高中数学第二章圆锥曲线与方程本章归纳整合新人教A版选修
高二数学选修1、2章末

a → → 的 坐 标 是 (x0 , y0), 由AM = λ AB 得 x0+e ,y0 =
第二章
圆锥曲线与方程
a x0= (λ-1) e 所以 , y0=λa x2 y2 0 0 因为点 M 在椭圆上,所以a2+b2=1,
a (λ-1)2 e
第二章
圆锥曲线与方程
章末归纳总结
人 教 A 版 数 学
第二章
圆锥曲线与方程
人 教 A 版 数 学
第二章
圆锥曲线与方程
坐标法是研究圆锥曲线问题的基本方法,它是用代数
的方法研究几何问题. 本章介绍了研究圆锥曲线问题的基本思路,建立直角 坐标系,设出点的坐标,根据条件列出等式,求出圆锥曲 线方程,再通过曲线方程,研究曲线的几何性质.
人 教 A 版 数 学
第二章
圆锥曲线ቤተ መጻሕፍቲ ባይዱ方程
人 教 A 版 数 学
第二章
圆锥曲线与方程
人 教 A 版 数 学
第二章
圆锥曲线与方程
人 教 A 版 数 学
第二章
圆锥曲线与方程
[例1]
已知A(0,7),B(0,-7),C(12,2),以C为一个
人 教 A 版 数 学
焦点作过A,B的椭圆,求椭圆的另一个焦点F的轨迹方
人 教 A 版 数 学
点题型.
第二章
圆锥曲线与方程
人 教 A 版 数 学
人 教 A 版 数 学
第二章
圆锥曲线与方程
∵以 AB 为直径的圆过椭圆的右顶点 D(2,0), ∴kAD·BD=-1, k y1 y2 即 · =-1, x1-2 x2-2 ∴y1y2+x1x2-2(x1+x2)+4=0, 3(m2-4k2) 4(m2-3) 16mk 2 + 2 + 2+4=0, 3+4k 3+4k 3+4k 7m2+16mk+4k2=0, 2k 解得 m1=-2k,m2=- 7 ,且满足 3+4k2-m2>0.
(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1

合作探究 课堂互动
高效测评 知能提升
(2)设双曲线的方程为 mx2+ny2=1(mn<0), ∵双曲线经过点(3,0),(-6,-3),
∴93m6m++0= 9n1=,1, 解得nm==-19,13, ∴所求双曲线的标准方程为x92-y32=1.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定义法求方程
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2= 9,动圆M同时与圆C1及圆C2相外切,求动圆的圆心M的轨迹方 程.
思路点拨: 根据两圆外切的定义从中找出相关的几何关 系,与所学椭圆、双曲线的定义进行对比可解.
数学 选修2-1
第二章 圆锥曲线与方程
合作探究 课堂互动
高效测评 知能提升
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲 线标准方程的类型“焦点跟着正项走”,若x2项的系数为正, 则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时, 双曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与
合作探究 课堂互动
高效测评 知能提升
3.与双曲线x82-1y02 =1 具有相同焦点的双曲线方程是 ________(只写出一个即可).
解析: 与x82-1y02 =1 具有相同焦点的双曲线方程为8+x2 k -10y-2 k=1(-8<k<10).
答案: x62-1y22 =1
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
第二章圆锥曲线与方程 章末归纳总结 课件(人教A版选修2-1)

2.(2014·福州月考)已知双曲线的一个焦点与抛物线 x2=
20y 的焦点重合,且其渐近线的方程为 3x±4y=0,则该双曲线
的标准方程为( )
A.1y62 -x92=1
B.1x62 -y92=1
C.y92-1x62 =1
D.x92-1y62 =1
[答案] C
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
由A→M=2M→B得 x1=-2x2,
∴--2x2x=22=3-+3+-84kk482k,2,
消去 x2 得(3+8k4k2)2=3+44k2,
解得 k2=14,∴k=±12, 所以直线 l 的方程为 y=±12x+1,即 x-2y+2=0 或 x+2y -2=0.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
第二章 章末归纳总结
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
1.椭圆的定义|PF1|+|PF2|=2a中,应有2a>|F1F2|,双曲 线定义||PF1|-|PF2||=2a中,应有2a<|F1F2|,抛物线定义中, 定点F不在定直线l上.
