浙教版中考数学压轴题精选

合集下载

专题4.2 坐标系中平移的几何综合(压轴题专项讲练)(浙教版)(原卷版)

专题4.2 坐标系中平移的几何综合(压轴题专项讲练)(浙教版)(原卷版)

专题4.2 坐标系中平移的几何综合【典例1】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,3),B(6,3),现同时将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标;(2)点M从O点出发,以每秒1个单位的速度向上平移运动.设运动时间为t秒,问:是否存在这样的t使得四边形OMDB的面积为12?若存在,请求出t的值,若不存在,请说明理由.(3)在(2)的条件下,点M从O点出发的同时,点N从D点出发,以每秒2个单位的速度向左平移运动,当点N到达点O时运动停止.设射线BN交y轴于点E.设运动时间为t秒,问:S△EMB−S△OEN的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.(1)根据点的坐标及平移方法即可确定;(2)过B作BH⊥OD的延长线,垂足为H.由(1)中点的坐标得出D=6,DH=2,OD=4,AB=6,设M点坐标为(0,t),连接MB、OB,则四边形OMDB的面积等于△OBD的面积加上△OMD的面积等于12,然后解出t即可;(3)设运动时间为t秒,OM=t,ON=4-2t(0≤t≤2),过B作BH⊥OD的延长线,垂足为H,连接MB,OB,结合图形可得SΔEMB−SΔOEN=S△ONB+S△OMB,然后代入求解即可.(1)解:∵点A,B的坐标分别为A(0,3),B(6,3),将点A,B分别向下平移3个单位,再向左平移2个单位∴C(-2,0),D(4,0);(2)解:存在;如图,过B作BH⊥OD的延长线,垂足为H.由题意得点C 和点D 的坐标分别为(-2,0)和(4,0).A (0,3),B (6,3),∴CD =6,DH =2,OD =4,AB =6,设M 点坐标为(0,t ),连接MB 、OB ,∴OM =t .∵S 四边形OMBD =S △OBD +S △OMB =12,∴12OD·BH +12OM·AB =12,即12×4×3+12t ×6=12,解得t =2;(3)解:不变.理由如下:如图所示,设运动时间为t 秒,OM =t ,ON =4-2t (0≤t≤2),过B 作BH ⊥OD 的延长线,垂足为H ,连接MB ,OB ,∵S ΔEMB −S ΔOEN =S 四边形OMBN ,S 四边形OMBN =S △ONB +S △OMB ,∴S ΔEMB −S ΔOEN =S △ONB +S △OMB=12ON·BH +12OM·AB=12×(4−2t )×3+12t ×6=6-3t+3t=6;∴SΔEMB−SΔOEN为定值6,故其值不会变化.1.(2022春·四川自贡·七年级四川省荣县中学校校考阶段练习)如图,在正方形网格中,横、纵坐标均为整数的点叫做格点,点A、B、C、O均在格点上,其中O为坐标原点,A(﹣3,3).(1)点C的坐标为 ;(2)将△ABC向右平移6个单位,向下平移1个单位,对应得到△A1B1C1,请在图中画出平移后的△A1B1C1,并求△A1B1C1的面积;(3)在x轴上有一点P,使得△PA1B1的面积等于△A1B1C1的面积,直接写出点P坐标.2.(2022春·广东韶关·七年级统考期中)如图,平面直角坐标系中,已知点A(−3,3),B(−5,1),C(−2,0),P(a,b)是ΔABC的边AC上任意一点,ΔABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b−2).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接AA1,AO,A1O,求ΔAOA1的面积.(4)连接BA1,若点Q在y轴上,且三角形QBA1的面积为8,请直接写出点Q的坐标.3.(2022春·湖南湘西·七年级统考阶段练习)如图,在平面直角坐标系中,A(-1,-2),B(-2,-4),C (-4,-1).(1)把△ABC向上平移2个单位长度,再向右平移1个单位长度后得到△A1B1C1,请画出△A1B1C1,并写出点A的对应点的坐标;(2)求△A1B1C1的面积;(3)点P在坐标轴上,且△A1B1P的面积是2,直接写出点P的坐标_____________________.4.(2022春·北京西城·九年级校考期中)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(﹣1,0).(1)在坐标系中画出△ABC并写出△ABC的面积为.(2)点P(a﹣4,b+2)是△ABC内任意一点.将△ABC平移至△A1B1C1的位置,点A,B,C,P的对应点分别是A1,B1,C1,P1.若点P1的坐标为(a,b).在坐标系中画出△A1B1C1.(3)若坐标轴上存在一点M,使△BCM的面积等于△ABC的面积,求点M的坐标.5.(2022秋·八年级课时练习)如图(1),在平面直角坐标系中,已知点A(m,0),B(n,0),且m,n满足(m+2)2+=0,将线段AB向右平移2个单位长度,再向上平移4个单位长度,得到线段CD,其中点C与点A对应,点D与点B对应,连接AC,BD.(1)求点A、B、C、D的坐标;(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE//BC.6.(2022秋·八年级单元测试)如图1,在平面直角坐标系中,点A,B的坐标分别是(−2,0),(4,0),现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.(1)点C的坐标为_________,点D的坐标为_________,四边形ABDC的面积为_________;(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点P是线段BD上一动点(B,D两点除外),试说明∠CPO与∠1+∠2的大小关系,并说明理由.7.(2023春·全国·八年级专题练习)在平面直角坐标系中,点A,B的坐标分别为(2,0),(−2,0),现将线段AB先向上平移3个单位,再向右平移1个单位,得到线段DC,连接AD,BC.(1)如图1,求点C,D的坐标及四边形ABCD的面积;(2)如图1,在y轴上是否存在点P,连接PA,PB,使S△PAB=S四边形ABCD?若存在这样的点,求出点P的坐标;若不存在,试说明理由;S四边形ABD?若存在这(3)如图2,点E为CD与y轴交点,在直线CD上是否存在点Q,连接QB,使S△QCB=14样的点,直接写出点Q的坐标;若不存在,试说明理由;8.(2022秋·八年级单元测试)规定:如果图形G′是由图形G经过平移所得,那么把图形G′称为图形G的“友好图形”,两个图形上对应点的距离称为图形G′与G的“友好距离”在平面直角坐标系xOy中,已知点A(3,0).(1)①如图1,若点A的“友好图形”点B(3,6),则点A与点B的“友好距离”是______;②若点A的“友好图形”点A′在y轴上,则点A与点A′的“友好距离”最小值为______;(2)若点A的“友好图形”点C在x轴上,点A与点C的“友好距离”是4,点D在y轴上,且三角形ACD 的面积为10,求点D的坐标;(3)如图3,若点E(0,6),直线AE的“友好图形”直线A′E′恰好过点F(0,-2),且点A的“友好图形”点A′在x轴上,求点A与点A′的“友好距离”.9.(2022秋·八年级单元测试)如图,在长方形ABCD中,AB=10cm,BC=6cm,E为DC的中点.(1)以A为原点(即O与A重合),以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则C的坐标为 ;(2)若(1)中长方形以每秒2cm的速度沿x轴正方向移动2秒后,得到长方形A1B1C1D1,则C1的坐标为 ,长方形A1BCD1的面积为 cm2;(3)若(1)中长方形以每秒2cm的速度沿x轴正方向移动,运动时间为t,用含t的式子直接表示出长方形A1BCD1的面积 (线段可以看成是面积为0的长方形);点E移动后对应点为F,直接写出t为何值时长方形A1BCD1的面积是三角形FBB1的3倍?10.(2023春·全国·八年级专题练习)如图,平面直角坐标系中,A(a,0),B(0,b),C(0,c)|2−b| =0,c=1(a−b).2(1)求△ABC的面积;(2)如图2,点A以每秒m个单位的速度向下运动至A′,与此同时,点Q从原点出发,以每秒2个单位的速度沿x轴向右运动至Q′,3秒后,A′、C、Q′在同一直线上,求m的值;(3)如图3,点D在线段AB上,将点D向右平移4个单位长度至E点,若△ACE的面积等于14,求点D坐标.11.(2022·全国·八年级假期作业)如图,在平面直角坐标系中,点A2,6,B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A′,B′,连接AA′交y轴于点C,BB′交x轴于点D.(1)线段A′B′可以由线段AB经过怎样的平移得到?并写出A′,B′的坐标;(2)求四边形AA′BB′的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A′DB′的数量关系,给出结论并说明理由.12.(2022春·福建厦门·七年级统考期末)在平面直角坐标系中,O为坐标原点,将三角形ABC进行平移,平移后点A,B,C的对应点分别是点D,E,F,点A(0,a),点B(0,b),点D a,12a,点E m−b,12a+4.(1)若a=1,求m的值;(2)若点C−a,14m+3,其中a>0. 直线CE交y轴于点M,且三角形BEM的面积为1,试探究AF和BF的数量关系,并说明理由.13.(2022春·内蒙古通辽·七年级统考期中)已知点A在平面直角坐标系中第一象限内,将线段AO平移至线段BC,其中点A与点B对应.(1)如图(1),若A(1,3),B(3,0),连接AB,AC,在坐标轴上存在一点D,使得S△AOD=2S△ABC,求点D 的坐标;(2)如图(2),若∠AOB=60°,点P为y轴上一动点(点P不与原点重合),请直接写出∠CPO与∠BCP 之间的数量关系(不用证明).14.(2023·全国·七年级专题练习)如图在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0).且a,b满足|a+3|+(a−2b+7)2=0,现同时将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A、B的对应点C、D,连接AC,BD,CA的延长线交y轴于点K.(1)点P是线段CK上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段CK上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠POB的数量关系,并证明你的结论.(2)连接AD,在坐标轴上是否存在点M,使△MAD的面积与△ACD的面积相等?若存在,直接写出点M 的坐标;若不存在,试说明理由.15.(2022春·吉林·七年级统考期中)如图,在平面直角坐标系中,点A,B的坐标分别为(−1,0),(3,0).现将线段AB向上平移2个单位,再向右平移1个单位,得到线段AB的对应线段CD,连接AC,BD.ABDC;(1)点C,D的坐标分别为_______,________,并求出四边形ABDC的面积S四边形(2)在y轴上存在一点P,连接PA,PB,且S△PAB =S四边形ABDC,求出满足条件的所有点P的坐标.(3)若点Q为线段BD上一点(不与B,D______(填“变”或“不变”).16.(2022春·福建福州·七年级福建省福州第十六中学校考期中)如图,在平面直角坐标系中,点A,B的坐标分别为(0,1),(0,﹣3),现将点A向右平移2个单位,再向下平移1个单位,得到点C,点D 在点C的下方,CD∥x轴,且CD的长度为4,连接AC,BD,CD.(1)填空:点D的坐标为 .(2)若P点在直线BD上运动,连接PC、PO.①若P在线段BD上(不与B,D重合),求S△CDP+S△BOP的取值范围.②若P在直线BD上运动,请在考卷的图中画出相应的示意图,并写出∠CPO、∠DCP、∠BOP的数量关系.17.(2022秋·江苏·八年级专题练习)如图,已知点A(a,0)、B(b,0)满足(3a+b)2+|b−3|=0.将线段AB 先向上平移2个单位,再向右平移1个单位后得到线段CD,并连接AC、BD.(1)请求出点A和点B的坐标;(2)点M从O点出发,以每秒1个单位的速度向上平移运动.设运动时间为t秒,问:是否存在这样的t,使得四边形OMDB的面积等于9?若存在,请求出t的值:若不存在,请说明理由;(3)在(2)的条件下,点M从O点出发的同时,点N从点B出发,以每秒2个单位的速度向左平移运动,设射线DN交y轴于点E.设运动时间为t秒,问:SΔEMD−SΔOEN的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.18.(2023春·全国·七年级专题练习)在平面直角坐标系中,A(a,0),B(1,b),a,b满足|a+b−1|+=0,连接AB交y轴于C.(1)直接写出a=______,b=______;(2)如图1,点P是y轴上一点,且三角形ABP的面积为12,求点P的坐标;(3)如图2,直线BD交x轴于D(4,0),将直线BD平移经过点A,交y轴于E,点Q(x,y)在直线AE上,且,求点Q横坐标x的取值范围.三角形ABQ的面积不超过三角形ABD面积的13。

