高中数学第二章圆锥曲线与方程:曲线与方程
(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
椭圆的定义
定义 焦点
平面内与两个定点F1,F2的_距__离__之__和__等__于__定__值___( 大于|F1F2|)的点的轨迹叫做椭圆 两个_定__点___叫做椭圆的焦点
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
4.已知椭圆的焦点在 x 轴上,且焦距为 4,P 为椭圆上一点, 且|F1F2|是|PF1|和|PF2|的等差中项.
(1)求椭圆的方程; (2)若△PF1F2 的面积为 2 3,求 P 点坐标.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)由题意知,2c=4,c=2. 且|PF1|+|PF2|=2|F1F2|=8, 即 2a=8, ∴a=4. ∴b2=a2-c2=16-4=12. 又椭圆的焦点在 x 轴上, ∴椭圆的方程为1x62 +1y22 =1.
数学 选修1-1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)a,b,c三个量的关系:椭圆的标准方程中,a表示椭 圆上的点M到两焦点间距离的和的一半,可借助图形帮助记 忆.a,b,c(都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a>b,a>c,且a2=b2+c2.
数学 选修1-1
第二章 圆锥曲线与方程
曲线与方程

解析:选 B.将点 M 的坐标分别代入直线 l 的方程和曲线 C 的方程,都成立,所以选 B.
栏目 导引
第二章
圆锥曲线与方程
2.已知坐标满足方程 F(x,y)=0 的点都在曲线 C 上,下列 命题正确的是( )
A.曲线 C 上的点的坐标都满足方程 F(x,y)=0 B.不在曲线 C 上的点的坐标都不满足方程 F(x,y)=0 C.坐标不满足方程 F(x,y)=0 的点都不在曲线 C 上 D.曲线 C 是坐标满足方程 F(x,y)=0 的点的轨迹
(2)“曲线 C 上的点的坐标都是方程 f(x,y)=0 的解”是“曲 线 C 的方程是 f(x,y)=0”的( A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分又不必要条件 )
栏目 导引
第二章
圆锥曲线与方程
【解析】
2
(1)将点 P 的坐标代入曲线(x-2)2+y2=3 中,得
2
x=0 2 2 2 2 2 2 x + y = 1 . x + (x + y - 1) = 0⇔ 2 2 x +y -1=0
x=0 ⇒ ,表示点(0,1),(0,-1). 1 y=±
栏目 导引
第二章
圆锥曲线与方程
2.下列选项中方程与曲线能够对应的是(
)
栏目 导引
第二章
1 2 2 1 由圆的方程得x-2 +y = (0<x≤1). 4 1 M2,0为圆心, OC
为直
栏目 导引
第二章
圆锥曲线与方程
法三:(代入法) 设所作弦 OQ 的中点 P(x,y),Q(x1,y1), x1 x= 2 , x1=2x, 则 ⇒ y1=2y. y= y1 2 又因为点 Q(x1,y1)在圆 C 上, 所以(x1-1)2+y2 1=1, 所以(2x-1)2+(2y)2=1,
高中数学课件-圆锥曲线与方程2

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
方法二:设所求双曲线的方程为 mx2+ny2=1(mn<0). 将点 M(1,1),N(-2,5)代入上述方程,得
m+n=1, 4m+25n=1,
解得mn==-87,17.
所以所求双曲线的标准方程为x72-y72=1. 8
合作探究 课堂互动
高效测评 知能提升
程. 题.
1.理解双曲线的定义、几何图形和原则方程的推导过
2.掌握双曲线的原则方程. 3.会运用双曲线的定义和原则方程解决简朴的应用问
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
我海军“马鞍山”舰和“千岛湖”舰构成第四批护航编 队远赴亚丁湾,在索马里流域执行护航任务.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时,双 曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与数Ⅱ 异号,因此双曲线的方程又可写为 mx2+ny2=1(m·n<0),这种形 式是焦点所在的坐标轴不易判断时的统一写法.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)由已知得 c=6,且焦点在 y 轴上,因为点 A(-5,6)在双 曲线上,所以点 A 与两焦点的距离的差的绝对值是常数 2a,即 2a=| -5-02+6+62- -5-02+6-62|
高中数学新人教B版选修1-1课件:第二章圆锥曲线与方程2.1.2椭圆的几何性质(一)(第1课时)

a=4 2, 解得b=4,
c=4.