(2)由题意得直线 l 的斜率存在,设直线 l 方程为 y=kx+1, y=kx+1, 则由x42+y32=1. 消去 y 得(3+4k2)x2+8kx-8=0,且 Δ>0. 设 A(x1,y1),B(x2,y2),∴xx11·+x2x=2=3+-3-+48k842kk,2,
第二章 圆锥曲线与方程
高中数学 第2章 圆锥曲线与方程 2.2.2 双曲线的简单几何性质 新人教A版选修1-1

解析答案
(2)与双曲线1x62 -y42=1 有公共焦点,且过点(3 2,2). 解 设所求双曲线方程为16x-2 k-4+y2 k=1(16-k>0,4+k>0), ∵双曲线过点(3 2,2), ∴136-2k2-4+4 k=1,
解得k=4或k=-14(舍去). ∴所求双曲线的标准方程为1x22 -y82=1.
∴c= a2+b2= 16=4.
∴双曲线的实轴长 2a=4,虚轴长 2b=4 3.
焦点坐标为F1(0,-4),F2(0,4),
顶点坐标为A1(0,-2),A2(0,2),
渐近线方程为 y=± 33x,离心率 e=2.
解析答案
题型二 根据双曲线的几何性质求标准方程 例2 求适合下列条件的双曲线的标准方程: (1)一个焦点为(0,13),且离心率为153; 解 依题意可知,双曲线的焦点在y轴上,且c=13,
当λ<0时,焦点在y轴上.
答案
返回
题型探究
重点突破
题型一 已知双曲线的标准方程求其几何性质
例1 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、 离心率、渐近线方程. 解 将 9y2-4x2=-36 化为标准方程x92-y42=1,即3x22-2y22=1, ∴a=3,b=2,c= 13.
答案 不一样.椭圆的离心率0<e<1,而双曲线的离心率e>1.
(2)若双曲线确定,则渐近线确定吗?反过来呢?
答案 当双曲线的方程确定后,其渐近线方程也就确定了;
反过来,确定的渐近线却对应着无数条双曲线, 如具有相同的渐近线 y=±bax 的双曲线可设为ax22-by22=λ(λ≠0,λ∈R), 当λ>0时,焦点在x轴上,
2021_2022高中数学第二章圆锥曲线与方程3双曲线2双曲线的简单几何性质1课件新人教A版选修2

渐近线方程为
y=±
2 2 x.
典例剖析
一.已知双曲线的方程,研究其几何性质
• 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长 、离心率和渐近线方程,并作出草图.
• [分析] 将双曲线方程化成标准方程,求出a、b、c的值,然后依 据各几何量的定义作答.
[解析] 将 9y2-4x2=-36 变形为x92-y42=1, 即3x22-2y22=1,∴a=3,b=2,c= 13, 因此顶点为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0), 实轴长是 2a=6,虚轴长是 2b=4,
∴双曲线的标准方程为y22-x42=1.
三.双曲线的离心率
已知 F1、F2 是双曲线ax22-by22=1(a>0,b>0)的两个焦点,PQ 是经过 F1 且垂直于 x 轴的双曲线的弦.如果∠PF2Q=90°,求 双曲线的离心率.
• [解析] 设F1(c,0),由|PF2|=|QF2|, ∠PF2Q=90°,
)
B.x42-y52=1 D.x22- y25=1
• [答案] B
[解析] e=32,c=3,∴a=2,∴b2=c2-a2=5, 即双曲线的标准方程为x42-y52=1.
4.已知双曲线ax22-y52=1 的右焦点为(3,0),则该双曲线的
离心率等于( )
A.3 1414
B.3 4 2
C.32
D.43
第二章 圆锥曲线与方程
2.3 双曲线
2.3.2 双曲线的简单几何性质
学习目标
• 1.类比椭圆的性质,能根据双曲线的标准方程,讨论它的几何性质 .
