=2u 1+k 2,|PG|=2uk k 2+12+k 2, 所以△PQG 的面积S =12|PQ||PG|= 8k 1+k21+2k 22+k 2=8⎝ ⎛⎭⎪⎫1k +k 1+2⎝ ⎛⎭⎪⎫1k +k 2. 设t =k +1k,则由k >0得t≥2,当且仅当k =1时取等号, 因为S =8t 1+2t2在[2,+∞)单调递减,所以当t =2, 即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. [解题关键] ①利用方程思想得出点P 、Q 的坐标,进而利用换元法及整体代换法简化运算过程是顺利解决本题的关键;②正确利用基本不等式及函数单调性是求解△PQG 面积最值的关键.〔变式训练6〕(2020·新课标Ⅲ)在平面内,A ,B 是两个定点C 是动点,若OC →·BC →=1,则点C 的轨迹为( A )A .圆B .椭圆C .抛物线D .直线[解析] 不妨以AB 所在直线为x 轴,AB 的中点为原点,建立平面直角坐标系,设C(x ,y),A(-c,0),B(c,0),c >0,则AC →=(x +c ,y),BC →=(x -c ,y),由AC →·BC →=1,得(x +c)(x -c)+y·y=1,即x 2+y 2=c 2+1>0,∴点C 的轨迹为圆.故选A .。

空间解析几何的曲线与曲面的方程表示

空间解析几何的曲线与曲面的方程表示

空间解析几何的曲线与曲面的方程表示在空间解析几何中,曲线与曲面的方程表示是非常重要的概念。

通过方程,我们可以描述和研究曲线和曲面的特性、性质以及它们与其他几何对象之间的关系。

本文将介绍空间解析几何中曲线与曲面的方程表示方法。

一、曲线的方程表示在空间中,曲线可以通过参数方程、一般方程和轨迹方程进行表示。

1. 参数方程:曲线的参数方程表示为:x = f(t), y = g(t), z = h(t)其中,x,y和z分别是曲线上某一点的坐标,f(t),g(t)和h(t)是参数方程。

通过改变参数t的取值范围,我们可以得到曲线上的各个点坐标。

2. 一般方程:曲线的一般方程表示为:F(x, y, z) = 0其中,F(x, y, z)是曲线上的点(x, y, z)所满足的关系式。

3. 轨迹方程:曲线的轨迹方程表示为:F(x, y, z, k) = 0其中,(x, y, z)是曲线上的点,k是参数。

二、曲面的方程表示在空间中,曲面可以通过隐式方程、一般方程和参数方程进行表示。

1. 隐式方程:曲面的隐式方程表示为:F(x, y, z) = 0其中,F(x, y, z)是曲面上的点(x, y, z)所满足的关系式。

2. 一般方程:曲面的一般方程表示为:Ax + By + Cz + D = 0其中,A,B,C和D是常数,(x, y, z)是曲面上的点。

3. 参数方程:曲面的参数方程表示为:x = f(u, v), y = g(u, v), z = h(u, v)其中,(u, v)是参数,f(u, v),g(u, v)和h(u, v)是参数方程。