所以所求的椭圆方程为3x22 +1y62 =1 或3y22 +1x62 =1,
离心率
e=ac=
2 2.
当焦点在 x 轴上时,焦点坐标为(-4,0),(4,0),
顶点坐标为(-4 2,0),(4 2,0),(0,-4),(0,4);
当焦点在 y 轴上时,焦点坐标为(0,-4),(0,4),
[题后感悟] (1)利用椭圆的几何性质求标准方程通常采用待定系数 法. (2)根据已知条件求椭圆的标准方程的思路是“选标准, 定参数”,一般步骤是:①求出a2,b2的值;②确定焦 点所在的坐标轴;③写出标准方程. (3)解此类题要仔细体会方程思想在解题中的应用.
2.求合适下列条件的椭圆的标准方程. (1)在x轴上的一个焦点,与短轴两个端点的连线互相垂 直,且焦距为6; (2)以坐标轴为对称轴,长轴长是短轴长的5倍,且经过 点A(5,0).
2a=5×2b, 由题意,得2a52 +b02=1,
解得ab= =51, ,
故所求的标准方程为2x52 +y2=1;
若椭圆的焦点在 y 轴上,设其标准方程为ay22+bx22=1(a>b>0),
2a=5×2b, 由题意,得a02+2b52 =1,
解得ab= =255,,
故所求的标准方程为6y225+2x52 =1.
∴b2=4c2,∴a2-c2=4c2,∴ac22=15.……………10 分 ∴e2=15,即 e= 55,所以椭圆的离心率为 55.…12 分
[题后感悟] (1)求离心率e时,除用关系式a2=b2+c2外,还要注意e =的代换,通过方程思想求离心率. (2)在椭圆中涉及三角形问题时,要充分利用椭圆的定 义、正弦定理及余弦定理、全等三角形、类似三角形 等知识.
(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

a=13,b=m1 ,
9 m2
取顶点0,13,一条渐近线为 mx-3y=0, 所以15=|-m32×+139|,则 m2+9=25,
∵m>0,∴m=4.
答案: D
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知点(2,3)在双曲线 C:ax22-by22=1(a>0,b>0)上, C 的焦距为 4,则它的离心率为________.
合作探究 课堂互动
高效测评 知能提升
1.双曲线 2x2-y2=8 的实轴长是( )
A.2
B.2 2
C.4
D.4 2
解析: 双曲线方程可化为x42-y82=1,∴a2=4,a=2,
则 2a=4,故选 C. 答案: C
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
c e=__a__
__y_=__±_ba_x_
_y_=__±_ab_x__
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
等轴双曲线
___实__轴__和___虚__轴___等长的双曲线叫做等轴双曲线.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
由①②联立,无解.
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 y=0,解得 x=±3,因此顶点坐标为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0). 实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程 y=±bax=±23x. 作出草图(如图所示).