【玩转压轴题】必考3:相似三角形的综合(原卷版)-浙教版2022年初三数学期末压轴题精选汇编

【玩转压轴题】必考3:相似三角形的综合(原卷版)-浙教版2022年初三数学期末压轴题精选汇编

【玩转压轴题】必考3:相似三角形的综合(原卷版)一、单选题1.如图,C 是线段AB 上的任一点,分别以,,AB AC BC 为直径在线段AB 同侧作半圆,则这三个半圆周围成的图形被阿基米德称为“鞋匠刀形”(即图中阴影部分).当“鞋匠刀形”的面积等于以BC 为直径的半圆的面积时,过C 作CD AB ⊥,交圆周于点D ,连结BD ,则CD 与BC 的比值为( )A .12B C .13D 2.如图,在△ABC 中,∠CAB =45°,以其三边为边向外作正方形,连接GC 并延长交BH 于点L ,过点C 作CK ⊥DE 于点K .若L 为BH 中点,则GL CK 的值为( )A .1B .98C D3.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .CD 4.如图,在ABC 中,AE 和BD 是高,45ABE ∠=︒,点F 是AB 的中点,BD 与FE AE、分别交于点,G H ,CAE ABD ∠=∠.有下列结论:①FD FE =;②2BH CD =;③22BD BH BE ⋅=;④43ABC BCDFS S =△四边形.其中正确的有( )A .①③B .②④C .①②③D .①②④5.如图,E ,F ,G ,H 分别是矩形ABCD 四条边上的点,连结EG ,HF 相交于点O ,//EG AD ,//FH AB ,矩形BFOE ∽矩形OGDH ,连结AC 交EG ,FH 于点P ,Q .下列一定能求出BPQ ∆面积的条件是( )A .矩形BFOE 和矩形OGDH 的面积之差B .矩形ABCD 与矩形BFOE 的面积之差C .矩形BFOE 和矩形FCGO 的面积之差D .矩形BFOE 和矩形EOHA 的面积之差6.如图,在ABC 中,90ACB ∠=︒,以ABC 的各边为边分别作正方形ACDE ,正方形BCFG 与正方形ABMN ,AN 与FG 相交于点H ,连结NF 并延长交AE 于点P ,且2NF FP =.记ABC 的面积为1S ,FNH △的面积为2S ,若1221S S -=,则BC 的长为( )A .6B .C .8D .97.如图,将边长为6的正六边形ABCDEF 沿HG 折叠,点B 恰好落在边AF 的中点上,延长B C ''交EF 于点M ,则C M '的长为( )A .1B .65C .56D .958.如图,等腰Rt ABC 中,90BAC AD BC ∠=︒⊥,于D ,ABC ∠的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM MC 、下列结论:①DF DN =;②ABE MBN ≌;③ CMN 是等腰三角形;④AE CN =,其中正确的是( )A .①②B .①④C .①③D .②③9.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在Rt ABC 中,()90,,BAC AC a AB b a b ∠=︒==<.如图所示作矩形HFPQ ,延长CB 交HF 于点G .若正方形BCDE 的面积等于矩形BEFG 面积的3倍,则ab的值为( )A B C D 35210.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E 在DC 边上,且2CE DE =,连接AE 交BD 于点G ,过点D 作DF AE ⊥,连接OF 并延长,交DC 于点P ,过点O 作⊥OQ OP 分别交AE ,AD 于点N ,H ,交BA 的延长线于点Q ,现给出下列结论:①45AFO ∠=︒;②2N P O D H H =⋅;③Q OAG ∠=∠;④OG DG =.其中正确的结论有( )A .①③B .②④C .①②③D .①②③④二、填空题11.如图,在矩形ABCD 中,6AB =,8AD =.连接BD ,DBC ∠的角平分线BE 交DC 于点E ,现把BCE 绕点B 逆时针旋转,记旋转后的BCE 为BC E ''△.当射线BE '和射线BC '都与线段AD 相交时,设交点分别为F ,G .若BFD △为等腰三角形,则线段DG 长为______.12.如图,点D 是等边ABC 边BC 上一点,将等边ABC 折叠,使点A 与点D 重合,折痕为EF (点E 在边AB 上).(1)当点D 为BC 的中点时,:AE EB =__; (2)当点D 为BC 的三等分点时,:AE EB =__.13.小明想设计一款如图1所示的喷水壶,于是他绘制了如图2所示的设计图,壶身的主视图呈矩形ABCD ,壶把手呈圆弧状,圆心O 落在AD 上,圆弧交CD 于点E .支撑架HF 所在直线恰好经过O .壶嘴GI 的端点I 恰好在AD 所在直线上.已知258cm,4cm,cm, 6.5cm 12AD DE AF HF FG =====,则半径AO 的长为________cm ,壶嘴GI 的长度为________cm .14.如图,AB 是半圆O 的直径.点C 在半径OA 上,过点C 做CD AB ⊥交半圆O 于点D .以,CD CA 为边分别向左、下作正方形,CDEF CAGH .过点B 作GH 的垂线与GH 的延长线交于点I ,M 为HI 的中点.记正方形,CDEF CAGH ,四边形BCHI 的面积分别为123,,S S S .(1)若:2:3AC BC =,则12S S 的值为_______;(2)若D ,O ,M 在同一条直线上,则123S S S +的值为______.15.四个全等的直角三角形如图摆放成一个风车的形状,形成正方形ABCD 和正方形IJKL .若BF 平分∠ABK ,AF :FK =5:3,风车周长为面积和是___.16.用一张正方形纸片折成一个“小蝌蚪”图案(如图1).如图2,正方形ABCD 的边长为2,等腰直角ACE 的斜边AE 过点D .点F 为CE 边上一点,连结AF 交CD 于点G ,将AEF 沿AF 对称得AE F ',AE '与BC 交于点H .当//FE CD '时,E FA '∠=______︒;当点G 为CD 的中点时,则CF 的长为______.17.如图,点A C 、分别是x 轴、y 轴正半轴上的点,矩形ABCO 的边,AB BC 分别交函数ky x=(0,0,x k k >≠为常数)的图象于点,P Q ,连接PQ . (1)若P 为AB 中点,则BQBC=___. (2)若把BPQ ∆沿PQ 翻折,点B 恰好落在x 轴上的点E ,且6,2OE EA ==,则k =___.18.如图,在ABCD 中,E 是BC 边上的中点,AP CD ⊥于点P ,将ABE △沿AE 翻折,点B 的对称点B '落在AP 上,延长EB '恰好经过点D ,若4AB =,则折痕AE 的长为________.19.如图,点A ,B 分别是反比例函数(0,0)a y a x x =>>和(0,0)by b x x=<<图象上的点,且//AB x 轴,点C 在x 轴的正半轴上,连接AC 交反比例函数(0,0)ay a x x=>>的图象于点D ,已知20BOD S =△,8COD S =△,2AD CD =,则-a b 的值为______.20.如图1是护眼台灯,该台灯的活动示意图如图2所示.灯柱6cm BC ,灯臂AC 绕着支点C 可以旋转,灯罩呈圆弧形(即弧AD 和弧EF ).在转动过程中,AD (EF )总是与桌面BH 平行.当AC BH ⊥时,51cm AB =.DM MH ⊥,测得42cm DM =(点M 在墙壁MH 上,且MH BH ⊥);当灯臂AC 转到CE 位置时,FN MH ⊥,测得15cm FN =,则点E 到桌面的距离为______cm .若此时点C ,F ,M 在同一条直线上,弧EF 的最低点到桌面BH 的距离为31cm ,则弧EF 所在圆的半径为_____cm (保留一位小数).三、解答题 21.特例感知(1)如图,已知在Rt ABC 中,90BAC ∠=︒,AB AC =,取BC 边上中点D ,连结AD ,点E 为AB 边上一点,连结DE ,作DF DE ⊥交AC 于点F ,求证BE AF =;探索发现(2)如图,已知在Rt ABC 中,90BAC ∠=︒,3AB AC ==,取BC 边上中点D ,连结AD ,点E 为BA 延长线上一点,1AE =,连结DE ,作DF DE ⊥交AC 延长线于点F ,求AF 的长;类比迁移(3)如图,已知在ABC 中,120BAC ∠=︒,4AB AC ==,取BC 边上中点D ,连结AD ,点E 为射线BA 上一点(不与点A 、点B 重合),连结DE ,将射线DE 绕点D 顺时针旋转30°交射线CA 于点F ,当4AE AF =时,求AF 的长.22.(证明体验)(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.(思考探究)(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.(拓展延伸)(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC上,EDC ABC ∠=∠.若5,2BC CD AD AE ===,求AC 的长. 23.(推理)如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌. (运用)(2)如图2,在(推理)条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长. (拓展)(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DEEC的值(用含k 的代数式表示).24.在Rt ABC 中,90ACB ∠=︒,点D 在直线AC 上,连结BD ,以BD 为边作等腰直角BDE (点E 在直线BD 右侧),连结CE .(1)如图1,若45A ∠=︒,且点D 在AC 边上,求证:ABD CBE ∽△△; (2)如图2,若045A ︒<∠<︒,且12BC =,5CD =,求CE 的长;(3)如图3,若点D 在AC 的延长线上,BD ,CE 相交于点F ,设CDF 的面积为1S ,BEF 的面积为2S ,BCF △的面积为3S ,则2123122BC S S S =-+,请说明理由.25.如图,四边形ABCD 是矩形,20AB =,10BC =,以CD 为一边向矩形外部作等腰直角CDG ,90G ∠=︒.点M 在线段AB 上,且AM a =,点P 沿折线AD DG -运动,点Q 沿折线BC CG -运动(P ,Q 与点G 不重合),在运动过程中终保持//PQ AB .设PQ 与AB 之间的距离为x ,四边形AMQP 的面积为y .(1)若12a =,回答下列问题:①当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x =______. ②求整个运动过程中,y 关于x 的函数解析式,并求出y 的最大值;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.26.如图1,在矩形ABCD 中,动点P 沿着边AB 从点A 运动到点B ,同时动点Q 沿着边BC ,CD 从点B 运动到点D .它们同时到达终点,若点Q 的运动路程x 与线段BP 的长,满足487y x =-+,BD 与PQ 交于点E . (1)求AB ,BC 的长.(2)如图2.当Q 在CD 上时,求BEDE. (3)将矩形沿着PQ 折叠,点B 的对应点为点F ,连结EF ,当EF 所在直线与BCD △的一边垂直时,求BP 的长.27.如图1,在ABC 中,90A ∠=︒,当点P 从点A 出发,沿着AB 方向匀速运动到点B 时,点Q 恰好从点B 出发,沿着BC 方向匀速运动到点C ,连结PQ ,记,AP x CQ y ==,已知554y x =-+.(1)求AB和BC的长.(2)当BPQ是以PQ为腰的等腰三角形时,求x的值.(3)如图2,直线l是线段PQ的垂直平分线.①若直线l过点B,交AC于点D,请判断四边形BQDP的形状,并说明理由;②A'是点A关于直线l的对称点,若点A'落在ABC的内部,请直接写出x的取值范围.28.如图,四边形ABCD为边长等于7的菱形,其中∠B=60°,点E在对角线AC上,且AE=1,点F在射线CB上运动,连接EF,作∠FEG=60°,交DC延长线于点G.(1)当点F与B点重合时,试判断△EFG的形状,并说明理由;(2)以点B为原点,BC所在的直线为x轴建立平面直角坐标系,当CF=10时,平面内是否存在一点M,使得以点M、E、F、G为顶点的四边形与菱形ABCD相似?若存在,求M的坐标,若不存在,说明理由;(3)记点F关于直线AB的轴对称点为点N,若点N落在∠EDC的内部(不含边界),求CF的取值范围.29.如图,在△ABC中,AC=BC=tan∠CAB=12,P为AC上一点,PD⊥AB交AB于点E,AD⊥AC交PD于点D,连结BD,CD,CD交AB于点Q.(1)若CD⊥BC,求证:△AED∽△QCB;(2)若AB平分∠CBD,求BQ的长;(3)连结PQ并延长交BD于点M.①当点P是AC的中点时,求tan∠BQM的值②当PM平行于四边形ADBC中的某一边时,求BMDM的值.30.如图,已知AB是⊙O的弦,OB=1,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.设∠B=α,∠ADC=β.(1)求∠BOD的度数(用含α,β的代数式表示);(2)若α=30°,当AC的长度为多少时,以点A、C、D为顶点的三角形与B、C、O 为顶点的三角形相似?请写出解答过程.(3)若α=β,连接AO,记△AOD、△AOC、△COB的面积分别为S1,S2,S3,如果S2是S1和S3的比例中项,求OC的长.。

