概率论与数理统计-第6章-第2讲-最大似然估计法

合集下载

第六章-最大似然估计

第六章-最大似然估计
(6-3)
第 2 页 共 27 页
第六章 最大似然估计
与非线性回归的情况一样,在 ML 估计中也需要假定参数的可识别性,具体如下:
假定(可识别假定):对参数空间 的任意
,有
其中, 为参数 的真值。
这里需要说明一下,与 LS 估计不同,在 ML 估计的框架中,用于保证估计量性质的约 束条件无法很清晰的划分为几类简单的假定。因此,更常用的做法是直接给出这些约束条件 (正则条件),而不是作为假定提出。我们之所以单独列出可识别假定,是因为它是整个极 值估计的核心假定,且在性质证明中能直接看出。
CRLB 是指任意无偏估计量的方差所能达到的最低水平,计算如下:
(6-8)
以下简单证明 CRLB 的性质。
证明: 已知密度函数
,满足
,其得分函数为 ,则有
。记
的估计量
其中,
注意到,对任意矩阵 得
所以有 当估计量为无偏估计时,即
,存在满秩矩阵 ,则有
,上式可化简为:
。 。
,使
其中,


证明完毕。
称为
的估计量的 CRLB。当
第六章 最大似然估计
,对应的检验统计量计算如下:
(6-23)
LR 检验统计量: LM 检验统计量:
(6-24)
(6-25)
其中, 和 分别表示无约束和有约束下的 ML 估计, 和 似然函数的估计。
在零假设下,上述的 Wald 检验、LR 检验和 LM 检验都收敛于
个数。
分别表示对应的 ,其中 J 为约束的
考虑线性约束
,Wald 检验统计量可计算如下:
(6-27)
其中,


残差。
又,有约束的对数似然函数可计算如下:

第6章-最大似然估计

第6章-最大似然估计
为参数空间,即参数 所有可能取值所构成的集合。
通过抽取随机样本 y1 , , yn 来估计 。 假 设 y1 , , yn 为 iid , 则 样 本 数 据 的 联 合 密 度 函 数 为
f ( y1; ) f ( y2 ; ) f ( yn ; ) 。
在抽样前, y1 , , yn 为随机向量。 抽样后, y1 , , yn 有了特定的样本值,可将样本联合密度 函数视为在 y1 , , yn 给定情况下,未知参数 的函数。
0 0
最后一步用到了信息矩阵等式。
25
假设ˆ 是对真实参数 0 的任意无偏估计,则在一定的正则 条件(regularity conditions)下,ˆ 的方差不会小于[ I ( 0 )]1,即 ˆ) [ I ( )]1。 Var( 0 称[ I ( 0 )]1为 “克莱默-劳下限” (Cramer-Rao Lower Bound)。 无偏估计所能达到的最小方差与信息矩阵有关。曲率 I ( 0 ) 越大,则[ I ( 0 )]1越小,无偏估计可能达到的最小方差越小。 在古典线性回归模型中,可证明(参见附录)
5
一阶条件要求,对数似然函数的梯度向量(gradient,偏导 数、斜率) s( ; y ) 为 0 ,实际上是 K 个未知参数 (1 2 K ) ,K 个方程的方程组。 该 向 量 也 称 “ 得 分 函 数 ”(score function) 或 “ 得 分 向 量”(score vector)。 得分函数 s( ; y ) 是 y 的函数,也是随机向量。 在下面,记真实参数为 θ0 ,而 θ 为该参数的任何可能取值。
ln L( ; y1 , , yn ) i 1 ln f ( yi ; )
n

概率论与数理统计教材第六章习题

概率论与数理统计教材第六章习题

X σ0 n
~ N(0,1)
对于置信水平1- ,总体均值的置信区间为 对于置信水平 -α,总体均值 的置信区间为
X
σ0
n
uα < < X +
2
σ0
n