高中数学第二章圆锥曲线与方程2.3.1双曲线及其标准方程学案含解析

2.3.1 双曲线及其标准方程[提出问题]问题1:平面内,动点P 到两定点F 1(-5,0),F 2(5,0)的距离之和为12,动点P 的轨迹是什么?提示:椭圆.问题2:平面内,动点P 到两定点F 1(-5,0),F 2(5,0)的距离之差的绝对值为6,动点P 的轨迹还是椭圆吗?是什么?提示:不是,是双曲线. [导入新知]双曲线的定义把平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.[化解疑难]平面内到两定点F 1,F 2的距离的差的绝对值为常数,即||MF 1|-|MF 2||=2a ,关键词“平面内”.当2a <|F 1F 2|时,轨迹是双曲线;当2a =|F 1F 2|时,轨迹是分别以F 1,F 2为端点的两条射线; 当2a >|F 1F 2|时,轨迹不存在.[提出问题]问题1:“知识点一”的问题2中,动点P 的轨迹方程是什么? 提示:x 29-y 216=1.问题2:平面内,动点P 到两定点F 1(0,5),F 2(0,-5)的距离之差的绝对值为定值6,动点P 的轨迹方程是什么?提示:y 29-x 216=1.[导入新知]双曲线的标准方程[化解疑难]1.标准方程的代数特征:方程右边是1,左边是关于x ,y 的平方差,并且分母大小关系不确定.2.a ,b ,c 三个量的关系:标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中,a ,b 大小不确定.[例1] 已知方程k -5-|k |-2=1对应的图形是双曲线,那么k 的取值范围是( )A .(5,+∞)B .(-2,2)∪(5,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞)[解] ∵方程对应的图形是双曲线, ∴(k -5)(|k |-2)>0.即⎩⎪⎨⎪⎧k -5>0,|k |-2>0,或⎩⎪⎨⎪⎧k -5<0,|k |-2<0.解得k >5或-2<k <2. [答案] B [类题通法]将双曲线的方程化为标准方程的形式,假如双曲线的方程为x 2m +y 2n=1,则当mn <0时,方程表示双曲线.若⎩⎪⎨⎪⎧m >0,n <0,则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n >0,则方程表示焦点在y 轴上的双曲线.[活学活用]若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 解析:选C 原方程化为y 2k 2-1-x 2k +1=1,∵k >1,∴k 2-1>0,k +1>0.∴方程所表示的曲线为焦点在y 轴上的双曲线.[例2] (1)a =4,经过点A ⎝ ⎛⎭⎪⎫1,-4103;(2)经过点(3,0),(-6,-3). [解] (1)当焦点在x 轴上时,设所求双曲线的标准方程为x 216-y 2b2=1(b >0),把A 点的坐标代入,得b 2=-1615×1609<0,不符合题意;当焦点在y 轴上时,设所求双曲线的标准方程为y 216-x 2b2=1(b >0),把A 点的坐标代入,得b 2=9, ∴所求双曲线的标准方程为y 216-x 29=1. (2)设双曲线的方程为mx 2+ny 2=1(mn <0), ∵双曲线经过点(3,0),(-6,-3),∴⎩⎪⎨⎪⎧9m +0=1,36m +9n =1,解得⎩⎪⎨⎪⎧m =19,n =-13,∴所求双曲线的标准方程为x 29-y 23=1.[类题通法]1.双曲线标准方程的两种求法(1)定义法:根据双曲线的定义得到相应的a ,b ,c ,再写出双曲线的标准方程.(2)待定系数法:先设出双曲线的标准方程x 2a 2-y 2b 2=1或x 2b 2-y 2a2=1(a ,b 均为正数),然后根据条件求出待定的系数代入方程即可.2.求双曲线标准方程的两个关注点(1)定位:“定位”是指确定与坐标系的相对位置,在“标准方程”的前提下,确定焦点位于哪条坐标轴上,以判断方程的形式;(2)定量:“定量”是指确定a 2,b 2的具体数值,常根据条件列方程求解. [活学活用]根据下列条件,求双曲线的标准方程.(1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)c =6,经过点(-5,2),焦点在x 轴上.解:(1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1.由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a2-152b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2),∴25λ-46-λ=1, ∴λ=5或λ=30(舍去). ∴所求双曲线方程是x 25-y 2=1.[例3] 设P 为双曲线x 2-12=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,则△PF 1F 2的面积为( )A .6 3B .12C .12 3D .24[解] 如图所示,∵|PF 1|-|PF 2|=2a =2, 且|PF 1|∶|PF 2|=3∶2, ∴|PF 1|=6,|PF 2|=4. 又∵|F 1F 2|=2c =213, ∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴S V 12PF F =12|PF 1|·|PF 2|=12×6×4=12.