浙江省中考数学真题压轴题分类汇编

浙江省中考数学真题压轴题分类汇编

浙江省中考数学真题压轴题分类汇编一、压轴题--四边形1、(衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。

点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF。

已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒。

(1)如图1,当t=3时,求DF的长;(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3)连结AD,当AD将△DEF分成的两部分面积之比为1:2时,求相应t的值。

2、(丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.二、压轴题--圆3、(•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.4、(•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.5、(•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.三、压轴题--方程6、(·台州)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

浙教版中考压轴题精选

浙教版中考压轴题精选

浙教版中考压轴题精选(一)1、如图、有一根直尺的短边长为6 cm,长边长为12 cm,还有一块锐角为45°的直角三角形纸板,它的斜边为12cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边放置在同一直线上,且D与B重合.将Rt△ABC沿AB方向平移(如图乙),设平移的长度为x cm(),直尺和三角形纸板的重叠部分(图中的阴影部分)的面积为S cm2(1)写出当时,S=;(2)当时,求S关于x的函数关系式.2、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).(1)设四边形PCQD的面积为y,求y与t的函数关系式;(2)t为何值时,四边形PQBA是梯形?3、已知抛物线与它的对称轴相交于点,与轴交于,与轴正半轴交于.(1)求这条抛物线的函数关系式;(2)设直线交轴于是线段上一动点(点异于),过作轴,交直线于,过作轴于,求当四边形的面积等于时,求点的坐标.4、已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1)填空:试用含的代数式分别表示点与的坐标,则;(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.6.如图13,二次函数的图像与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积=(1)求该二次函数的关系式;(2)在该二次函数的图像上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

2024杭州中考数学压轴题

2024杭州中考数学压轴题

中考数学试卷一、单项选择题(共12分)1.如图图形中是中心对称图形的为()A.B. C. D.2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=35.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。

A.B.C.D.6.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d二、填空题(共24分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。

8.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。

9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.三、解答题(共20分)10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。

(1)求证:△ADE∽△MAB;(2)求DE的长。

11.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。

16.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。

(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。

12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达多少?(结果保留根号)14.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。

浙江省初中数学压轴题精选

浙江省初中数学压轴题精选

CBA数学试卷(一)7.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠; ③直角三角形斜边上的中线等于斜边的一半。

④菱形的对角线互相垂直. 其中原命题与逆命题均为真命题的个数是( ) (A)4个 (B)3个 (C)2个 (D)1个8.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂 直平分线DE 交BC 的延长线于点E ,则CE 的长为( )(A)32 (B)76 (C)256(D)2 9.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()(A) 47(B)5 (C) 27 (D)2210.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )14.若一边长为40㎝的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为 ▲ ㎝.(铁丝粗细忽略不计) 15.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 ▲ cm 216.如图所示,在ABC Rt ∆中,︒=∠90C ,8,6==BC AC ,若以C 为圆心,R 为半径所得的圆与斜边AB 只有一个公共点,则R 的取值范围是: ▲ 。

22.(本小题满分10分)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:AD B EC图2A (M )E DC BDBA M )(第15题)(1)设分配给甲店A 型产品件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?23.(本小题满分10分)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (1)若折叠后使点B 与点A 重合,求点C 的坐标;(2)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y=,试写出y 关于x 的函数解析式,并确定y 的取值范围;(3)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.24.(本小题满分12分)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,.(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?二8.如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点A B D E ,(),在同一条直线上,将ABC △沿D E →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是A B CO x yBCAE 1 E 2 E 3D 4D 1D 2D 3(第10题图)A EC AB ADAO A(第16题图)F9.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x… 0 1 2 3 … y…5212…点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是A .1y ≥2yB .12y y >C .12y y <D .1y ≤2y10.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则A .n S =14n ABC S △B .n S =13n +ABC S △ C .n S =()121n +ABC S △D .n S =()211n +ABC S △16.如图,矩形纸片ABCD ,点E 是AB 上一点,且BE ∶EA =5∶3,EC =155BCE 沿折痕EC 向上翻折,若点B 恰好落在AD 边上,设这个点为F ,则(1)AB = ,BC = ;(2)若⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则⊙O 的面积= .yA P M22.(本小题满分10分)如图,以△AOD 的三边为边,在AD 的同侧作三个等边三角形 △AED 、△BOD 、△AOF ,请回答下列问题并说明理由: (1)四边形OBEF 是什么四边形?(2)当△AOD 满足什么条件时,四边形OBEF 是菱形?是矩形? (3)当△AOD 满足什么条件时,以O 、B 、E 、F 为顶点的四边形不存在?24.(本小题满分12分) 如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.(1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.OAFDEB(第22题图)(第10题)三7.Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a b A B +D.cos sin a b A B +10.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB14.如图所示,圆锥的母线长OA =8,底面的半径r =2,若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是 .15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =6,BC =8B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .16.如图,已知△OP 1A 1、△A 1P 2A 2、△A 2P 3A 3、……均为等腰直角三角形,直角顶点P 1、P 2、 P 3、……在函数4y x=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2010的横坐标为 .EAB ′CF B(第15题)(第14题) P 1OA 1A 2A 3P 3P 2yx510(第16题)24.(本小题满分12分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B 和D 2(4,)3. (1)求抛物线的解析式.(2)如果点P 由点A 出发沿AB 边以2cm /s 的速度向点B 运动,同 时点Q 由点B 出发沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动. 设S =PQ 2(cm 2)①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ②当S 取54时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形? 如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.四16.如图,AB 是半圆O 的直径,C 为半圆上一点,N 是线段BC 上一点(不与B ﹑C 重合),过N 作AB 的垂线交AB 于M ,交AC 的延长线于E ,过C 点作半圆O 的切线交EM 于F ,若NC ∶CF =3∶2,则 sinB=_______.(第24题)(第16题)EMNCBAF (第9题)23.(本题10分)如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是线段BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG (1) 连结GD ,求证△ADG ≌△ABE ; (2) 如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB=1,BC=2,E 是线段BC 上一动点(不含端点B,C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当E 由B 向C 运动时,∠FCN 的大小是否保持不变,若∠FCN 的大小不变,求tan ∠FCN 的值;若∠FCN 的大小发生改变,请举例说明.24.(本题12分)如图①,ABC Rt ∆中,︒=∠90B ︒=∠30CAB ,轴x AC ⊥.它的顶点A 的坐标为)0,10(,顶点B 的坐标为)35,5(,点P 从点A 出发,沿C B A →→的方向匀速运动,同时点Q 从点)2,0(D 出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒. (1)求BAO ∠的度数.(直接写出结果)(2)当点P 在AB 上运动时,OPQ ∆的面积S 与时间t (秒)之间的函数图象为抛物线的一部分(如图②),求点P 的运动速度.(3)求题(2)中面积S 与时间t 之间的函数关系式,及面积S 取最大值时点P 的坐标. (4)如果点Q P ,保持题(2)中的速度不变,当t 取何值时,PO=PQ ,请说明理由.(第24题)(2)E N M F G D A (1)G FDA (第23题)。

解直角三角形与几何综合(压轴题专项)—2023-2024学年九年级数学下册(浙教版)(解析版)

解直角三角形与几何综合(压轴题专项)—2023-2024学年九年级数学下册(浙教版)(解析版)