2
(2)设总体 ~ N(,σ 2 ), 未知 ,求的置信区间。 设总体X~ 未知σ, 的置信区间。 设总体 的置信区间
σ 0 ,则样本函数 t = X ~ t(n 1) 用 S 代替 S n
i =1
n1
n1
F
1
α ∑ Yj 2
2 j =1
n2
(
)
2
n2
10
2 2 及 (1)设两个总体 ~ N(1,σ1 ) 及Y~ N(2 ,σ 2 ), 未知 1 2, )设两个总体X~ ~
2 σ1 的置信区间。 求 2 的置信区间。 σ2
选取样本函数 选取样本函数
2 2 S1 σ1 F = 2 2 ~ F(n1 1, n2 1) S2 σ2
∑x
i =1
n
i =1
i
n = 0.
1 p
得 p 的极大似然估计值为 p =
n
∑x
i =1
n
1 = x
i
12
1 θ 2. 设总体 服从拉普拉斯分布:f ( x;θ ) = e ,∞< x < +∞, 设总体X 服从拉普拉斯分布: 2θ 求参数 θ 其中 > 0. 如果取得样本观测值为 x1 , x2 ,L, xn , 求参数θ
第六章 参数估计
(一)基本内容
一、参数估计的概念 1 定义:取样本的一个函数θ ( X 1 , X 2 ,L , X n ), 如果以它的观测 定义:

西北工业大学《概率论与数理统计》课件-第六章 参数估计

西北工业大学《概率论与数理统计》课件-第六章 参数估计
最大概率的思想就是最大似然法的基本思想 .
(2) 似然函数
定义6.1 设总体X的分布密度(或分布律)为 p(x; ), 其中 (1, 2, ,m )为未知参数. 又设
( x1, x2,, xn ) 为自总体X的样本(X1,X2,…,Xn) 的一 个观察值,则称样本的联合分布
n
L( ) p(x1, x2, … , xn; ) p( xi; )
2º似然估计方程组与最大似然估计之间没有必 然
从中解得 pˆ k n
参数 p的估计值
这时, 对一切 0< p <1, 均有
P{Y k; pˆ } P{Y k; p}
综上所述: 设某试验的可能结果为: A1, A2 , ···, Ai , ···
若在一次试验中,某结果 Ai 出现,则应选择参 数使Ai 出现的概率最大.
以上这种选择一个参数使得实验结果具有
(k 1,2,, m)
(4) 求最大似然估计(MLE)的步骤:
1 写出似然函数
(1, 2 , ,m )
n
L( ) L( x1, x2,, xn; ) p( xi; )
n
i 1
2 取对数 ln L( ) ln p( xi; )
i 1
3 解似然方程(组)
ln L

ln L
2
为来自总体X的简单随机样本. 矩估计法的具体步骤:
1 求出k E( X k ) (1,2,,m ), k 1,2,,m;
2 要求k Ak , k 1,2,, m
这是一个包含 m个未知参数1,2 ,,m的方程组.
3 解出其中1,2,,m , 用ˆ1,ˆ2,,ˆm表示.
4 用方程组的解ˆ1, ˆ2 , ,ˆm 分别作为 1,2 ,,m的估计量,这个估计量称为

概率论与数理统计第6章参数区间估计2,3节

概率论与数理统计第6章参数区间估计2,3节


n
E(X
k
)

E(X
k)
i1
i1
二、有效性
未知参数 的无偏估计量不是唯一的.
设 ^1 和 ^2 都是参数 的无偏估计量,
θˆ 1
θˆ 2
集中
分散
蓝色是采用估^ 计量 1 , 用 14 个样本值得到的 14 个估计值. 紫色是采用估^ 计量 2 , 用 14 个样本值得到的 14 个估计值.
若limD(ˆ)0, 则ˆ是的一致估 . 计量 n
回顾例子.设总体X的概率密度为
f(x)6x3 (x),0x;
0, 其他
X1, X2,…, Xn 是取自总体X 的简单随机样本, (1) 求的矩估计量 ˆ;
(2) 求ˆ的方差D(ˆ).
解:矩估计 ˆ量 2X. D(ˆ)4D(X)4D(X)2
若滚珠直径服从正态分布X ~ N( , 2), 并且已知 = 0.16(mm),求滚珠直径均值的置信水平为95%
的置信区间.
解:由上面求解的置信水平为1- 的置信区间
Xσn 0 uα/,2 Xσn 0 uα/2
已 n 知 1,0 0 0 .1,6 0 .0,5 x110i110xi 14.92,
若进行n次独立重复抽样,得到n个样本观测值,
每个样本观测 个值 随确 机(定 ˆ1区 ,ˆ2一 )间 .那么
每个区间的 可真 能 , 或 值 包不 含包 的含 真 , 值
根据伯努利大数定理, 在这n个随机区间中,
包含 真值1 的 0(1 0 约 )% 占 ,不包含 10 的 % 0. 约
便得 k的 到 最大似 ˆk(X 1,然 X 2, ,估 X n).计
第二节 判别估计量好坏的标准