通过改变参数u和v的取值范围,我们可以得到曲面上的各个点坐标。

总结:通过以上介绍,我们了解了空间解析几何中曲线与曲面的方程表示方法。

曲线可以通过参数方程、一般方程和轨迹方程描述,而曲面可以通过隐式方程、一般方程和参数方程描述。

这些方程可以帮助我们研究曲线与曲面的性质、特性以及它们与其他几何对象之间的关系。

函数的解析几何与曲线方程

函数的解析几何与曲线方程

函数的解析几何与曲线方程一、函数的解析几何函数的解析几何是研究函数图象在坐标系中的几何性质的一门学科。

函数的解析几何与曲线方程密切相关,函数的图象可以用曲线方程来表示,曲线方程也可以用来研究函数的性质。

二、曲线方程曲线方程是表示曲线在坐标系中的位置关系的方程。

曲线方程可以是显式的,也可以是隐式的。

显式曲线方程是关于自变量和因变量的显式方程,隐式曲线方程是关于自变量和因变量的隐式方程。

三、函数图象与曲线方程的关系函数的图象是函数的范围在坐标系中的对应点构成的集合。

曲线方程是表示函数图象在坐标系中的位置关系的方程。

因此,函数的图象与曲线方程是密切相关的。

四、曲线方程的分类曲线方程可以分为代数曲线方程和超越曲线方程。

代数曲线方程是可以用代数方程表示的曲线方程,超越曲线方程是不能用代数方程表示的曲线方程。

五、曲线方程的求解曲线方程的求解就是求出曲线上的点的坐标。

曲线方程的求解方法有很多,常用的方法有代数法、几何法、解析法等。

六、曲线方程的应用曲线方程在数学、物理、工程等领域都有广泛的应用。

在数学中,曲线方程可以用来研究曲线的性质,如曲线的长度、面积、曲率等。

在物理中,曲线方程可以用来研究物体的运动轨迹,如抛物线、圆周运动等。

在工程中,曲线方程可以用来设计和制造各种曲线形状的物体,如桥梁、隧道、管道等。

七、曲线方程的实例1.直线方程:y = kx + b2.圆方程:(x-h)^2 + (y-k)^2 = r^23.抛物线方程:y = ax^2 + bx + c4.双曲线方程:(x-h)2/a2 - (y-k)2/b2 = 15.椭圆方程:(x-h)2/a2 + (y-k)2/b2 = 1八、曲线方程的学习方法学习曲线方程,首先要掌握曲线方程的基本概念和基本知识,如曲线的定义、曲线方程的定义、曲线方程的分类、曲线方程的求解方法等。