解直角三角形与几何综合【典例1】如图,在Rt△AEB中,∠AEB=90°,点C在线段BE的延长线上,过点C作CD∥AB,连接AD,再过点A作AF⊥CD于点F;(1)如图1,连接EF,若∠BAE=30°,∠D=45°,DF=6,AE=4,求线段EF的长;(2)如图2,在线段CE上取一点H,连接AH、DH,当AH平分∠BHD,∠ABH=∠DAH时,求证:DH=HC+ 2HE.(3)如图3,在(2)的条件下,连接ED,若AE=12,BE=4,当(ED+DF)取得最小值时,请直接写出线段AH的长.(1)过点E作EM⊥AF于M,利用勾股定理可得EM=√AE2−AM2=2√3,EF=√EM2+MF2=2√7;(2)连接AC,过A作AW⊥HD于,则有∠AWH=∠AWD=90°,可证Rt△AHE≌Rt△AHW(HL),则HE=HW,然后可得A、H、C、D四点共圆,则可证△AEC≌△AWD(AAS),进而问题可求证;(3)在线段EB上截取EG=EH,延长AF交BC的延长线于M,连接AG,AC,DM,可证得△AEG≌△AEH(SAS),,利用解直角三角形可得EM=36,再由勾股定理可得AM=△AGC≌△AHD(SAS),设∠BAE=α,则tanα=13√AE2+EM2=12√10,作点E关于DM的对称点E′,连接EE′,DE′,EE′交DM于P,则DE=DE′,由于ED+ DF=DE′+DF≥EF,故当且仅当E′、D、F三点共线时,ED+DF=EF为最小值,过点E′作E′N⊥BC于N,过点D作DK⊥CM于K,应用解直角三角形即可求得答案.(1)解:过点E作EM⊥AF于M,如图1,则∠AME=∠EMF=90°,∵AF⊥CD,CD∥AB,∴∠BAF=∠AFD=90°,∵∠BAE=30°,∴∠EAM=60°,∴∠AEM=30°,∵AE=4,AE=2,∴AM=12在Rt△AEM中,EM=√AE2−AM2=√42−22=2√3,在Rt△ADF中,∠D=45°,DF=6,∴AF=DF=6,∴MF=AF−AM=6−2=4,在Rt△EMF中,EF=√EM2+MF2=√(2√3)2+42=2√7,∴线段EF的长为2√7;(2)证明:连接AC,过A作AW⊥HD于W,如图2,则∠AWH=∠AWD=90°,∵∠AEB=90°,∴∠AEH=90°,∵AH平分∠BHD,AE⊥HB,AW⊥HD,∴AE=AW,在Rt△AHE和Rt△AHW中,{AH=AHAE=AW,∴Rt△AHE≌Rt△AHW(HL),∴HE=HW,∵CD∥AB,∴∠ABH+∠BCD=180°,∵∠ABH=∠DAH,∴∠DAH+∠BCD=180°,∵∠DAH与∠BCD在DH异侧,∴A、H、C、D四点共圆,∴∠ACH=∠ADW,∵AE=AW,∠AEC=∠AWD=90°,∴△AEC≌△AWD(AAS),∴EC=WD,∴DH=HW+WD=HE+EC=HE+HE+HC,即DH=HC+2HE;(3)解:如图3,在线段EB上截取EG=EH,延长AF交BC的延长线于M,连接AG,AC,DM,则CG=HC+2HE,由(2)得DH=HC+2HE,∴CG=DH,在△AEG和△AEH中,{EG=EH∠AEG=∠AEH=90°AE=AE,∴△AEG≌△AEH(SAS),∴AG=AH,∠AGC=∠AHE,∵AH平分∠BHD,∴∠AHE=∠AHD,∴∠AGC=∠AHD,∴△AGC≌△AHD(SAS),∴AC=AD,∵AF⊥CD,∴DF=CF,∴DM=CM,设∠BAE=α,则tanα=BEAE =412=13,∵∠BAE+∠MAE=∠AME+∠MAE=90°,∴∠AME=∠BAE=α,∴AEEM =tanM=13,∴EM=3AE=3×12=36,∴AM=√AE2+EM2=√122+362=12√10,如图4,作点E关于DM的对称点E,连接EE′,DE′,EE′交DM于P,则DE=DE′,∴ED+DF=DE′+DF≥E′F,当且仅当E′、D、F三点共线时,ED+DF=EF为最小值,过点E′作E′N⊥BC于N,过点D作DK⊥CM于K,则∠AMD=∠CE′E=∠CE′N=∠CDK=∠AME=α,设CF=DF=x,则FM=CFtanα=3x,∴CM=√CF2+FM2=√x2+(3x)2=√10x,∵sin∠DCK=DKCD =FMCM,即DK2x=√10x,∴DK=3√105x,∵cos∠DCK=CKCD =CFCM,即CK2x=√10x,∴CK=√105x,∴MK=CM−CK=√10x−√105x=4√105x,∴tan2α=DKMK =3√105x4√105x=34,∴PEPM =tan2α=34,设PE=3y,则PM=4y,∵PE2+PM2=EM2,∴(3y)2+(4y)2=362,∴y=365(负值舍去),∴PE=3×365=1085,PM=4×365=1445,∴EE′=2PE=2165,∵sin2α=ENEE′=PEEM,即EN2165=108536,∴EN=64825,∴MN=EM−EN=36−64825=25225,∴E′N=ENtan2α=6482534=86425,∴CN=E′N⋅tanα=86425×13=28825,∴CM=CN+MN=28825+25225=1085,∴FM=CM⋅cosα=1085×3√1010=162√1025,CF=13FM=54√1025,∴AF=AM−FM=12√10−162√1025=138√1025,在Rt△ADF中,AD=√AF2+DF2=(138√1025)+(54√1025)=12√615,∵∠DAH=∠ABH=∠MAE,∴∠DAH−∠MAH=∠MAE−∠MAH,即∠DAF=∠HAE,∴cos∠DAF=cos∠HAE,∴AFAD =AEAH,即138√102512√615=12AH,∴AH=12√61023.1.(2023·辽宁·中考真题)△ABC是等边三角形,点E是射线BC上的一点(不与点B,C重合),连接AE,在AE的左侧作等边三角形AED,将线段EC绕点E逆时针旋转120°,得到线段EF,连接BF.交DE于点M.(1)如图1,当点E为BC中点时,请直接写出线段DM与EM的数量关系;(2)如图2.当点E在线段BC的延长线上时,请判断(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当BC=6,CE=2时,请直接写出AM的长.【思路点拨】(1)可证得∠BAD=∠BAE=30°,进一步利用等腰三角形的三线合一得出结果;(2)连接BD、DF,可证明△BAD≌△CAE,从而∠ABD=∠ACE=120°,BD=CE,进而得出∠DBE=60°,从而得出∠DBE+∠BEF=60°+120°=180°,从而BD∥EF,结合BD=EF得出四边形BDFE是平行四边形,从而得出DM=EM;(3)分为两种情形∶当点E在BC的延长线上时,作AG⊥BC于G,可得出CG=3,AG=3√3,从而EG=CG+ CE=3+2=5,进而得出AE=2√13,进一步得出结果;当点E在BC上时,作AG⊥BC于G,可得出EG=1,AE=2√7,进一步得出结果.【解题过程】(1)解∶∵△ABC是等边三角形,点E是BC的中点,∠BAC,∴∠BAC=60°,∠BAE=12∴∠BAE=30°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAD=∠DAE−∠BAE=60°−30°=30°,∴∠DAE=∠BAE,∴DM=EM;(2)解:如图l,DM=EM仍然成立,理由如下∶连接BD、DF,∵△ABC和△ADE是等边三角形,∴∠ABC=∠BAC=∠DAE=∠ACB=60°,AB=AC,AD=AE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=180°−∠ACB=120°,BD=CE,∴∠DBE=∠ABD−∠ABC=120°−60°=60°,∴∠DBE+∠BEF=60°+120°=180°,∴BD∥EF,∵CE=EF,∴BD =EF ,∴四边形BDFE 是平行四边形,∴DM =EM ;(3)解:如图2,当点E 在BC 的延长线上时,作AG⟂BC 于G ,∵∠ACB =60°,∴CG =AC ⋅cos60°=12AC =3,AG =AC ⋅sin60°=√32AC =3√3,∴EG =CG +CE =3+2=5,∴AE =√AC 2+EC 2=√(3√3)2+52=2√13.由(2)知∶DM =EM ,∴AM ⊥DE ,∴∠AME =90°,∴∠AED =60°,∴AM =AE ⋅sin60°=2√13×√32=√39,如图3,当点E 在BC 上时,作AG ⊥BC 于G ,由上知∶AG =3√3,CG =3,∴EG =CG −CE =3−2=1,∴AE=√AG2+EG2=√(3√3)2+12=2√7,∴AM=2√7×√32=√21,综上所述∶AM=√39或√21.2.(22·23下·安徽·专题练习)在△ABC中,∠ACB=90°,ACBC=m,D是边BC上一点,将△ABD沿AD折叠得到△AED,连接BE.(1)特例发现:如图1,当m=1,AE落在直线AC上时.①求证:∠DAC=∠EBC;②填空:CDCE的值为;(2)类比探究:如图2,当m≠1,AE与边BC相交时,在AD上取一点G,使∠ACG=∠BCE,CG交AE于点H.探究CGCE的值(用含m的式子表示),并写出探究过程;(3)拓展运用:在(2)的条件下,当m=√22,D是BC的中点时,若EB⋅EH=6,求CG的长.【思路点拨】(1)①由折叠知,∠AFB=90°=∠ACB,再由等角的余角相等,即可得出结论;②由①知,∠DAC=∠EBC,再判断出AC=BC,进而用ASA判断出,△ACD≌△BCE,即可得出结论;(2)同(1)①的方法,即可得出结论;(3)先判断出DF是△BCE的中位线,得出DF∥CE,进而得出∠BEC=∠BFD=90°,∠AGC=∠ECG,∠GAH=∠CEA,再判断出AG=CE,设CG=x,则AG=√2x,BE=2x,得出AG=CE进而用AAS判断出△AGH≌△ECH,得出GH=12x,再用勾股定理求出AH=32x,即可得出结论.【解题过程】(1)如图1,延长AD交BE于F,由折叠知,∠AFB=90°=∠ACB,∴∠DAC+∠ADC=∠BDF+∠EBC=90°,∵∠ADC=∠BDF,∴∠DAC=∠EBC;②由①知,∠DAC=∠EBC,∵m=1,∴AC=BC,∵∠ACD=∠BCE,∴△ACD≌△BCE(ASA),∴CD=CE,=1,∴CDCE故答案为1.(2)如图2,延长AD交BE于F,由(1)①知,∠DAC=∠EBC,∵∠ACG=∠BCE,∴△ACG∽△BCE,∴CGCE =ACBC=m;(3)由折叠知,∠AFB=90°,BF=FE,∵点D是BC的中点,∴BD=CD,∴DF是△BCE的中位线,∴DF∥CE,∴∠BEC=∠BFD=90°,∠AGC=∠ECG,∠GAH=∠CEA,由(2)知,△ACG∽△BCE,∴∠AGC=∠BEC=90°,ACCD =AC12BC=2m=√2,∴CGAG =tan∠GAC=DCAC=1√2,设CG=x,则AG=√2x,BE=2x,∴AG=CE,∴△AGH≌△ECH(AAS),∴AH=EH,GH=CH,∴GH=12x,在Rt△AGH中,根据勾股定理得,AH=√AG2+GH2=32x,∵EB⋅EH=6,∴2x⋅32x=6,∴x=√2或x=−√2(舍),即CG=√2.3.(22·23·濮阳·一模)数学活动课上,老师组织数学小组的同学们以“正方形折叠”为主题开展数学活动.【动手实践】(1)如图(1),已知正方形纸片ABCD,数学小组将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠使AD与AM重合,折痕为AF,易知点E、M、F共线,则∠EAF=°,EF、BE、DF三条线段的关系为;【拓展应用】(2)解决下面问题:①如图(2)作FN⊥AE于点N,交AM于点P,求证:△ANP≌△FNE;②如图(3),数学小组在图(1)的基础上进行如下操作:将正方形纸片沿EF继续折叠,点C的对应点为点N,他们发现,当点E的位置不同时,点N的位置也不同,若点N恰好落在△AEF边上,AB=3,请直接写出此时BE的长度.【思路点拨】∠BAD=45°.由∠AME=(1)根据折叠的性质可得∠EAM=∠EAB,∠FAM=∠FAD,由此可得∠EAF=12∠B=90°,∠AMF=∠D=90°可得E、M、F三点共线.又由ME=BE,MF=DF可得EF=BE+DF.(2)①由∠ANF=90°,∠EAF=45°可得∠AFN=45°,于是可得AN=FN,由“同角的余角相等”可得∠EAM=∠NFE,最后根据角边角即可证明△ANP≌△FNE.