• 2.能运用双曲线的性质解决一些简单的问题.
最新人教版高中数学选修2-1第二章《圆锥曲线与方程》本章综述

第二章圆锥曲线与方程
本章综述
本章的内容是:曲线与方程,椭圆,双曲线,抛物线.重点是圆锥曲线标准方程及其性质的研究.难点是已知曲线求方程.
根据已知条件选择适当的坐标系,借助数和形的对应关系建立曲线方程,把形的问题转化为数的研究,再把数的研究转化为形来讨论,这是解析几何的基本思想和方法.用解析法研究圆锥曲线是从初等数学过渡到高等数学的开始和阶梯,也是学习其他科学技术的基础,而学习圆锥曲线,需要综合运用过去学过的数学知识,因此,学习这一章,起着承前启后的作用.圆锥曲线是解析几何的重点内容.要深入理解曲线与方程的有关概念与相互关系,重点抓住两个基本问题:一是根据曲线方程研究曲线的基本性质;二是根据曲线的几何特征求曲线的方程.学习本章常用的方法有直接法、代入法、几何法、定义法、交轨法、参数法等. 圆锥曲线方程的应用和开放题在教材的例题和习题中有多处涉及,在各地的高中会考和高考模拟试卷中也有逐年增加的趋势,这类试题一般都紧扣课本内容,贴近生活,具有跨学科的特点.在高考中圆锥曲线占总分的15%左右,分值一直保持稳定.选择题、填空题重视基础知识和基本方法,而且具有一定的灵活性与综合性;解答题注重基本方法、数学思想的理解掌握和灵活运用,通常又不单独考查,多数情况是与函数、向量、数列结合起来,综合性强,难度较大,常被安排在试题最后.。
高中数学第二章圆锥曲线与方程2.4抛物线2.4.2第2课时直线与抛物线的位置关系课件新人教A版选修21

当Δ>0时,直线与抛物线相交,有两个交点;
当Δ=0时,直线与抛物线相切,有一个交点;
当Δ<0时,直线与抛物线相离,无交点.
②若a=0,直线与抛物线有一个交点,此时直线平行于 抛物线的对称轴或与对称轴重合,因此直线与抛物线有一 个交点是直线与抛物线相切的必要不充分条件.
〔跟踪练习1〕 已知点A(0,2)和抛物线C:y2=6x,求过点A且与抛物线C 有且仅有一个公共点的直线l的方程.
个公共点,无公共点?
[思路分析] 直线与抛物线公共点的个数,就是直线方 程与抛物线方程联立方程组解的个数,由判别式可讨论 之.
[规范解答] 直线 l:y-1=k(x-1),将 x=-y22代入整理得,ky2+2y+2k-2 =0.
(1)k=0 时,把 y=1 代入 y2=-2x 得,x=-12,直线 l 与抛物线 C 只有一个 公共点(-12,1).
提示:手电筒内,在小灯泡的后面有一个反光镜,镜面 的形状是一个由抛物线绕它的对称轴旋转所得到的曲面, 这种曲面叫抛物面,抛物线有一条重要性质,从焦点发出 的光线,经过抛物面上的一点反射后,反射光线平行于抛 物线的轴射出,手电筒就是利用这个原理设计的.
直线与抛物线的位置关系
直线与抛物线公共点的个数0个可、以1个有或2个
综上知,k<1-2
3或
1+ k> 2
3时,l 与 C 无公共点;
k=1±2 3或 k=0 时,l 与 C 只有一个公共点;
1- 2
3 <k<0
或
1+ 0<k< 2
3时,l 与 C 有两个公共点.