其次,要多做习题,巩固所学的知识,提高解题能力。

最后,要学会将曲线方程应用于实际问题中,解决实际问题。

解析几何中的曲线与曲面方程性质

解析几何中的曲线与曲面方程性质

解析几何中的曲线与曲面方程性质在解析几何中,曲线和曲面是两个重要的概念。

它们在数学中有着广泛的应用,涉及到各个领域的问题。

本文将探讨解析几何中的曲线与曲面方程性质,包括曲线与曲面的定义、方程表示和性质。

一、曲线的定义与方程表示曲线是平面上的点的集合,它是由一系列点按照特定的规律排列而成。

曲线可以用方程表示,方程可以是显式方程或参数方程。

显式方程是指将变量的函数关系以解析的方式表达出来,参数方程则是将变量表示为某一参数的函数。

下面将分别介绍这两种表示方法。

1.1 显式方程表示对于平面上的曲线,可以使用显式方程表示。

一般地,曲线的显式方程可以表示为:F(x, y) = 0其中,F(x, y)是一个关于变量x和y的函数。

当F(x, y)等于0时,表示曲线上的点。

不同的函数F(x, y)对应不同的曲线形状,因此显式方程可以很好地描述平面上的曲线。

例如,对于一条直线,其显式方程可以表示为:ax + by + c = 0其中,a、b、c为常数,代表直线的斜率和截距。

通过合适的选择a、b、c的值,可以得到不同的直线。

1.2 参数方程表示除了显式方程表示,曲线还可以使用参数方程来描述。

参数方程可以将曲线上的点表示为参数的函数,通常用t来表示参数。

对于平面上的曲线,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)是关于参数t的函数。

通过选择不同的函数f(t)和g(t),可以得到不同形状的曲线。

例如,对于一条圆的参数方程可以表示为:x = r*cos(t)y = r*sin(t)其中,r代表半径,t代表角度。

通过改变r和t的取值范围,可以得到不同的圆。

二、曲线与曲面的性质曲线和曲面作为解析几何中的基本概念,具有很多重要的性质。

下面将探讨曲线与曲面的一些性质。

2.1 曲线的长度曲线的长度是指曲线路径的长度。

对于显式方程表示的曲线,可以使用线积分的方法来计算曲线的长度。

线积分的计算公式可表示为:L = ∫[a,b] √(1 + (dy/dx)²) dx其中,[a,b]是曲线上的一个区间,dy/dx表示曲线的斜率。

解析几何中的曲线与曲面方程应用

解析几何中的曲线与曲面方程应用

解析几何中的曲线与曲面方程应用解析几何是几何学的一个分支,它通过代数方法来研究图形和几何问题。

在解析几何中,曲线和曲面方程是非常重要的概念,它们在各个领域都有广泛的应用。

本文将对解析几何中的曲线与曲面方程应用进行解析与探讨。

一、曲线的方程应用在解析几何中,曲线是指由方程所决定的点的集合。

曲线的方程形式多种多样,下面将介绍几种常见的曲线方程及其应用。

1. 直线的方程在解析几何中,直线是最简单的曲线。

直线的方程常见的有斜截式、点斜式和一般式等形式。

其中,斜截式方程为y = kx + b,表示斜率为k,与y轴交点为b的直线方程。

点斜式方程为y - y1 = k(x - x1),表示已知直线上的一点P(x1, y1)和该直线的斜率k来确定直线方程。

一般式方程为Ax + By + C = 0,通过将直线的斜率截距形式通分化简得到,可以直观地表示一条直线的方程。

直线的方程在几何图形的描述和计算中有广泛的应用。

例如,在平面几何中,直线方程可以用来描述两点之间的连线,以及直线与直线之间的关系。

在工程应用中,直线的方程可用于设计道路、建筑和机械零件等。

2. 圆的方程圆是解析几何中的一个重要曲线,它是由平面上到一个定点距离等于一个定值的点的集合。

圆的方程一般形式为(x - a)² + (y - b)² = r²,其中(a, b)表示圆心的坐标,r表示圆的半径。

在实际应用中,圆的方程被广泛用于计算和几何图形的描述。

例如,在地理学中,圆的方程可以用来表示地球的经纬线以及各个地点之间的距离。

在工程中,圆的方程可以用于设计轮胎、圆形舞台和圆形建筑等。

3. 椭圆的方程椭圆是由平面上到两个定点的距离之和为定值的点的集合。

椭圆的方程一般形式为[(x - h) / a]² + [(y - k) / b]² = 1,其中(h, k)表示椭圆的中心的坐标,a和b分别表示椭圆的长轴和短轴的长度。

解析几何第二章轨迹与方程PPT课件

解析几何第二章轨迹与方程PPT课件
①由 r t x te 1 y te 2 a t b 表示的向径 r t 的终点总在一条曲线上
②在这条曲线上的任意点,总对应着以它为终点的向径,而这向径可由 t
的某一值t0at0 b 通过r t x te 1 y te 2 a t b 完全决定
那么就把 r t x te 1 y te 2 a t b 叫做曲线的向量式参数方程,
其中 t 为参数。
其坐标式参数方程为 xyxytt,at b
例3 一个圆在一直线上无滑动地滚动,求圆周上一定点的轨迹 该定点的轨迹为旋轮线或摆线(cycloid)
三、常见曲线的参数方程
(1) 一个半径为r 的小圆在半径为R 的大圆内无滑动地滚动,小圆周上一 定点P 的运动轨迹称为内摆线(hypocycloid)
一、曲面的方程
求曲线方程一般需要下面的5个步骤:
1)选取适当的坐标系(如题中已给定,这一步 可省);
2)在曲线上任取一点,也就是轨迹上的流动点;
3)根据曲线上的点所满足的几何条件写出 等式;
4)用点的坐标x,y,z的关系来表示这个等式,并化简 得方程;
5)证明所得的方程就是曲线的方程,也就是证明它符合定
《》
-Chapter 2
§1 平面曲线的方程
Contents
• 一、曲线的方程 • 二、曲线的参数方程 • 三、常见曲线的参数方程
一、曲线的方程
定义1 当平面上取定了坐标系之后,如果一个方程与一条曲线之
间有着关系:
①满足方程的 x , y 必是曲线上某一点的坐标;
②曲线上任何一点的坐标 x , y 满足这个方程,
函数关系. 注意 空间曲面的参数方程的表达式不是惟一的.
二、曲面的参数方程
x xu,v,

解析几何中的曲线方程

解析几何中的曲线方程

解析几何是数学中的一个重要分支,研究了空间中的点、直线、曲线、曲面及其相互关系。

而曲线方程是解析几何中的重要内容之一,用来描述曲线在坐标系中的数学性质。

曲线方程的一般形式可以表示为:F(x, y) = 0,其中F(x, y)是一个含有x和y的表达式。

通过曲线方程,我们可以得到曲线上的所有点的坐标。

下面我们来看几种常见的曲线方程。

直线是最简单的曲线,其方程可以用一般式表示为:Ax + By + C = 0,其中A、B、C是常数。

这种形式的方程被称为线性方程,它表示了平面上的一条直线。

直线的斜率可以从方程中的A和B的比值得到,如B不为0,则斜率为-m=A/B。

圆是解析几何中的重要曲线之一,其方程可以用标准式表示为:(x - a)² + (y - b)² = r²,其中(a,b)表示圆心的坐标,r表示半径的长度。

圆的方程可以告诉我们圆心及半径,从而确定了圆在坐标系中的位置和大小。

另一种重要的曲线是椭圆,其方程可以用标准式表示为:(x - a)² / a² + (y - b)² / b²= 1,其中(a,b)表示椭圆中心的坐标。

椭圆的方程可以告诉我们椭圆在坐标系中的位置和形状。

椭圆的长轴和短轴分别是2a和2b。

双曲线也是解析几何中常见的曲线之一,其方程可以用标准式表示为:(x - a)² / a²- (y - b)² / b² = 1,其中(a,b)表示双曲线中心的坐标。