②分两种情况:当点N落在AE上时,当点N落在AF上时,分别利用三角函数解直角三角形即可求得BE的长.【解题过程】(1)∵四边形ABCD是正方形,∴∠BAD=∠B=∠D=90°,AB=AD.∵△ABE沿AE折叠后得△AME,△ADF沿AF折叠后得△AMF,∴△AME≌△ABE,△AMF≌△ADF,∴∠EAM=∠EAB,∠FAM=∠FAD,∠BAD=45°,∴∠EAM+∠FAM=∠EAB+∠FAB=12即∠EAF=45°.∵∠AME=∠B=90°,∠AMF=∠D=90°,∴∠AME+∠AMF=180°.∴E、M、F三点共线.∵ME=BE,MF=DF,∴ME+MF=BE+DF,∴EF=BE+DF.故答案为:45,EF=BE+DF.(2)①∵FN⊥AE,∴∠ANF=∠FNE=90°.∵∠EAF=45°,∴∠AFN=45°,∴AN=FN.∵△AEM中,∠AME=90°,∴∠EAM+∠AEM=90°.∵△FNE中,∠FNE=90°,∴∠NFE+∠AEM=90°,∴∠EAM=∠NFE.在△ANP和△FNE中,{∠NAP=∠NFEAN=FN∠ANP=∠FNE,∴△ANP≌△FNE(ASA).②如图,当点N落在AE上时,∵四边形ABCD是正方形,∴∠C=∠B=∠D=∠BAD=90°.由折叠的性质可得∠AEB=∠AEM=∠CEF,∵∠AEB+∠AEM+∠CEF=180°,∴∠AEB=∠AEM=∠CEF=60°.∵AB=3,∴BE=ABtan∠AEB =ABtan60°=√3=√3;如图,当N落在AF上时,∵四边形ABCD是正方形,∴∠C=∠B=∠D=∠BAD=90°,由折叠的性质可得∠AFE=∠CFE=∠AFD,又∵∠AFE+∠CFE+∠AFD=180°,∴∠AFE=∠CFE=∠AFD=60°,∴DF=ADtan∠AFD =ADtan60°=3√3=√3,∴CF=CD−DF=3−√3,∴EC=CF⋅tan∠CFE=(3−√3)×√3=3√3−3,∴BE=BC−EC=3−(3√3−3)6−3√3,综上,BE的长为√3或6−3√3.4.(22·23下·泉州·模拟预测)已知:如图1,在矩形ABCD中,AB=4,AD=6,点P是AD的中点,点F是AB上的动点,连接FP并延长交CD的延长线于点M,过点P作PE⊥FM,交直线BC于点E,连接EF.(1)求tan∠PEF的值;(2)如图2,连接EM,点Q是EM的中点.①当∠AFP=2∠BEF时,求PQ的长;②点F从A点运动到B点的过程中,求点Q经过的路径长.【思路点拨】(1)作PG⊥BC于点G,由四边形ABCD是矩形,点P是AD的中点,得∠A=∠B=∠PGB=90°,PA=PD=1 2AD=3,可证明△APF∽△GPE,则tan∠PEF=PFPE=PAPG=34;(2)①作EF的垂直平分线KN交BE于点N,连接FN,则∠BEF=∠NFE,所以∠BNF=2∠BEF,则∠AFP=∠BNF,可证明∠NFP=∠EPM=90°,则FN∥PE,所以∠BEF=∠NFE=∠PEF,则BF=PF,由勾股定理得32+(4−PF)2=PF2,求得PF=258,则FE=12524,再证明PF=PM,则PQ=12FE=12548;②作PG⊥BC于点G,连接AG、PC,取PC的中点I,连接IQ,可证明PC∥AG,则∠DPI=∠PAG,再证明△PFE∽△PAG,得∠PFE=∠PAG,可推导出∠DPI=∠MPQ,则∠IPQ=∠DPM=∠APF,再证明△PIQ∽△PAF,则∠PIQ=∠PAF=90°,可知点Q在线段PC的垂直平分线上运动,延长IQ、PD交于点L,当点F从点A运动到点B,则点Q从点I运动到点L,由ILPI =tan∠DPI=tan∠PAG=PGPA=43,求得IL=43PI=103,则点Q经过的路径长是103.【解题过程】(1)解:作PG⊥BC于点G∵四边形ABCD是矩形,AB=4,AD=6,点P是AD的中点,∴∠A=∠B=∠PGB=90°,PA=PD=12AD=3,∴四边形ABGP是矩形,∴PG=AB=4,∠APG=90°,∵PE⊥FM,交直线BC于点E,∴∠FPE=90°,∴∠APF=∠GPE=90°−∠FPE,∵∠A=∠PGE=90°,∴△APF∽△GPE,∴tan∠PEF=PFPE =PAPG=34,∴tan∠PEF的值是34;(2)解:①作EF的垂直平分线KN交BE于点N,连接FN,则EN=FN,如图2所示:∴∠BEF=∠NFE,∴∠BNF=∠BEF+∠NFE=2∠BEF,∵∠AFP=2∠BEF,∴∠AFP=∠BNF,∴∠AFP+∠BFN=∠BNF+∠BFN=90°,∴∠NFP=∠EPM=90°,∴FN∥PE,∴∠BEF=∠NFE=∠PEF,∵BF⊥EB,PF⊥EP,∴BF=PF,∵AP2+AF2=PF2,AF=4−BF=4−PF,∴32+(4−PF)2=PF2,解得PF=258,设PF=3m,则PE=4m,由3m=258得m=2524,∴FE=√PF2+PE2=√(3m)2+(4m)2=5m=5×2524=12524,∵AF∥DM,∴PFPM =PAPD=1,∴PF=PM,∵点P是FM的中点,点Q是EM的中点,∴PQ=12FE=12×12524=12548,∴PQ的长是12548;②作PG⊥BC于点G,连接AG、PC,取PC的中点I,连接IQ,如图3所示:∵BC=AD=6,GB=PA=3,∴CG=BC−GB=6−3=3=∵CG∥AP,∴四边形APCG是平行四边形,∴PC∥AG,∴∠DPI=∠PAG,∵PFPE =PAPG,∴PFPA =PEPG,∴△PFE∽△PAG,∴∠PFE=∠PAG,∴∠DPI=∠PFE,∵∠MPQ=∠PFE,∴∠DPI=∠MPQ,∴∠DPI−∠DPQ=∠MPQ−∠DPQ,∴∠IPQ=∠DPM=∠APF,∵PC=AG=√PA2+PG2=√32+42=5,∴PI=12PC=12×5=52,∴PIPA =523=56,∵FEPF =53,FE=2PQ,∴2PQPF =53,∴PQPF =56=PIPA,∴△PIQ∽△PAF,∴∠PIQ=∠PAF=90°,∴点Q在线段PC的垂直平分线点上运动,延长IQ、PD交于点L,当点F从点A运动到点B,则点Q从点I运动到点L,∵ILPI =tan∠DPI=tan∠PAG=PGPA=43,∴IL=43PI=43×52=103,∴点Q经过的路径长是103.5.(2023·江苏镇江·中考真题)【发现】如图1,有一张三角形纸片ABC,小宏做如下操作:(1)取AB,AC的中点D,E,在边BC上作MN=DE;(2)连接EM,分别过点D,N作DG⊥EM,NH⊥EM,垂足为G,H;(3)将四边形BDGM剪下,绕点D旋转180°至四边形ADPQ的位置,将四边形CEHN剪下,绕点E旋转180°至四边形AEST的位置;(4)延长PQ ,ST 交于点F .小宏发现并证明了以下几个结论是正确的: ①点Q ,A ,T 在一条直线上; ②四边形FPGS 是矩形; ③△FQT≌△HMN ;④四边形FPGS 与△ABC 的面积相等. 【任务1】请你对结论①进行证明.【任务2】如图2,在四边形ABCD 中,AD∥BC ,P ,Q 分别是AB ,CD 的中点,连接PQ .求证:PQ =12(AD +BC ). 【任务3】如图3,有一张四边形纸ABCD ,AD∥BC ,AD =2,BC =8,CD =9,sin∠DCB =45,小丽分别取AB ,CD 的中点P ,Q ,在边BC 上作MN =PQ ,连接MQ ,她仿照小宏的操作,将四边形ABCD 分割、拼成了矩形.若她拼成的矩形恰好是正方形,求BM 的长. 【思路点拨】(1)由旋转的性质得对应角相等,即∠ABC =∠QAD ,∠ACB =∠TAE ,由三角形内角和定理得∠ABC +∠BAC +∠ACB =180°,从而得∠QAD +∠BAC +∠TAE =180°,即Q ,A ,T 三点共线;(2)梯形中位线的证明问题常转化为三角形的中位线问题解决,连接AQ 并延长,交BC 的延长线于点E ,证明△ADQ≌△ECQ ,可得AQ =EQ ,AD =CE ,由三角形中位线定理得PQ =12BE =12(AD +BC );(3)过点D 作DR ⊥BC 于点R ,由DC =9,sin∠DCB =45得DR =365,从而得S 梯形ABCD =12×(2+8)×365=36,由【发现】得S 正方形GEST =S 梯形ABCD ,则GE =6,PE =3,由【任务2】的结论得PQ =5,由勾股定理得EQ =4.过点Q 作QH ⊥BC ,垂足为H .由CQ=92及sin∠DCB =45得QH =185,从而得CH =2710,证明△PEQ∽△QHM ,得HM =245,从而得BM =BC −HM −CH =12.【解题过程】 [任务1]证法1:由旋转得,∠QAD =∠ABC ,∠TAE =∠ACB . 在△ABC 中,∠ABC +∠BAC +∠ACB =180°, ∴∠QAD +∠BAC +∠TAE =180°, ∴点Q ,A ,T 在一条直线上.证法2:由旋转得,∠QAD =∠ABC ,∠TAE =∠ACB .∴AQ∥BC,AT∥BC.∴点Q,A,T在一条直线上.[任务2]证明:如图1,连接AQ并延长,交BC的延长线于点E.∵AD∥BC,∴∠DAQ=∠E.∵Q是CD的中点,∴DQ=CQ.在△ADQ和△ECQ中,{∠DAQ=∠E,∠AQD=∠EQC, DQ=CQ,∴△ADQ≌△ECQ(AAS).∴AQ=EQ,AD=CE.又∵P是AB的中点,∴AP=BP,∴PQ是△ABE的中位线,∴PQ=12BE=12(CE+BC),∴PQ=12(AD+BC).[任务3]的方法画出示意图如图2所示.由【任务2】可得PQ ∥BC ,PQ =12(AD +BC )=12×(2+8)=5. 过点D 作DR ⊥BC ,垂足为R . 在Rt △DCR 中,sin∠DCB =DR CD ,∴DR =CD ⋅sin∠DCB =9×45=365.∴S 正方形GEST =S 梯形ABCD =12×(2+8)×365=36,∴GE =6,PE =3.在Rt △PEQ 中,由勾股定理得EQ =√PQ 2−PE 2= √52−32=4. 过点Q 作QH ⊥BC ,垂足为H . ∵Q 是CD 的中点, ∴CQ =12CD =12×9=92.在Rt △QHC 中,sin∠DCB =QH CQ,∴QH =CQ ⋅sin∠DCB =92×45=185.又由勾股定理得CH =√CQ 2−QH 2=√(92)2−(185)2=2710.由PQ ∥BC ,得∠PQE =∠QMH . 又∵∠PEQ =∠QHM =90°, ∴△PEQ∽△QHM . ∴PE QH =EQ HM ,即3185=4HM ,∴HM =245.∴BM =BC −HM −CH =8−245−2710=12.6.(23·24九年级上·江苏无锡·阶段练习)【基本图形】(1)如图1,在矩形ABCD 中,CE ⊥BD 于点H ,交AD于点E.求证:CEBD =CDBC;【类比探究】(2)如图2,在四边形ABCD中,∠A=∠B=90°,AD=4,BC=9,CD=7.E是边AB上的一动点,过点C作CG⊥ED,交ED的延长线于点G,交AD的延长线于点F.试探究CFDE是否为定值?若是,请求出CFDE的值;若不是,请说明理由;【拓展延伸】(3)如图3,在Rt△ABD中,∠BAD=90°,将△ABD沿BD翻折得到△CBD,点E,F分别在边AB,AD上,连接CF,DE.若∠AED=∠AFC,且CFDE =35,则ADAB的值为______(直接写出结果).【思路点拨】(1)证明△CED∽△BDC,利用相似三角形的性质即可证明CEBD =CDBC;(2)过点C作CH⊥AF交AF延长线于点H,首先证明四边形ABCH为矩形,易得AB=CH,BC=AH,再证明△DEA∽△CFH,由相似三角形的性质可得CFDE =CHAD,然好由勾股定理解得CH=2√6,即可证明CFDE=CHAD=√62,即可获得答案;(3)过点C作CG⊥AD于点G,交BD于点H,作HM⊥CD于点M,证明CG∥AB,易得∠ABD=∠GHD,再证明△AED∽△GFC,由相似三角形的性质可得CFDE =CGAD=35,由折叠的性质可得AD=CD,∠ADB=∠CDB,设GC=3x,则AD=CD=5x,由勾股定理可得DG=√CD2−CG2=4x,然后由角平分线的性质定理可得HG=HM,结合S△HDG+S△CHD=S△CDG,可求得HG=4x3,然后可推导tan∠ABD=tan∠DHG=DGHG=3,即可获得ADAB得值.