第6 章 最大似然估计法

第6 章 最大似然估计法

y
)
⎤⎥⎥⎥⎦⎫⎪⎪⎬⎪⎪⎭−1

第二种方法是,将期望算子忽略掉,即
18
An var(θˆ
ML
)
=
⎡⎢⎢⎢⎣−

2
ln L(θˆ ML ∂θˆ ∂θˆ ′
;
y
)
⎤⎥⎥⎥⎦−1
。此方法被称为“观测信息矩阵”
(Observed Information Matrix,OIM)法。
第三种方法利用信息矩阵等式,用
7
最优 σ2 。
在 第 一 步 , 选 择 β 使 得 ln L(β, σ2) 最 大 , 这 等 价 于 让 (y − Xβ)′(y − Xβ) 最小。
βˆ ML = βˆ OLS = (X′X)−1 X′y (6.9)
在第二步,对 σ2 求导,

n 2
1 σ2
+
1 2σ 4
e′e
20
其中,K 为约束条件的个数(即为解释变量的个数)。 2.似然比检验(Likelihood Ratio Test,LR):
H0 Θ
图 6.4、无约束与有约束的参数空间
21
如果 H0 正确,则 ln L(βˆU )−ln L(βˆ R ) 不应该很大。在此例中,
βˆ R = β0 。LR 统计量为,
19
6.7 三类渐近等价的统计检验
对于线性回归模型,检验原假设 H0 : β = β0 ,其中 βK×1 为未 知参数,β0 已知,共有 K 个约束。
1.沃尔德检验(Wald Test):如果 H0 正确,则 (βˆU −β0) 的绝 对值不应该很大。沃尔德统计量为,
W ≡ (βˆU −β0 )′ ⎡⎢⎣Var(βˆU )⎤⎥⎦−1 (βˆU −β0 ) ⎯d⎯→ χ2 (K ) (6.18)

极大似然估计法的解题步骤

极大似然估计法的解题步骤

最大似然估计法是一种可以用来估计参数的数学方法,它是统计学中
最常用的估计方法之一。

本文将介绍最大似然估计法解题的步骤。

第一步:确定似然函数。

最大似然估计法是一种在给定数据条件下求
取参数和特征值的估计方法,它将一个参数模型的似然函数定义为样
本数据的概率密度。

要确定这个似然函数,我们必须首先确定模型的
数学表达式,这一步是重要的,它将决定似然函数的形式,因此决定
最大似然估计法的参数模型。

第二步:求取参数的似然估计值。

在确定了似然函数后,我们就可以
计算出参数的似然估计值了。

由于模型中参数之间可能存在相关性,
这时就可以使用最大似然估计法来求解参数估计值。

最大似然估计值
就是求出似然函数概率密度最大值点所代表的参数值。

第三步:解释解决结果。

在获得了参数的似然估计值后,可以对拟合
后的结果进行解释,说明为什么模型准确地估计了参数值。

最后,最大似然估计是一种有效的数学方法,本文介绍了最大似然估
计法解题的步骤,也就是确定似然函数,求取参数的似然估计值,以
及解释解决结果。

并且,本文还强调了最大似然估计法的重要性和有
用性,在实际应用中,最大似然估计法可以给出准确可靠的估计结果。

概率论与数理统计第6章

概率论与数理统计第6章

第六章6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6。

8 设总体X ~N (150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤。

解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ= 2857.09615.09772.0=-=第六章《样本与统计量》定理、公式、公理小结及补充:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P(X1 1)P(X2 0)P(X3 1)
3
本讲内容
01 求最大似然估计的一般步骤 02 典型例题
01 求最大似然估计的一般步骤
(1) 构造似然函数 L(θ)
设X1, , X n是来自X 的样本, x1, , xn是其一组样本值,
若总体X 属离散型,其分布律 P( X x) p(x; ),
概率论与数理统计
第6章 参数估计
第2讲 最大似然估计法
主讲教师 |
第2讲 最大似然估计法
上一讲介绍了矩估计,这一讲介绍点估计的另外一种方法— —最大似然估计法,它是在总体类型已知条件下使用的一种参数 估计方法 .
它首先是由数学家高斯在1821年提出的,费歇在1922年重 新发现了这一方法,并研究了它的一些性质 ,从而得到广泛应 用.