双曲线的方程可以告诉我们双曲线在坐标系中的位置和形状。

双曲线的两支分别在x轴和y轴的两侧展开。

除了上述曲线,解析几何还研究了其他曲线方程,如抛物线、椭圆线、双曲线等。

每一种曲线方程都有其独特的数学性质和特征。

在解析几何中,我们可以通过方程来分析曲线的性质,如曲线的形状、对称性、最值点等。

通过研究曲线方程,我们可以得到曲线在坐标系中的图像,进而了解曲线的各种特点。

空间解析几何的曲线与曲面曲线方程曲面方程的性质

空间解析几何的曲线与曲面曲线方程曲面方程的性质

空间解析几何的曲线与曲面曲线方程曲面方程的性质空间解析几何是研究几何空间中曲线和曲面的性质和关系的一门学科。

在空间解析几何中,我们经常使用曲线方程和曲面方程来描述和分析几何对象。

本文将探讨曲线方程和曲面方程的性质以及它们在空间解析几何中的应用。

一、曲线方程曲线是空间中的一条连续的弯曲线段,可以用参数方程或者一般方程来表示。

在空间解析几何中,常用的曲线方程形式有点斜式和一般式。

1. 点斜式对于空间中的一条曲线,如果已知曲线上一点的坐标和曲线在该点的切线的斜率,就可以使用点斜式来表示该曲线。

点斜式的一般形式为:(x-x₁)/a = (y-y₁)/b = (z-z₁)/c其中(x₁, y₁, z₁)是曲线上的一点,a、b、c分别表示曲线在该点处的切线在x、y、z轴上的斜率。

2. 一般式一般式是指空间中曲线方程的一般形式,即使用x、y和z的关系式来表示曲线。

一般式的形式如下:F(x, y, z) = 0其中F(x, y, z)是关于x、y和z的多项式函数,代表了曲线上的点满足的条件。

曲线方程的性质在空间解析几何中具有重要的意义。

曲线的性质可以通过方程的形式和参数方程等来确定,包括曲线的形状、方向、长度等。

二、曲面方程曲面是空间中的一个二维平面,可以用一般方程或者双曲线、抛物线和椭圆等几何图形的方程来表示。

在空间解析几何中,常见的曲面方程有一般方程、一般球面方程和柱面方程以及圆锥曲线的方程。

1. 一般方程一般方程是指空间中曲面方程的一般形式,使用x、y和z的关系式来表示曲面。

一般方程的形式如下:F(x, y, z) = 0其中F(x, y, z)是关于x、y和z的函数,代表了曲面上的点满足的条件。

2. 一般球面方程和柱面方程一般球面方程和柱面方程是描述曲面的特殊形式。

一般球面方程的形式为:(x-a)² + (y-b)² + (z-c)² = R²其中(a, b, c)是球心的坐标,R是球的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x=1, x=-1, ⇒ 或 表示两个点(1,1),(-1,-1). y=1 y=-1.
第50B 的长为 2,两个端点 A 和 B 分别在 x 轴和 y 轴上滑动,则线段 AB 的中点的轨迹是 ________.
[答案] 圆
[解析] 方法一:设 A(a,0),B(0,b),AB 中点为 M(x,y),则 a=2x,b=2y,由|AB|=2,得 (2x-0)2+(0-2y)2=2, 即 x2+y2=1. 方法二:当 A,B 分别在 x 轴,y 轴上时,由直角三角形 AOB 斜边上的中线等于斜边的一半可知,中点到原点的距离为 1. 当点 A 或 B 与原点重合时, 中点到原点的距离也是 1,故中点 轨迹为单位圆.
无交点 . 此方程组无解,则两曲线________
第50讲
曲线与方程