【解题过程】解:(1)∵四边形ABCD为矩形,∴∠ADC=∠DCB=90°,∵CE⊥BD,∴∠DBC+∠BCH=∠BCH+∠ECD=90°,∴∠DBC=∠ECD,∴△CED∽△BDC,∴CE BD =CDBC;(2)CFDE是否为定值,如下图,过点C作CH⊥AF交AF延长线于点H,∴∠A=∠B=∠H=90°,∴四边形ABCH为矩形,∴AB=CH,BC=AH,∵∠GFD=∠HFC,∠GDF=∠ADE,又∵∠GFD+∠GDF=∠HFC+∠HCF,∴∠ADE=∠HCF,∵∠A=∠H,∴△DEA∽△CFH,∴CF DE =CHAD,∵BC=9,CD=7,AD=4,∴DH=AH−AD=BC−AD=5,∴CH=√CD2−DH2=2√6,∴CF DE =CHAD=2√64=√62,∴CF DE 为定值√62;(3)如下图,过点C作CG⊥AD于点G,交BD于点H,作HM⊥CD于点M,∴∠CGF=∠A=90°,∴CG∥AB,∴∠ABD=∠GHD,∵∠AED=∠AFC,∠CGF=∠A,∴△AED∽△GFC,∴CF DE =CGAD=35,∵将△ABD沿BD翻折得到△CBD,∴AD=CD,∠ADB=∠CDB,设GC=3x,则AD=CD=5x,∴DG=√CD2−CG2=4x,∵HG⊥AD,HM⊥CD,∠ADB=∠CDB,∴HG=HM,∵S△HDG+S△CHD=S△CDG,即12×4x×HG+12×5x×HM=12×3x×4x,∴HG=4x3,∴tan∠ABD=tan∠DHG=DGHG =4x43x=3,∴ADAB=3.7.(21·22九年级下·辽宁盘锦·期中)如图,在矩形ABCD中,AB=3,BC=5,BE平分∠ABC交AD于点E.连接CE,点F是BE上一动点,过点F作FG∥CE交BC于点G.将△BFG绕点B旋转得到△BF′G′,(1)如图1,连接CG′,EF′,求证:△BEF′∽△BCG′;(2)当点G′恰好落在直线AE上时,若BF=3,求EG′的值;(3)如图3,连接GG′,当GG′与BE交于点F时,猜想FG与FG′的数量关系,并证明.【思路点拨】(1)平行得到△BFG∽△BEC,得到BFBE =BGBC,旋转得到BF=BF′,BG=BG′,∠GBF=∠G′BF′,进而得到BF′BE =BG′BC,∠FBF′=∠GBG′,即可得证;(2)分点G′在线段AE和在线段EA的延长线上,两种情况进行讨论求解;(3)过点F作FH⊥BG于点H,过点B作BP⊥GG′于点P,易得BH=FH,根据矩形的性质,平行线的性质,得到∠FGB=∠ECB=∠CED,进而得到tan∠FGB=tan∠CED=CDDE =32,cos∠FGB=cos∠CED=EDCE=2√1313,推出tan∠FGB=FHGH =32,cos∠FGB=PGBG=2√1313,设FH=3a,HG=2a,分别求出FG,FG′,即可得解.【解题过程】(1)证明:∵FG∥CE,∴△BFG∽△BEC,∴BF BE =BGBC,∵将△BFG绕点B旋转得到△BF′G′,∴BF=BF′,BG=BG′,∠GBF=∠G′BF′,∴BF′BE =BG′BC,∠FBF′=∠GBG′,∴BF′BG′=BEBC,∴△BEF′∽△BCG′;(2)解:∵矩形ABCD中,AB=3,BC=5,∴AD∥BC,∠A=∠ABC=90°,∴∠AEB=∠EBC,∵BE 平分∠ABC , ∴∠ABE =∠EBC =45°, ∴∠ABE =∠AEB =45°, ∴AE =AB =3,BE =3√2, 由(1)知:BFBE =BGBC ,即:3√2=BG 5,∴BG =5√22, ∴BG ′=BG =5√22, ①当点G ′在线段AE 上时,在Rt △BAG ′中,AG ′=√G ′B 2−AB 2=√142, ∴EG ′=AE −AG ′=3−√142; ②当点G ′在线段EA 的延长线上时,在Rt △BAG ′中,AG ′=√G ′B 2−AB 2=√142, ∴EG ′=AE +AG ′=3+√142;综上:EG ′=3−√142或3+√142; (3)FGFG ′=137;证明如下:过点F 作FH ⊥BG 于点H ,过点B 作BP ⊥GG ′于点P ,由(2)知,∠FBC =45°,AE =3, ∴BH =FH , ∵矩形ABCD ,∴AD ∥BC,AD =BC =5,CD =AB =3,∠D =90°, ∴DE =5−3=2,∠CED =∠ECB ,∴CE=√DE2+CD2=√13,∵FG∥CE,∴∠FGB=∠ECB=∠CED,∴tan∠FGB=tan∠CED=CDDE =32,cos∠FGB=cos∠CED=EDCE=2√1313,∴tan∠FGB=FHGH =32,cos∠FGB=PGBG=2√1313,设FH=3a,HG=2a,则:FG=√FH2+HG2=√13a,BH=FH=3a,∴BG=BH+HG=5a,∴PG=10√1313a,∵旋转,∴BG=BG′,∴GG′=2PG=20√1313a,∴FG′=GG′−FG=7√1313a,∴FG FG′=√13a7√13a13=137.8.(21·22下·沧州·二模)如图1,在一平面内,线段AB=20,M,N是线段AB上两点,且AM=BN=2,点C从点M开始向终点N AC,BC为边在线段AB同侧作等边△ACD和等边△BCE,设AC=x.(1)直接写出CD和BE位置关系:______;(2)如图2,连接AE,BD,求证:AE=BD;(3)如图3,点G,点H分别是CD,BE的中点,①求当x为何值时,线段GH取得最小值?最小值是多少?②当线段GH取得最小值此时,求△ACE的面积;(4)如图4,设DE的中点为P,则点P移动路径的长为______.【思路点拨】(1)根据平行线的判定即可;(2)证明△ACE≌△DCB(SAS)即可;(3)①连接AG并延长交直线BE于F,连接CH、CF,先证明四边形CGFH是矩形,得FC=GH,当FC⊥AB 时GH最小即可,②过E作EK⊥AB于K,∠ECB=60°,再根据三角函数及三角形的面积公式即可;(4)以点A为原点,直线AB为x轴,过点A垂直于直线AB的直线为y轴,建立平面直角坐标系,过点D作DG⊥AC于点G,过点E作EH⊥AC于点H,再表示出点P的坐标即可.【解题过程】(1)解:在等边△ACD和等边△BCE中,∴∠ACD=∠B=60°,∴CD∥BE.故答案为:平行.(2)解:∵△ACD和△BCE是等边三角形,∴AC=CD,CE=CB,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即:∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD;(3)解:①连接AG并延长交直线BE于F,连接CH、CF,∵△ACD和△BCE是等边三角形,∴∠ACD=∠B=60°,∴CD∥BE,∴∠DCH=∠CHB,∵点G,点H分别是CD,BE的中点,∴∠AGC=∠CHE=∠CHB=90°,∠BAF=30°∴∠CGF=∠AGC=∠DCH=90°,∴∠CGF=∠CHE=∠DCH=90°,∴四边形CGFH是矩形,∴FC=GH,∴当FC⊥AB时GH最小,在△ABF中,AF=ABsin60°=在△AFC中,AC=AFcos30°=15,FC=AF⋅sin30°=5√3,∵2≤AC≤18,∴当x=15时,线段GH取得最小值,最小值是5√3;②过E作EK⊥AB于K,∠ECB=60°,在△CEK中,∠ECB=60°,CB=AB−AC=5,EK=CE⋅sin60°=5√3,2∴S △ACE =12⋅AC ⋅EK =754√3;(4)解:如图,以点A 为原点,直线AB 为x 轴,过点A 垂直于直线AB 的直线为y 轴,建立平面直角坐标系,过点D 作DG ⊥AC 于点G ,过点E 作EH ⊥AC 于点H ,则M(2,0),B(20,0),N(18,0),C(x,0), AC =x,BC =20−x ,∵△ACD,△BCE 均为等边三角形,∴∠DAC =∠ECH =60°,AG =12AC =x2,CH =12BC =20−x 2,∴AH =AC +CH =x +20−x 2=x2+10,∴DG =OG ⋅tan60°=x 2×√3=√3x2,EH =CH ⋅tan60°=(10−x2)×√3=−√3x2+10√3,∴D(x 2,√3x 2),E(x2+10,−√3x 2+10√3),则DE 的中点为P 的坐标为P(x2+5,5√3)(2≤x ≤18), ∵P 的纵坐标为定值,即点P 在平行于x 轴的直线上运动, x =2时,P 1(6,5√3), x =18时,P 2(14,5√3),点P 移动路径的长为P 1P 2=14−6=8, 故答案为:8.9.(23·24九年级上·吉林长春·阶段练习)如图①,在▱ABCD 中,∠A =60°,AB =4,AD =6,点E 在边BC 上,且BE =2,动点P 从点E 出发,沿折线EB −BA −AD 以每秒2个单位长度的速度运动.作∠PEQ =60°,EQ 交边AD 或边DC 于点Q ,连接PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(t >0)(1)当点P和点B重合时,线段PQ的长为______;(2)当点Q和点D重合时,求tan∠PQE.(3)如图②,当点Q在边DC上运动时,证明:PD=CQ.(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和▱ABCD重叠部分图形为轴对称四边形时,直接写出t的值.【思路点拨】(1)首先证明四边形ABEQ是平行四边形,取QE中点M,连接BM,则△AQP是直角三角形,利用勾股定理解题即可;(2),过点D作DN⊥BC于点N,在Rt△QNC中,CN=2,EN=2,在Rt△QCN中,利用勾股定理求出QN= 2√3,然后根据tan∠PQE=tan∠QEC=DN解题即可;EN(3)连接DE,过点D作DG⊥BC于点G,利用ASA证明△PED≌△QEC解题即可;(4)当Q点位于CD中点时.四边形EPFQ与ABCD重叠部分四边形为轴对称四边形,根据题意求出t的值.【解题过程】(1))解: ∵四边形ABCD是平行四边形,∴AQ∥BE,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,又∵∠PEQ=60°,∴∠ABE+∠PEQ=180°,∴AB∥QE,∴四边形ABEQ是平行四边形.∴QE=AB=4,AQ=BE=2,取QE中点M,连接BM,∴QM=ME=2,又∵∠PEQ=60°,∴△BME是等边三角形,∴QM=BM=ME,∴∠MBE=60°,∴∠MQP=∠QPM=30°,∴∠QPE=90°,∵AQ∥BE,∴∠AQP=90°,∴△AQP是直角三角形,∴在Rt△AQP中QP=√AB²−AQ²=√42−22=2√3,∴当P点和B点重合时,PQ的长为2故答案为:2√3;(2))解:∴四边形ABCD是平行四边形. ∴AD∥BC,∠A=∠C=60°∴∠PQE=∠QEC∵BC=AD=6,BE=2.∴CE=4如图2,过点D作DN⊥BC于点N,在Rt△QNC中,∠QNC=90°,∠C=60°∴∠NQC=30°∴CN=12CD=12×4=2,∴EN=EC−CN=4−2=2∴在Rt△QCN中,∴QN=√CQ²−CN²=√42−22=2√3,∴tan∠PQE=tan∠QEC=DNEN =2√32=√3,∴当Q点和D点重合时,tan∠PQE=√3;(3)证明:连接DE,过点D作DG⊥BC于点G,如图3由(2)知EC=CD=4,∠C=60°,∴△CDE是等边三角形∴DE=EC=CD=4又∵四边形ABCD是平行四边形.∴∠ADC=120°又∵∠PEQ=60°,∠DEC=∠C=∠EDC=60°,∴∠PED+∠DEQ=∠QEC+∠DEQ,∴∠PDE=∠QCE=60°,∠PED=∠QEC,∴△PED≌△QEC(ASA),∴PD=QC,(4)解:由题意得,当Q点位于CD中点时.四边形EPFQ与ABCD重叠部分四边形为轴对称四边形.理由如下:如图4,连接DE,由(3)知△CDE是等边三角形,∵Q点为CD的中点,∴QD=QC=1CD=22∴QE⊥CD,∴∠CQE=90°,又∵∠C=60°∴∠CEQ=30°∴∠PEQ=60°∴∠PEC=90°∴PE⊥BC,又∵AD∥BC,∴PE⊥AD∴DE=4,PE=2√3,PD=2,∴PD=QD,∴Rt△PDE≌Pt△QDE(HL).∴四边形EPFQ与ABCD的重叠部分为EPDQ为轴对称四边形,∴P点的运动轨迹为EB+BA+AP=2+4+4=10,∵P点的速度为2个单位长度每秒,∴2t=10∴t=5∴t的值为5.10.(21·22·武汉·模拟预测)问题背景:如图(1),在四边形ABCD中,P是BC上一点,∠ABC=∠BCD=∠APD,求证:△ABP∽△PCD;尝试运用:如图(2),D,E,F三点分别在等边△ABC边BC,AB,AC上,∠ABC=∠EDF,BD=CD.