『规律总结』 直线与抛物线交点个数的判断方法
设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方 程与抛物线方程联立整理成关于x的方程ax2+bx+c=0,
高中数学 第二章 圆锥曲线与方程小结(1)预习案 新人教A版选修2-1(2021年整理)

山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程小结(1)预习案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程小结(1)预习案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程小结(1)预习案新人教A 版选修2-1的全部内容。
第二章圆锥曲线与方程小结(1)【教学目标】1.知识与技能:熟记椭圆、双曲线、抛物线的定义、标准方程和几何性质等基本知识;掌握涉及圆锥曲线定义、标准方程、几何性质等基本问题的解决方法。
2.过程与方法:通过学生列表总结,从整体上把握本章的逻辑结构,形成知识网络,使知识系统、条理;通过典型例题的讲解熟悉常规问题的处理方法。
3。
情感态度价值观:圆锥曲线是高考中重点考查内容 ,要熟悉基本知识、掌握基本方法,培养学生综合利用知识解决问题的能力.【预习任务】1.阅读并研究课本P78-P79内容并参考教材P74-P77的相关内容。
2.完成下列表格椭圆双曲线抛物线定义图形标准方程范围顶点坐标对称性焦点坐标(错误!,0)离心率准线方程 \ \渐近线方程\ \焦点三角形面积公式\PF 最值PO 最值max 21)(PF F P点位置\ \通径焦半径 \ \2。
注意下列知识:(1)椭圆焦点三角形的面积公式是: 双曲线焦点三角形的面积公式是:解与焦点三角形有关的问题常用哪些知识:(2)求离心率的常用方法:(3) 双曲线的渐近线方程与双曲线方程的关系是:(4)抛物线焦点弦有关的性质:【自主检测】教材P80A组题3,4;【组内互检】1.椭圆、双曲线的离心率公式、焦点三角形的面积公式、通径公式及双曲线的渐进线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)求轨迹方程的几种常用方法: ①直接法:建立适当的坐标系,设动点为(x,y),根据几 线上的动 点的关系,把所求动点转换为已知动点.具体地说,就是用所 求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足 的曲线的方程,由此即可求得所求动点坐标x,y之间的关系 式.
已知椭圆上的两点 P(3,4),Q
5,43
10.
(1)求椭圆的标准方程;
(2)若椭圆的两焦点为 F1,F2,M 为椭圆上一点,且∠
F1MF2=90°,求△F1MF2 的面积. 思维点击: (1)用待定系数法求椭圆方程.(2)利用椭圆
定义和直角三角形面积公式求△F1MF2 的面积.
(1)设椭圆方程为 Ax2+By2=1(A>0,B>0,
1.已知双曲线的焦点在 x 轴上,离心率为 2,F1,F2 为 左、右焦点,P 为双曲线上一点,且∠F1PF2=60°,S△PF1F2 =12 3,求双曲线的标准方程.
解析: 如图所示,设双曲线方程为 ax22-by22=1(a>0,b>0). ∵e=ac=2,∴c=2a.
9A+16B=1, A≠B),则5A+1690B=1,
解得AB= =421150, ,
∴椭圆的标准方程为4x52 +2y02 =1.
(2)由题意知:|MF1|+|MF2|=6 5,
①
|MF1|2+|MF2|2=|F1F2|2=100,
②
由①②解得|MF1|·|MF2|=40,
∴S△F1MF2=12|MF1|·|MF2|=20.
知能整合提升
1.归纳三种圆锥曲线定义、标准方程、几何性质
椭圆
双曲线
抛物线
平面内与两个定 平面内与两个定点 平面内与一个定
定义
点 F1,F2 的距离 F1,F2 的距离的差的 点 F 和一条定直
之和等于常数(大 绝对值等于常数(小 线 l(l 不经过点 F)
于|F1F2|)的点的轨 于|F1F2|且大于零)的 距离相等的点的
利用圆锥曲线的定义解题的策略 (1)在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定 义,则根据圆锥曲线的定义,写出所求的轨迹方程; (2)涉及椭圆、双曲线上的点与两个焦点构成的三角形问题 时,常用定义结合解三角形的知识来解决; (3)在求有关抛物线的最值问题时,常利用定义把到焦点的 距离转化为到准线的距离,结合几何图形,利用几何意义去解 决.总之,圆锥曲线的定义、性质在解题中有重要作用,要注 意灵活运用.