链接教材
1.[教材改编] 方程(x-y)2+(xy-1)2=0 表示的轨迹 是________.
[答案] 两个点
[ 解 析 ] 因 为 (x - y) + (xy - 1)
2 2
x-y=0, =0,所以 xy-1=0
图 7501
第50讲
曲线与方程
(2)已知 M(-2,0),N(2,0),则以 MN 为斜边的直角三角 形的直角顶点 P 的轨迹方程为________.
[答案] (1)y2=4x (2)x2+y2=4(x≠± 2)
→ → [解析] (1)设点 P(x,y),则 Q(-1,y),FP=(x-1,y),QP= → → → → → (x+1, 0), QF=(2, -y), 由QP· QF=FP· FQ, 得(x+1, 0)· (2, -y)=(x-1,y)· (-2,y),化简得 y2=4x. 1 (2)MN 的中点为原点 O,易知|OP|= |MN|=2,∴P 的轨迹 2 是以原点 O 为圆心,以 r=2 为半径的圆,且除去与 x 轴的 两个交点,故 P 的轨迹方程为 x2+y2=4(x≠± 2).
第50讲
曲线与方程
3. [教材改编] 已知△ABC 的两个顶点 A, B 的坐标分别是(- 5,0),(5,0),且 AC,BC 所在直线的斜率之积等于-1, 则顶点 C 的轨迹方程为________.
[答案] x2+y2=25(y≠0)
y y [解析] 设 C(x,y),则 kAC= ,k = ,依题意可得 x+5 BC x-5 y y kAC·kBC= · =-1,即 x2+y2=25,因为 A,B,C x+5 x-5 不能共线, 故 y≠0, 所以顶点 C 的轨迹方程为 x2+y2=25(y≠0)
第50讲
曲线与方程
f(x,y)=0 ,并化简. (3)用坐标表示条件 p(M),列出方程____________ (4)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点 设曲线 C1 的方程为 F1(x,y)=0,曲线 C2 的方程为 F2(x,y)=0,

F1(x,y)=0, C1,C2 的交点坐标即为方程组 的实数解.若 F ( x , y )= 0 2
曲线与方程
第50讲
曲线与方程
1.曲线与方程 一般地,在平面直角坐标系中,如果某曲线 C(看作点的集合或 适合某种条件的点的轨迹)上的点与一个二元方程 f(x, y)=0 的 实数解建立了如下关系: 这个方程的解 (1)曲线上点的坐标都是 ____________. 曲线上的点 . (2)以这个方程的解为坐标的点都是____________ 那么这个方 方程的曲线 程叫作曲线的方程,这条曲线叫作____________ . 2.求动点轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一 点 M 的坐标. (2)写出适合条件 p 的点 M 的集合 P={M|p(M)}.
第50讲
曲线与方程

通性通法
6.求轨迹方程的常用方法:直接法;待定系数法;代入转 移法;参数法. (1)如图 7501 所示,已知 F(1,0),直线 l:x=-1,P 为平 → → 面上的动点,过点 P 作 l 的垂线,垂足为点 Q,且QP· QF= → → FP· FQ,则动点 P 的轨迹 C 的方程为________.
x2 y2 [答案] (1) - =1(x≤- 2) 2 2 x2 y2 (2) + =1(0≤y≤4) 25 16
第50讲
曲线与方程
[解析] (1)因为动圆 P 过点 N,所以|PN|是该圆的半径,又因 为动圆 P 与圆 M 外切, 所以有|PM|=|PN|+2 2, 即|PM|-|PN| =2 2,故点 P 的轨迹是以 M,N 为焦点,实轴长为 2 2, 焦距为 4 的双曲线的左支,即有 a= 2,c=2,所以 b= 2 2 x y c2-a2= 2, 从而动圆 P 的圆心的轨迹方程为 - =1(x≤ 2 2 - 2). x2 y2 (2)设 P(x,y),则 x=5cos α,y=4sin α,消掉参数得25+16= 1,但当 0≤α≤π 时,-5≤x≤5,0≤y≤4,故动点 P 的轨 x2 y2 迹方程是25+16=1(0≤y≤4).
第50讲
曲线与方程

易错问题
5.求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与 纯粹性”的影响 (1)若动圆P过点N(-2,0),且与另一圆M:(x-2)2+y2=8 外切,则动圆P的圆心的轨迹方程是________. (2) 动 点 P(5cos α , 4sin α)(0≤α≤π) 的 轨 迹 方 程 是 ________.
第50讲
曲线与方程
4. [教材改编] 过圆 x2+y2=4 上任一点 P 作 x 轴的垂线 PN, 垂足为 N,则线段 PN 的中点 M 的轨迹方程为________.
x2 2 [答案] 4 +y =1
x=x1, x1=x, [解析] 设 M(x, y) , P(x1, y1), 依题意得 y1 ⇒ 因 y= y1=2y. 2 2 x 点 P(x1,y1)在圆上,代入圆的方程得 x2+(2y)2=4,即 +y2 4 =1.
相关文档
最新文档