已知BC=4,设EF=x,△DEF的面积为y,求y关于x的函数关系式(不求自变量x的取值范围);拓展创新:如图(3),D是等边△ABC边BC上一点,连接AD,E是AD上一点,CD=2BD,∠BEC=120°,请用一个等式直接写出BE与CE的数量关系.【思路点拨】问题背景:如图(1),根据三角形相似的判定定理:两角对应相等的两个三角形相似证明即可;尝试运用:过点D分别作DG⊥AB,DH⊥AC,垂足分别为G,H,如图所示,D,E,F三点分别在等边ΔABC边BC,AB,AC上,∠ABC=∠EDF,BD=CD.已知BC=4,设EF=x,ΔDEF的面积为y,根据相似三角形判定与性质,再结合解直角三角形即可得到答案;拓展创新:将ΔBCE绕点C顺时针旋转60°,作DF∥CE,如图所示,可得DF∥CE∥AE′,证得△BDF∽△BCE,设BE=m,EC=x,可得EF的长,由△DFE∽△AE′E,利用相似三角形的性质可得结果.【解题过程】问题背景:证明:如图所示:∵∠ABC=∠APD,∴∠BAP+∠BPA=∠CPD+∠BPA,∴∠BAP=∠CPD,又∵∠ABP=∠PCD,∴△ABP∽△PCD;尝试运用:解:过点D分别作DG⊥AB,DH⊥AC,垂足分别为G,H,如图所示:∵△ABC是等边三角形,∠ABC=∠EDF,∴∠ABC=∠EDF=∠C=60°,由(1)知△BDE∽△CFD,∴BECD =DEFD,∵BD=CD,∴BEBD =DEFD,又∵∠ABC=∠EDF,∴△BDE∽△DFE,∴∠BED=∠DEF,∴DG=DH,在Rt△BDG中,∠ABC=60°,BD=2,则sinB=DGBD =DG2,即DG=2×√32=√3,∴DH=√3,∴y=√32x;拓展创新:解:CE=√2BE.将△BCE绕点C顺时针旋转60°,作DF∥CE,如图所示:∵将△BCE绕点C顺时针旋转60°得到△ACE′,∴BE=AE′,∠AE′C=120°,CE=CE′,∵DF∥CE,∠BEC=120°,∴∠CEE′=60°,∴△CEE′为等边三角形,∴∠CE′E=60°,EE′=CE,∴∠AE′B=60°,∴CE∥AE′,∵DF∥CE,∴DF∥AE′,∴△BDF∽△BCE,∴BFBE =DFCE=BDBC=13,设BE=m,∴BF=13m,EF=23m,设CE=x,∴DF=x3,∵△DFE∽△AE′E,∴EFEE′=DFAE′,∴23mx=13xm,∴x2=2m2,∵x>0,m>0,∴x=√2m,∴EC=√2BE.11.(22·23·信阳·三模)综合与实践【问题情境】在△ABC中,AB=AC,∠BAC=α,点D为BC边上一动点(不与B,C重合),连接AD,以AD为始边顺时针作∠ADE=β(α+β=180°),DF平分∠ADE.【初步探究】(1)如图1,DE与AC的延长线交于点E,若α=60°,β=120°,CD=2BD,则BDCF的值为_____,∠CDF与∠E的数量关系是_________.【类比探究】(2)如图2,DE与AC的延长线交于点E,若α=β=90°,CD=2BD,求出BDCF的值及∠CDF与∠E的数量关系.【拓展应用】(3)如图3,DE与AC交于点E,α=β=90°,∠CAD=15°,AB=6√2,将△ADF绕点在平面内自由旋转,当B,A,F三点共线时,直接写出AFBD的值.【思路点拨】(1)可证得△ABD∽△DCF,从而BDCF =ABCD,进而得出BDCF=32,由∠BAD+∠DAE=60°可得出∠CDF=∠E;(2)可证得△ABD∽△DCF,从而得出BDCF =ABCD,进而得出BDCF=3√24,根据∠BAD+∠DAE=90°可推出∠CDF=∠E;(3)作AH⊥BC于H,作AR⊥DF,交DF的延长线于R,解直角三角形ABH求得AH=6,解Rt△ADH求得AD的值,解Rt△ADR求得AR和BR的值,解Rt△ARF求得AF和RF,进而求得AF,当F在BA的延长线上时,解Rt△DFX求得FX和DX的值,解Rt△ADX求得BD,进一步得出结果;当F在AB上时,作DV⊥AB于V,同样的方法得出结果.【解题过程】解:(1)∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=120°,∵∠ADF=12∠ADE=60°,∴∠DB+∠CDE=120°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴BDCF =ABCD,∵CD=2BD,∴AB=BC=32CD,∴BDCF =32,∵∠BAD+∠DAE=60°,∴∠CDF+60°−∠E=60°,∴∠CDF=∠E,故答案为:32,相等;(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∴∠BAD+∠ADB=135°,∵∠ADF=12∠ADE=45°,∴∠DB+∠CDE=135°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴BDCF =ABCD,∵CD=2BD,∴BC=32CD,∵AB=√22BC,∴BDCF =3√24,∵∠BAD+∠DAE=90°,∴∠CDF+90°−∠E=90°,∴∠CDF=∠E;(3)如图1,作AH⊥BC于H,作AR⊥DF,交DF的延长线于R,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,BH=CH,∴AH=√22AB=6,在Rt△ADH中,∠ADH=∠DAC+∠C=60°,AH=6,∴AD=6 sin60°=4√3,在Rt△ADR中,AD=4√3,∠ADF=45°,∴AR=DR=√22AD=2√6,在Rt△ARF中,AR=2√6,∠AFR=∠DAC+∠ADF=15°+45°=60°,∴AF=2√6 sin60°=√6√32=4√2,RF=2√6=√6√3=2√2,∴AF=2FR=DF=DR−RF=2√6−2√2,如图2,当F在BA的延长线上时,作DX⊥AF于X,在Rt△DFX中,DF=2√6−2√2,∠DFX=60°,∴FX=12DF=√6−√2,DX=DF⋅sin60°=3√2−√6,在Rt△ADX中,BX=AB+AF+FX=6√2+4√2+√6−√2=9√2+√6,DX=3√2−√6,∴BD=√(9√2+√6)2+(3√2−√6)2=2√48+6√3,∴ AFBD =√22√48+6√3=√24+3√324+3√3,如图3,当F在AB上时,作DV⊥AB于V,由上知:FV=√6−√2,DV=3√2−√6,∴BV=AB−AF−FV=6√2−4√2−(√6−√2)=3√2−√6,∴BD=√2BV=√2(3√2−√6),∴AFBD =√2√2(3√2−√6)=3√2+√63,综上所述: AFBD =√24+3√324+3√3或3√2+√63.12.(23·24九年级上·辽宁沈阳·阶段练习)在平面直角坐标系中,已知点A(0,6),点B在线段AO上,且AB=2BO,若点P在x轴的正半轴上,连接BP,过点P作PQ⊥PB.(1)如图1,点E是射线PQ上一点,过点E作EC⊥x轴,垂足为点C.①点B的坐标__________.②求证:△BOP∼△PCE;(2)在(1)的条件下,如图2,若点C坐标为(8,0).过点A作DA⊥y轴,且和CE的延长线交于点D.若点C关于直线PQ的对称点C′正好落在线段AD上.连接PC,则点P的坐标__________.(3)如图3,若∠BPO=60°,点E在直线PQ上,EC⊥x轴,垂足为点C.若以点E,P,C为顶点的三角形和△BPE相似,请直接写出点E的坐标__________.【思路点拨】(1)①根据OA=6,AB=2OB求解即可.②根据两角对应相等,两三角形相似证明即可.(2)如图2中, 过点C′作C′G⊥OC于G, 延长PB交DA的延长线于F.设OP=x,则PC=4−x.在Rt△EBC′中,根据C′P2=PG2+C′G2,构建方程求解即可.(3)如图3中, 由题意∠PBQ=∠ECP=90°, 分四种情形, 当∠PE1B=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 当∠PBE2=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 当∠PE3B=30°时, 以点E,P,C 为顶点的三角形和△BPE相似,当∠PBE4=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 分别求解即可.【解题过程】(1)①∵A(0,6),∴OA=6,∵AB=2BO,∴AB=4, OB=2,∴B(0,1);故答案为:(0,1)②证明: 如图1中,∵PQ⊥PB,EC⊥OC,∴∠ECP=∠BPE=∠POB=90°,∴∠OPB+∠EPC=90°,∠EPC+∠CEP=90°,∴∠OPB=∠PEC,∴△BOP∽△PCE.(2)如图2中, 过点C′作C′G⊥OC于G, 延长PB交DA的延长线于F.设OP=x, 则PC=4−x.∵AF∥OP,∴∠F=∠BPO,∠FAB=∠BOP,∴△FBA∽△PBO,∴FAOP =ABOB=2,∴AF=2x,∵∠EPC+∠OPB=90°,∠EPC′+∠C′PF=90°∵∠EPC=∠EPC′,∴∠C′PF=∠OPB,∵∠OPB=∠F,∴∠F=∠C′PF,∴C′F=C′P=PC=8−x,∴AC′=8−3x,∴C′D=3x,∴PG=PC−CG=8−4x,在Rt△EBC′中,∵C′P2=PG2+C′G2,∴(8−x)2=(8−4x)2+62,解得x=65或x=2,∴P(65,0) 或(2,0).故答案为:(65,0) 或(2,0);(3)如图3中,∵OB=2,∠POB=90°,∠OPB=60°,∴∠PBO=30°,∴OP=OB⋅tan30°=2√33,PB=2OP=4√33,∵∠BPQ=90°,∴∠QPC=30°,∵∠PBQ=∠ECP=90°,∴当∠PE1B=30°时, 以点E,P,C为顶点的三角形和△BPE相似,∴PE1=√3PB=4,∴E1C=12PE1=2,PC=2√3∴OC=8√33,∴E1(8√33,2),当∠PBE2=30°时, 以点E,P,C为顶点的三角形和△BPE相似,,同法可得E2(4√33,23).当∠PE3B=30°时, 以点E,P,C为顶点的三角形和△BPE相似,同法可得E3(−4√33,−2).当∠PBE4=30°时, 以点E,P,C为顶点的三角形和△BPE相似,同法可得E4(0,−23).综上所述,满足条件的点E的坐标为(8√33,2)或(4√33,23)或(−4√33,−2)或(0,−23).13.(23·24·全国·专题练习)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A′处,若AB=6,BC=10,求AEEB的值;(2)如图②,在矩形ABCD的BC边上取一点E,将四边形ABED沿DE翻折,使点B落在DC的延长线上B′处,若BC⋅CE=24,AB=6,求BE的值;(3)如图③,在△ABC中,∠BAC=45°,AD⊥BC,垂足为点D,AD=10,AE=6,过点E作EF⊥AD交AC于点F,连接DF,且满足∠DFE=2∠DAC,直接写出BD+53EF的值.【思路点拨】(1)由矩形性质和翻折性质、结合勾股定理求得A′B=2,设AE=A′E=x则BE=AB−AE=6−x,Rt△A′BE中利用勾股定理求得x=103,则AE=103,BE=6−103=83,进而求解即可;(2)由矩形的性质和翻折性质得到∠EBC=∠BDA,证明△EBC∽△BDA,利用相似三角形的性质求得BC= 4,则BD=10,在Rt△ABD中,利用勾股定理求得AD=8,进而求得BC=8,CE=3可求解;(3)证明△AEF∽△ADC得到CD=53EF,则BD+53EF=BD+CD=BC;设EF=3k,CD=5k,过点D作DH⊥AC于H,证明△CHD≌△FHD(ASA)得到DF=CD=5k,在Rt△EFD中,由勾股定理解得k=1,进而可求得AC=5√5.过B作BG⊥AC于G,证明∠CBG=∠CDH=∠DAC,则sin∠CBG=sin∠DAC=√55,cos∠CBG=cos∠DAC=2√55,再证明AG=BG,在Rt△BCG中利用锐角三角函数和AG+CG=BG+CG= AC,求得BC,即可求解.【解题过程】解:(1)∵四边形ABCD是矩形,∴AD=BC=10,CD=AB=6,∠A=∠B=∠C=90°,由翻折性质得AD=A′D=10,AE=A′E,在Rt△A′CD中,A′C=√A′D2−CD2=√102−62=8,∴A′B=BC−AC=2,。