[答案] B [类题通法]在解决双曲线中与焦点有关的问题时,要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;与三角形有关的问题要考虑正弦定理、余弦定理、勾股定理等.另外在运算中要注意一些变形技巧和整体代换思想的应用.[活学活用]若把本题中的“|PF 1|∶|PF 2|=3∶2”改为“PF 1―→·PF 2―→=0”,求△PF 1F 2的面积. 解:由题意PF 1―→·PF 2―→=0, 得PF 1⊥PF 2,∴△PF 1F 2为直角三角形, ∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=|F 1F 2|2. 又∵||PF 1|-|PF 2||=2a =2, |F 1F 2|2=4c 2=4(a 2+b 2) =4(1+12)=52, ∴4+2|PF 1|·|PF 2|=52, ∴|PF 1|·|PF 2|=24,∴S △PF 1F 2=12|PF 1|·|PF 2|=12.5.双曲线的定义理解中的误区[典例] 已知定点A (-3,0)和定圆C :(x -3)2+y 2=16,动圆和圆C 相外切,并且过定点A ,求动圆圆心M 的轨迹方程.[解] 设M (x ,y ),设动圆与圆C 的切点为B ,|BC |=4.则|MC |=|MB |+|BC |,|MA |=|MB |,所以|MC |=|MA |+|BC |, 即|MC |-|MA |=|BC |=4<|AC |.所以由双曲线的定义知,M 点轨迹是以A ,C 为焦点的双曲线的左支,设其方程为x 2a 2-y 2b2=1(x <0),且a =2,c =3,所以b 2=5.所以所求圆心M 的轨迹方程是x 24-y 25=1(x ≤-2).[易错防范]1.求解中易把动点的轨迹看成双曲线,忽视了双曲线定义中“距离的差的绝对值是常数”这一条件,动点轨迹实际上是双曲线的一支.2.在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能保证解题的正确性.当||PF 1|-|PF 2||=2a <|F 1F 2|(a >0),即|PF 1|-|PF 2|=±2a (0<2a <|F 1F 2|)时,P 点的轨迹是双曲线,其中取正号时为双曲线的右支,取负号时为双曲线的左支.[成功破障]求与⊙C 1:x 2+(y -1)2=1和⊙C 2:x 2+(y +1)2=4都外切的动圆圆心M 的轨迹方程. 解:∵⊙M 与⊙C 1,⊙C 2都外切, ∴|MC 1|=r +1,|MC 2|=r +2. 从而可知|MC 2|-|MC 1|=1<|C 1C 2|.因此,点M 的轨迹是以C 2,C 1为焦点的双曲线的上支,且有a =12,c =1,b 2=c 2-a 2=34.故所求的双曲线的方程为4y 2-4x 23=1⎝ ⎛⎭⎪⎫y ≥12.[随堂即时演练]1.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( ) A .双曲线 B .双曲线的一支 C .直线D .一条射线解析:选D F 1,F 2是定点,且|F 1F 2|=10,所以满足条件|PF 1|-|PF 2|=10的点P 的轨迹应为一条射线.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1解析:选B 法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),因为双曲线过点P (2,1),所以4a 2-1b2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线方程是x 22-y 2=1.法二:设所求双曲线方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入可得44-λ+11-λ=1, 解得λ=2(λ=-2舍去), 所以所求双曲线方程为x 22-y 2=1.3.若方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是________.解析:由题意知,(1+k )(1-k )>0,即-1<k <1. 答案:(-1,1)4.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.解析:由题易知,双曲线的右焦点为(4,0),点M 的坐标为(3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.答案:45.求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)经过点(3,-42),⎝ ⎛⎭⎪⎫94,5. 解:(1)由题设知,a =3,c =4, 由c 2=a 2+b 2得,b 2=c 2-a 2=42-32=7. 因为双曲线的焦点在x 轴上, 所以所求双曲线的标准方程为x 29-y 27=1. (2)设双曲线的方程为mx 2+ny 2=1(mn <0),因为双曲线经过点(3,-42),⎝ ⎛⎭⎪⎫94,5,所以⎩⎪⎨⎪⎧9m +32n =1,8116m +25n =1,解得⎩⎪⎨⎪⎧m =-19,n =116.故所求双曲线的标准方程为y 216-x 29=1.[课时达标检测]一、选择题1.已知双曲线的a =5,c =7,则该双曲线的标准方程为( ) A.x 225-y 224=1 B.y 225-x 224=1 C.x 225-y 224=1或y 225-x 224=1 D.x 225-y 224=0或y 225-x 224=0 解析:选 C 由于焦点所在轴不确定,∴有两种情况.又∵a =5,c =7,∴b 2=72-52=24.2.