L(
x1
,,
xn
;ˆ)
max
L(
x1,,
xn
;
)
ˆ(x1, , xn )称为参数的最大似然估计值.
ˆ( X1, , X n )称为参数的最大似然估计量.
一般, 可由下式求得:
dL( ) 0或 d ln L( ) 0.
d
d
似然方程
6
01 求最大似然估计的一般步骤
注1
未知参数可以不止一个, 如1,…, k
ln
L
n
i1
(xi )2 2 2
n 2
ln(2
)
n 2
ln(
2)
似然 方程 组为
ln
L
1
2
n
(xi
i1
)
0
(
2 ) ln
L
1
2( 2 )2
n
( xi
i1
)2
n
2(
2)
0
ˆ mle
1 n
n
xi
i1
x
2
mle
1 n
n
(xi
i1
x)2
12
概率论与数理统计
学海无涯,祝你成功!
主讲教师 |
1 x
i 1
10
02 典型例题
例 设X ~ G( p), x1, , xn是来自X 的一个样本值, 试求参数p与EX 的最大似然估计.
p的最大似然估计

n
n
xi
1 x
i 1
如何求EX 的
最大似然估计?
因为EX 1 ,故EX 的最大似然估计为 EX 1 x
p

最大似然估计不变性 若ˆ 是 的最大似然估计,
我们先来看一个实例
2
第2讲 最大似然估计法
例 ——生活经验:
黑球白球9:1,不知哪种多?有放回抽三次,两次白球,一次黑球.
哪种多?
白球多!
原理: 一次试验就出现的事件有较大的概率
这种选择一个参数使得实验结果具有最大概率的思想就是最大似 然法的基本思想 .
方法
0.9? 0.1?
最大
L( ) P(X1 1, X2 0, X3 1)
n
L( ) L(x1,, xn; ) p(xi ; ) i 1
似然函数
若总体X 属连续型, 其概率密度f (x; ),
n
L( ) L(x1,, xn; ) f (xi ; ) i 1
似然函数
5
01 求最大似然估计的一般步骤
(2) 求似然函数 L(θ) 的最大值点
挑选使L( )达到最大的参数ˆ,作为的估计,
大似然原则来求.
L( ) 无驻点
不可导
7
本讲内容
01 求最大似然估计的一般步骤 02 典型例题
02 典型例题

设总体
X
的概率密度为f
(x)
x
1
,
x
1,
1 是未知参数,
0, x 1.
X1, X 2, , X n 是总体 X 的一个简单样本,求 的最大似然估计.

似然函数
L( )
n i 1
设X 的密度(或分布律)为 f (x,1, ,k )
n
则似然函数为 L(x1, , xn;1, ,k ) f (xi ,1, ,k )
可令 L 0, 或 ln L 0,i 1, , k.
i
i
i 1
似然方程组
注2
解方程组求得1, ,k的最大似然估计.
用上述方法求参数的最大似然估计值有时行不通,这时要用最
解 X 的分布律为: P( X k) p(1 p)k1, k 1,2,
n
故似然函数为 L( p)
n
p(1
p) xi 1
pn (1
xi n p) i1 ,
i 1
n

d
ln L( p)
n
xi n
i 1
0.
dp
p 1 p
如何求EX 的
最大似然估计?
解得 p的最大似然估计

n
nxiຫໍສະໝຸດ f(xi )( x1 x2
n
xn ) 1
,
xi 1
n
ln L( ) n ln ( 1)ln xi i 1
d
ln L( ) d
n
n i 1
ln
xi
0
解得
n
n
的最大似然估计 ˆ n n .
ln xi
ln X i
i 1
i 1
02 典型例题
例 设X ~ G( p), x1, , xn是来自X 的一个样本值, 试求参数p与EX 的最大似然估计.
则g(ˆ ) 也是 g( ) 的最大似然估计.
11
02 典型例题
例 设总体 X ~ N (, 2), x1, x2 , … , xn 是 X 的样本值, 求 , 2 的最大似然估计.

n
L(, 2 )
1 e
(
xi 2 2
)2
1
n
n i1
( xi )2 2 2
en
i1 2
(2 )2 ( 2 )2
相关文档
最新文档