浙江省中考数学一轮复习 专题练习10 压轴题(1) 浙教版-浙教版初中九年级全册数学试题

浙江省中考数学一轮复习 专题练习10 压轴题(1) 浙教版-浙教版初中九年级全册数学试题

压轴题(1)班级某某学号一、选择题1.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或102.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.44.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( ) A.4个 B .3个 C .2个 D .1个第10题图FEDB CA7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .88.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:99.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3; ③3a +c >0④当y >0时,x 的取值X 围是﹣1≤x <3 ⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EOBCD12.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是_____________.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是.15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为.三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.24.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.答案详解一、选择题【考点】一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选A.4.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定【考点】抛物线与x 轴的交点.【分析】设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,由二次函数的图象可知x 1+x 2>0,a >0,设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b 再根据根与系数的关系即可得出结论.【解答】解:设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,∵由二次函数的图象可知x 1+x 2>0,a >0,∴﹣>0.设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b ,则a +b =﹣=﹣+,∵a >0,∴>0, ∴a +b >0.故选C .6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个第10题图F D B A【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法【答案】B. 【解析】∵矩形ABCD 中,∴AD ∥BC .∴△AEF ∽△CAB ….......................①正确;∵△AEF ∽△CAB ,∴AF CF =AE BC =12,∴CF =2AF ……………………………②正确;过点D 作DH ⊥AC 于点H .易证△ABF ≌△CDH (AAS ).∴AF =CH .∵EF ∥DH ,∴AF FH =AEED =1.∴AF =FH .∴FH =CH .∴DH 垂直平分CF .∴DF =DC . ……………………………………………③正确;第10题答案图G HF E D ACB设EF =1,则BF =2.∵△ABF ∽△EAF .∴AF EF =BFAF .∴AF =EF •BF =1×2= 2.∴tan∠ABF =AF BF =22.∵∠CAD =∠ABF ,∴tan∠CAD =tan∠ABF =22.…………④错误. 故选择B.7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .8【分析】先根据S △ABO =4,tan ∠BAO =2求出AO 、BO 的长度,再根据点C 为斜边A ′B 的中点,求出点C 的坐标,点C 的横纵坐标之积即为k 值.【解答】解:设点C 坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D ,∵tan ∠BAO =2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..8.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3X;第2个图案中白色纸片有7=1+2×3X;第3个图案中白色纸片有10=1+3×3X;…∴第n个图案中白色纸片有1+n×3=3n+1(X),根据题意得:3n+1=2017,解得:n=672,故选:B.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的X围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣=1,即b =﹣2a ,而x =﹣1时,y <0,即a ﹣b +c <0,∴a +2a +c <0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B .二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EO B A CD【知识点】直线射线和线段——垂线段最短、图形的相似——平行线分线段成比例定理、平行四边形——平行四边形的性质、【答案】4.【解析】根据“垂线段最短”,可知:当OD ⊥BC 时,OD 最短,DE 的值最小.当OD ⊥BC 时,OD ∥AB .∴CD BD =CO OA =1.∴OD 是△ABC 的中位线.∴OD =12AB =2.∴DE 的最小值=2OD =4.第14题答案图EOCABD12.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【知识点】一次函数——一次函数与一元一次不等式【答案】x>3.【解析】由图象得到直线y=x+b与直线y=kx+6的交点P(3,5),在点P(3,5)的右侧,直线y =x+b落在直线y=kx+6的上方,该部分对应的x的取值X围为x>3,即不等式x+b>kx+6的解集是x>3.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为(﹣,).【考点】位似变换;坐标与图形性质;矩形的性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OB n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA 为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【分析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB 的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB 相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.【解答】解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【知识点】平行四边形——平行四边形的性质、旋转——旋转的性质、二次函数——确定二次函数的表达式(待定系数法)、函数与几何动态——运动产生的面积问题及运动产生的特殊四边形问题、分类讨论思想、实际问题与数学建模——函数模型【思路分析】(1)先由OA ′=OA 得到点A ′的坐标,再用点C 、A 、A ′的坐标即可求此抛物线的解析式;(2)连接AA ′, 过点M 作MN ⊥x 轴,交AA ′于点N ,把△AMA ′分割为△AMN 和△A ′MN , △AMA ′的面积=△AMA ′的面积+△AMN 的面积=12OA ′•MN ,设点M 的横坐标为x ,借助抛物线的解析式和AA ′的解析式,建立MN 的长关于x 的函数关系式,再据此建立△AMA ′的面积关于x 的二次函数关系式,再求△AMA ′面积的最大值以及此时M 的坐标;(3)在P 、N 、B 、Q 这四个点中,B 、Q 这两个点是固定点,因此可以考虑将BQ 作为边、将BQ 作为对角线分别构造符合题意的图形,再求解.【解答】解:(1)∵ ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,点A 的坐标是(0,4),∴点A ′的坐标为(4,0),点B 的坐标为(1,4).∵抛物线过点C ,A ,A ′,设抛物线的函数解析式为y =ax 2+bx +c (a ≠0),可得: ⎩⎪⎨⎪⎧a -b +c =0c =416a + 4b +c =0. 解得:⎩⎪⎨⎪⎧a =-1b =3c =4.∴抛物线的函数解析式为y =-x 2+3x +4.(2)连接AA ′,设直线AA ′的函数解析式为y =kx +b ,可得⎩⎨⎧0+b =414k +b =0.解得:⎩⎨⎧k =-1b =4.∴直线AA '的函数解析式是y =-x +4.设M (x ,-x 2+3x +4),S △AMA ′=12×4×[-x 2+3x +4一(一x +4)]=一2x 2+8x =一2(x -2)2+8.∴x =2时,△AMA ′的面积最大S △AMA ′=8.∴M (2,6).(3)设P 点的坐标为(x ,-x 2+3x +4),当P 、N 、B 、Q 构成平行四边形时,①当BQ 为边时,PN ∥BQ 且PN =BQ ,∵BQ =4,∴一x 2+3x +4=±4.当一x 2+3x +4=4时,x 1=0,x 2=3,即P 1(0,4),P 2(3,4);当一x 2+3x +4=一4时,x 3=3+412,x 4=3-412,即P 3(3+412,-4),P 4(3-412,-4); ②当BQ 为对角线时,PB ∥x 轴,即P 1(0,4),P 2(3,4);当这个平行四边形为矩形时,即P l (0,4),P 2(3,4)时,N 1(0,0),N 2(3,0).综上所述,当P 1(0,4),P 2(3,4),P 3(3+412,-4),P 4(3-412,-4)时,P 、N 、B 、Q 构成平行四边形;当这个平行四边形为矩形时,N 1(0,0),N 2(3,0).24.如图1,△ABC 是等腰直角三角形,∠BAC = 90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版中考压轴题精选
1、如图、有一根直尺的短边长为6 cm,长边长为12 cm,还有一块锐角为45°的直角三角形纸
板,它的斜边为12cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边放置在同一直线上,
且D与B重合.将Rt△ABC沿AB方向平移(如图乙),设平移的长度为x cm(),直尺
和三角形纸板的重叠部分(图中的阴影部分)的面积为S cm2
(1)写出当时,S=;
(2)当时,求S关于x的函数关系式.
2、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动
点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动
点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当
其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是
△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形?
3、已知抛物线与它的对称轴相交于点,与轴交
于,与轴正半轴交于.
(1)求这条抛物线的函数关系式;
(2)设直线交轴于是线段上一动点(点异于),过作轴,交直
线于,过作轴于,求当四边形的面积等于时,求点的坐标.
4、已知抛物线()与轴相交于点
,顶点为.直线分别与轴,轴
相交于两点,并且与直线相交于点.
(1)填空:试用含的代数式分别表示点与的坐标,则;
(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;
(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.
6.如图13,二次函数的图像与x轴交于A、B两点,与y
轴交于点C(0,-1),ΔABC的面积=
(1)求该二次函数的关系式;
(2)在该二次函数的图像上是否存在点D,使四边形ABCD为直角梯形?若存在,
求出点D的坐标;若不存在,请说明理由。

6、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,
0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从
点C出发,沿线段CD
向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P
作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线
段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
请直接写出相应的t值.
参考答案
1、(1)18cm2
(2)如图,当时
BE=x-6,AD=12-x

=
2、(1)由题意知 CQ=4t,PC=12-
3t,
∴S△PCQ =.
∵△PCQ与△PDQ关于直线PQ对称,
∴y=2S△PCQ .
(2)当时,有PQ∥AB,而AP与BQ不平行,这时四边形PQBA是梯形,∵CA=12,CB=16,CQ=4t, CP=12-3t,
∴,解得t=2.
∴当t=2秒时,四边形PQBA是梯形
3、解:(1)由题意,知点是抛物线的顶点,
,,抛物线的函数关系式为.
(2)由(1)知,点的坐标是.设直线的函数关系式为,则,,.
由,得,,点的坐标是.
设直线的函数关系式是,
则解得,.
直线的函数关系式是.
设点坐标为,则.
轴,点的纵坐标也是.
设点坐标为,
点在直线上,,.
轴,点的坐标为,
,,,
,,,当时,,而,,
点坐标为和.
4、(1)
(2)由题意得点与点′关于轴对称,

将′的坐标代入得,(不合题意,舍去),.
,点到轴的距离为3.
,,直线的解析式为,它与轴的交点为点到轴的距离为.
.
(3)当点在轴的左侧时,若是平行四边形,则平行且等于,把向上平移个单位得到,坐标为,代入抛物线的解析式,
得:
(不合题意,舍去),,
.
当点在轴的右侧时,若是平行四边形,则与互相平分,

与关于原点对称,,
将点坐标代入抛物线解析式得:,
(不合题意,舍去),,.
存在这样的点或,能使得以为顶点的四边形是平行四边形.5、解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=
设A(a,0),B(b,0)
AB=b-a==,解得p=,但p<0,所以p=。

所以解析式为:
(2)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组得D(,9)
②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A(,0)代入得AD解析式为y=0.5x+0.25,解方程组得D()
综上,所以存在两点:(,9)或()。

6、(1)点A的坐标为(4,8)
将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx
解得a =-,b=4
∴抛物线的解析式为:y=-x2+4x
(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=
∴PE=AP=t.PB=8-t.
∴点E的坐标为(4+t,8-t).
∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. ∴EG=-t2+8-(8-t)
=-t2+t.
∵-<0,∴当t=4时,线段EG最长为2.
②共有三个时刻.
t1=,t2=,t3= .。

相关文档
最新文档