已知m ,n ∈R ,则“m ·n <0”是“方程x 2m +y 2n=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若方程x 2m +y 2n =1表示双曲线,则必有m ·n <0;当m ·n <0时,方程x 2m +y 2n =1表示双曲线.所以“m ·n <0”是“方程x 2m +y 2n=1表示双曲线”的充要条件.3.已知定点A ,B 且|AB |=4,动点P 满足|PA |-|PB |=3,则|PA |的最小值为( ) A.12 B.32 C.72 D .5解析:选C 如图所示,点P 是以A ,B 为焦点的双曲线的右支上的点,当点P 在点M 处时,|PA |最小,最小值为a +c =32+2=72.4.双曲线x 225-y 29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到焦点F 1的距离是12,则点P 到焦点F 2的距离是( )A .17B .7C .7或17D .2或22解析:选D 依题意及双曲线定义知,||PF 1|-|PF 2||=10,即12-|PF 2|=±10,∴|PF 2|=2或22,故选D.5.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B.x 23-y 2=1C .y 2-x 23=1 D.x 22-y 22=1 解析:选A 由双曲线定义知, 2a =+2+32--2+32=5-3=2,∴a =1.又∵c =2,∴b 2=c 2-a 2=4-1=3, 因此所求双曲线的标准方程为x 2-y 23=1.二、填空题6.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.解析:由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.答案:167.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是______________.解析:设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1.答案:y 225-x 275=18.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1―→·PF 2―→=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________.解析:由题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由PF 1―→·PF 2―→=0,得PF 1⊥PF 2.根据勾股定理得 |PF 1|2+|PF 2|2=(2c )2,即|PF 1|2+|PF 2|2=20. 根据双曲线定义有|PF 1|-|PF 2|=±2a . 两边平方并代入|PF 1|·|PF 2|=2得20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1, 所以双曲线方程为x 24-y 2=1.答案:x 24-y 2=1三、解答题9.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝ ⎛⎭⎪⎫-52,-6,求该双曲线的标准方程.解:已知双曲线x 216-y 29=1.据c 2=a 2+b 2, 得c 2=16+9=25,∴c =5. 设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0). 依题意,c =5,∴b 2=c 2-a 2=25-a 2, 故双曲线方程可写为x 2a 2-y 225-a 2=1. ∵点P ⎝ ⎛⎭⎪⎫-52,-6在双曲线上, ∴⎝ ⎛⎭⎪⎫-522a 2--6225-a2=1. 化简,得4a 4-129a 2+125=0, 解得a 2=1或a 2=1254. 又当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去,故a 2=1,b 2=24. ∴所求双曲线的标准方程为x 2-y 224=1.10.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C . (1)求线段AB 的长度; (2)求顶点C 的轨迹方程.解:(1)将椭圆方程化为标准形式为x 25+y 2=1. ∴a 2=5,b 2=1,c 2=a 2-b 2=4,则A (-2,0),B (2,0),|AB |=4.(2)∵sin B -sin A =12sin C , ∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4, 即动点C 到两定点A ,B 的距离之差为定值.∴动点C 的轨迹是双曲线的右支,并且c =2,a =1,∴所求的点C 的轨迹方程为 x 2-y 23=1(x >1).。
高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。
2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2

2.1 曲线与方程
2.1.2 求曲线的方程
【学习要求】 1.掌握求轨迹方程时建立坐标系的一般方法,熟悉求曲线方程
的四个步骤以及利用方程研究曲线五个方面的性质. 2.掌握求轨迹方程的几种常用方法. 【学法指导】
通过建立直角坐标系得到曲线的方程,从曲线方程研究曲线的 性质和位置关系,进一步感受坐标法的作用和数形结合思想.