(3)几何法:求与过焦点的三角形有关的离心率问题,根据 平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数 之间的关系.通过画出图形,观察线段之间的关系,使问题更 形象、直观.
4.直线与圆锥曲线的位置关系 (1)从几何的角度看,直线和圆锥曲线的位置关系可分为三 类:无公共点、仅有一个公共点及有两个相异的公共点.其 中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与 其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线 平行;对于抛物线,表示与其相切或直线与其对称轴平行. (2)从代数的角度看,可通过将表示直线的方程与曲线的方 程组成方程组,消元后利用所得形如一元二次方程根的情况来 判断.
一条对称轴
四个
两个
一个
e=ac,且 0<e<1
e=ac,且 e>1
e=1
e 决定扁平程度 e 决定开口大小 2p 决定开口大小
2.待定系数法求圆锥曲线的标准方程 (1)椭圆、双曲线的标准方程 求椭圆、双曲线的标准方程包括“定位”和“定量”两 方面,一般先确定焦点的位置,再确定参数,当焦点位置不 确定时,要分情况讨论,也可将方程设为一般形式:椭圆方 程为 Ax2+By2=1(A>0,B>0,A≠B),其中当A1>B1时,焦点在 x 轴上,当A1<B1时,焦点在 y 轴上;双曲线方程为 Ax2+By2 =1(AB<0),当 A<0 时,焦点在 y 轴上,当 B<0 时,焦点在 x 轴上.
3.三法应对离心率 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆 (双曲线)的焦点在 x 轴上还是 y 轴上都有关系式 a2-b2=c2(a2 +b2=c2)以及 e=ac,已知其中的任意两个参数,可以求其他 的参数,这是基本且常用的方法.
(2)方程法:建立参数a与c之间的齐次关系式,从而求出其 离心率,这是求离心率的十分重要的思路及方法.
③定义法:如果所给几何条件正好符合圆、椭圆、双曲 线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程 写出动点的轨迹方程.
④参数法:选择一个(或几个)与动点变化密切相关的量作 为参数,用参数表示动点的坐标(x,y),即得动点轨迹的参数 方程,消去参数,可得动点轨迹的普通方程.
热点考点例析
圆锥曲线的定义
5.解轨迹问题的策略技巧 (1)解决轨迹问题首先要明确圆锥曲线的性质,做好对图形 变化可能性的总体分析,选好相应的解题策略和拟定好具体的 方法,如参数的选取、相关点的变化规律及限制条件等,注意 将动点的几何特性用数学语言来表述. (2)要注意一些轨迹问题所包含的隐含条件,也就是曲线上 点的坐标的取值范围.
另外,在求双曲线的标准方程的过程中,根据不同的已 知条件采取相应方法设方程,常常可以简化解题过程,避免 出错.如与已知双曲线ax22-by22=1(a>0,b>0)共渐近线的双曲 线方程可设为ax22-by22=λ(λ≠0);已知所求双曲线为等轴双曲 线,其方程可设为 x2-y2=λ(λ≠0).
(2)抛物线的标准方程 求抛物线的标准方程时,先确定抛物线的方程类型,再 由条件求出参数 p 的大小.当焦点位置不确定时,要分情况 讨论,也可将焦点在 x 轴或 y 轴上的抛物线方程设为一般形 式 y2=2px(p≠0)或 x2=2py(p≠0),然后建立方程求出参数 p 的值.
迹
点的轨迹
轨迹
标准方程 ax22+by22=1(a>b>0) ax22-by22=1(a>0,b>0) y2=2px(p>0)
关系式 图形
对称性 顶点
离心率 决定形状 的因素
椭圆
双曲线
抛物线
a2-b2=c2
a2+b2=c2
封闭图形
无限延展,但有渐近 无限延展,没有
线
渐近线
对称中心为原点
无对称中心
两条对称轴