因为曲线在 x 轴的上方,所以 y>0. 虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲线, 所以曲线的方程应是 y=18x2 (x≠0). 小结 (1)求曲线方程时,建立的坐标系不同,得到的方程也 不同.
(2)求曲线轨迹方程时,一定要注意检验方程的解与曲线上点 的坐标的对应关系,对于坐标适合方程但又不在曲线上的点 应注意剔除.
例 2 讨论方程 y2=1-x2x (x≥0)的曲线性质,并画出图形. 解 (1)范围:∵y2≥0,又 x2≥0,∴1-x>0. 解得 x<1,∴0≤x<1. 又当 x=0 时,y=0,∴曲线过原点. 当 x→1 时,y2→+∞,∴y2≥0. 综上可知,曲线分布在两平行直线 x=0 和 x=1 之间.
当堂检测
1.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),BC
边上的中线的长度为 5,则 A 点的轨迹方程是 ( D )
AHale Waihona Puke x2+y2=5B.x2+y2=25
C.x2+y2=5 (y≠0) D.x2+y2=25 (y≠0)
解析 BC 的中点为原点,BC 边上的中线长为 5,即 OA =5.设 A(x,y),则有 x2+y2=25 (y≠0).
知识要点
1.解析几何研究的主要问题: (1)根据已知条件,求出__表__示___曲__线__的__方__程____; (2)通过曲线的方程,研究_曲__线__的___性__质______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
【解析】 把点 M(4,-1)代入圆 C 和直线 l 的方程,均使方程成 立,故点 M 既在圆 C 上,也在直线 l 上. 【答案】C
2.方程 x+|y-1|=0 表示的曲线是(
) .
【解析】方程 x+|y-1|=0 可化为|y-1|=-x≥0,则 x≤0,因此 选 B. 【答案】B
3.若曲线 ax2+by2=4 过点 A(0,-2),B( , 3),则 a= ,b= .
预学 3:点与曲线的位置关系 若曲线 C 的方程是 f(x,y)=0,则点 P(x0,y0)在曲线 C 上⇔ f(x0,y0)=0;点 P(x0,y0)不在曲线 C 上⇔f(x0,y0)≠0. 议一议:如果曲线 C 的方程是 f(x,y)=0,那么点 P(x0,y0)在 曲线 C 上的充要条件是什么?(指定小组回答,其他组补充)
议一议:求曲线的方程和求轨迹一样吗?(讨论并回答)
【解析】不一样.若是求轨迹,则要先求出方程,再说明和讨 论所求轨迹是什么样的图形,即图形的形状、位置、大小都需说 明、讨论清楚.
1.已知圆 C:(x-2) +(y+1) =4 及直线 l:x+2y-2=0,则点 M(4,-1)( ). A.不在圆 C 上,但在直线 l 上 B.在圆 C 上,但不在直线 l 上 C.既在圆 C 上,也在直线 l 上 D.既不在圆 C 上,也不在直线 l 上
在必修 2 中我们学习了直线和圆的方程,我们发现曲线是方 程的解为坐标的点的轨迹,而方程是曲线中点对应的坐标满足的 等式,那么对于一般曲线,我们是否仍然可以用方程的思想去探 究它们的规律呢?
预学 1:直线的一般方程为 ax+by+c=0,圆的标准方程为 (x-a) +(y-b) =k ,圆的一般方程为 x +y +Dx+Ey+F=0(D +E -4F>0). 想一想:连接 A(1,0),B(2,2)两点间的线段,用什么方程表 示?
2 2 2 2 2 2 2
【解析】直线 AB 的方程为 y=2(x-1),即 2x-y-2=0, ∴线段 AB 的方程可表示为 2x-y-2=0(1≤x≤2).
预学 2:曲线方程的概念 一般地,在直角坐标系中,如果某曲线 C(看作点的集合或适 合某种条件的点的轨迹)上的点与一个二元方程 f(x,y)=0 的实数 解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.
(2)在学习圆锥曲线时要注重知识的形成过程,从圆锥曲线 的形成过程到圆锥曲线的定义,再根据定义引导学生建立适当的 直角坐标系,指导学生根据求曲线方程的一般步骤求得椭圆、双 曲线、抛物线的标准方程,增强学生的研究兴趣和信心. (3)利用对比的手段,将椭圆与双曲线的定义、方程和性质进 行对比,让学生从对比中找出相同与不同,并熟练掌握两种曲线 的特点.注重圆锥曲线定义的使用与转化,特别是通过抛物线的 定义把抛物线上的点到焦点的距离转化为其到准线的距离求解.
全国名校高中数学优秀核心素养系列学案汇编
1.本章教学的重点内容主要有:曲线与方程、椭圆及其标准 方程、椭圆的几何性质、双曲线及其标准方程、双曲线的几何性 质、抛物线及其标准方程、抛物线的几何性质. 2.本章教学的难点是对于曲线方程概念的理解,直线与圆锥 曲线的位置关系的讨论. 3.在教学时要注意以下几点: (1)讲解本章内容的前提是要讲清楚曲线方程概念的两个不 同层次,通过举例让学生明白曲线方程的两个条件是缺一不可的, 让学生在求得方程后,运用曲线方程的概念,观察判断得到的方 程是否为所求的曲线方程.
(4)注重解方程组,利用根与系数的关系求解直线与圆锥曲 线的位置关系,让学生初步学会利用根与系数的关系来解答位置 关系或参数的取值范围等综合性问题.
第 1 课时 曲线与方程来自重点:曲线方程的概念,求曲线方程的一般步骤. 难点:求曲线的方程. 学法指导:结合必修 2 的内容熟悉有关直线、圆的知识,在学 习过程中对于曲线方程的概念可利用直线、圆等特殊的例子去理 解.直接法是求动点轨迹的一种重要方法,学习时要结合导学案 中的例题和练习去熟练掌握,并注意所求轨迹的纯粹性与完备 性.
【解析】设动点 P(x,y),依题意|PA|=2|PB|, 所以 (x + 2) + y 2 =2 (x-1) + y 2 ,化简得(x-2) +y =4,
2 2
2
2
故点 P 的轨迹方程表示半径为 2 的圆,因此所求图形的面积 S=π·22=4π.
探究 1:曲线与方程的概念 【例 1】已知坐标满足方程 f(x,y)=0 的点都在曲线 C 上,那 么( ). A.曲线 C 上的点的坐标都满足方程 f(x,y)=0 B.凡坐标不满足 f(x,y)=0 的点都不在曲线 C 上 C.不在曲线 C 上的点的坐标必不满足 f(x,y)=0 D.不在曲线 C 上的点的坐标有些满足 f(x,y)=0,有些不满足 f(x,y)=0
【解析】若点 P 在曲线 C 上,则 f(x0,y0)=0;若 f(x0,y0)=0,则 点 P 在曲线 C 上,所以点 P(x0,y0)在曲线 C 上的充要条件是 f(x0,y0)=0.
预学 4:求曲线方程的一般步骤 (1)建系:建立适当的坐标系,用有序数对(x,y)表示曲线上 任意一点 M 的坐标; (2)写集合:写出适合条件 p 的点 M 的集合 P={M|p(M)}; (3)列方程:用坐标表示条件 p(M),列出方程 f(x,y)=0; (4)化简:化方程 f(x,y)=0 为最简形式; (5)说明:说明以化简后的方程的解为坐标的点都在曲线上. 一般地,化简前后方程的解集是相同的,步骤(5)可以省略不 写,如有特殊情况,可以适当说明.另外,也可以根据情况省略步 骤(2),直接列出曲线方程.
1 2
【解析】因为曲线过 A(0,-2),B(2, 3)两点, 所以 A(0,-2),B( , 3)的坐标就是方程的解. 4b = 4, a = 4, 所以 1 解得 a + 3b = 4, b = 1. 4 【答案】4 1
1 2
1
4.已知两定点 A(-2,0),B(1,0),如果动点 P 满足|PA|=2|PB|,求点 P 的轨迹所包围图形的面积.