计量经济学实践报告 2

合集下载

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告1. 引言计量经济学是应用数学和统计学方法来研究经济现象的一门学科。

实验是计量经济学研究中常用的方法之一,通过设计和实施实验,可以帮助我们理解经济现象背后的因果关系。

本文将对一项计量经济学实验进行详细描述和分析,以展示实验的设计、数据分析和结论。

2. 实验设计2.1 实验目的本次实验的目的是研究市场供需关系对商品价格的影响。

具体而言,我们希望通过改变商品的市场供给量,观察商品价格如何变化,并分析供给弹性的大小。

2.2 实验假设在实验设计阶段,我们需要制定实验假设来指导实验的进行。

在本次实验中,我们假设市场供给量的变动会对商品价格产生影响,而且供给弹性的大小会决定价格的变动幅度。

2.3 实验步骤本次实验包括以下几个步骤:1.设定实验组和对照组:我们将随机选择一些参与者,并将其分为两组,一组作为实验组,一组作为对照组。

实验组将面临市场供给量变动的情况,而对照组则不受干扰。

2.确定商品和市场:我们选择一个特定的商品,并确定一个特定的市场来进行实验。

这样可以使实验更加具体和可控。

3.设定实验条件:在实验组中,我们逐步调整市场供给量,并记录下不同供给量下的商品价格。

对照组则保持市场供给量不变。

4.数据收集:在每次实验条件设定完毕后,我们将记录实验组和对照组的商品价格,并对数据进行整理和存储。

2.4 实验风险和伦理考虑在设计实验时,我们需要考虑实验可能存在的风险,并确保实验过程符合伦理要求。

具体而言,我们需要确保参与者的权益得到保护,并在可能对参与者造成负面影响的情况下停止实验。

3. 数据分析在实验进行完毕后,我们对数据进行分析,以验证实验假设并得出结论。

3.1 数据整理首先,我们将实验组和对照组的数据整理成表格形式,方便后续分析。

由于文档要求不能包含表格,这里无法展示具体的数据。

3.2 数据分析方法我们采用的数据分析方法主要包括描述统计分析和回归分析。

描述统计分析用于描述数据的基本特征,包括平均值、标准差、最小值和最大值等。

计量经济学实验报告二

计量经济学实验报告二

学生实验报告学院:经济学院课程名称:计量经济学专业班级:11经济学1班姓名:魏丹丹学号:0112102学生实验报告(经管类专业用)一、实验目的及要求:1、目的利用Eviews软件,使学生在实验过程中全面了解和熟悉计量经济学。

2、内容及要求熟悉Eviews软件的操作与应用二、仪器用具:三、实验方法与步骤:1 经研究发现,家庭书刊消费受家庭收入几户主受教育年数的影响,表中为对某地区部分家庭抽样调查得到样本数据:(2)利用样本数据估计模型的参数;(3)检验户主受教育年数对家庭书刊消费是否有显着影响;(4)分析所估计模型的经济意义和作用答:(1)家庭书刊消费的计量经济学模型是:Dependent Variable: YMethod: Least SquaresDate: 11/27/12 Time: 14:36Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.??C -50.01638 49.46026 -1.011244 0.3279X 0.086450 0.029363 2.944186 0.0101T 52.3703 5.202167 10.06702 0.00001R-squared 0.951235 ????Mean dependentvar755.1222Adjusted R-squared 0.944732 ????S.D. dependentvar258.7206S.E. of regression 60.82273 ????Akaike infocriterion11.20482Sum squared resid 55491.07 ????Schwarz criterion11.35321Log likelihood -97.84334 ????F-statistic146.2974Durbin-Watson stat2.605783 ????Prob(F-statistic)0.00000=^Y -50.0163+0.0865X+52.3703T 标准误 49.4603 0.0294 5.2022 t 值 -1.0112 2.9442 10.0670 p 值 0.3279 0.0101 0.0000 R 2=0.9512 =2R 0.9447总体显着性的F 统计值为146.2974,F 统计量的p 值:0.0000 (2)样本数据估计的模型参数为β1=0.0865,β2=52.3703(3)由回归结果得:户主受教育年限的p 值为0.0000,小于0.05,则拒绝原假设。

(完整word版)计量经济学实践报告 2

(完整word版)计量经济学实践报告 2

课程名称:课程名称:计量经济学学生姓名:阳诗琪学号:201174250203班级: 1102班专业:金融学2013 年 5 月 5日计量经济学实验报告多元回归模型实验【实验目标】:通过上机实验,使学生能够使用 Eviews 软件【实验内容】:1.用Eviews完成多元线性回归模型的统计检验2.对Eviews结果对应的相关统计检验进行解释【实验步骤及分析】:1、经济理论理论上认为影响成品钢材的需求量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。

产量、原煤产量1980——1998年的有关数据如下表。

年份成品钢材(万吨)y 原油(万吨)x1生铁(万吨)x2原煤(亿吨)x3发电量(亿千瓦)x4铁路货运量(万吨)x5固定资产投资额(亿元)x6居民消费(亿元)x71980 2716.2105953802.4 6.23006.2111279 910.92317.1 1981 2670.1101223416.6 6.23092.107673 9612604.12、模型估计多元线性回归模型的基本形式:设随机变量y 与一般变量x 1,x 2,...x p 的理论线性回归模型为:y=εββββ+++++p p x x x (22110)其中β1,β2,。

,βp 是p+1个未知参数,β0称为回归常数,β1,β2,。

,βp 称为回归系数。

y 称为被解释变量(因变量),而x 1,x 2,...x p 是p 个可以精确测量并可控制的一般变量,称为解释变量(自变量)。

ε是随机误差。

3、画散点图1982 2902 10212 3551 6.66 3277 11349 1230.4 2867.9 1983 3072 10607 3738 7.15 3514 118784 1430.1 3182.5 1984 3372 11461.3 4001 7.89 3770 124074 1832.9 3674.5 1985 3693 12489.5 4384 8.72 4107 130709 2543.2 4589 1986 4058 13068.8 5064 8.94 4495 135635 3120.6 5175 1987 4356 13414 5503 9.28 4973 140653 3791.7 5961.2 1988 4689 13704.6 5704 9.8 5452 144948 4753.8 7633.1 1989 4859 13764.1 5820 10.54 5848 151489 4410.4 8523.5 1990 5153 13830.6 6238 10.8 6212 150681 4517 9113.2 1991 5638 14009.2 6765 10.87 6775 152893 5594.5 10315.9 1992 6697 14209.7 7589 11.16 7539 157627 8080.1 12459.8 1993 7716 14523.7 8739 11.51 8395 162663 13072.3 15682.4 1994 8482 14608.2974112.49281 163093 17042.1 20809.8 1995 8979.8 15004.94 10529.27 13.61 10070.3 165885 20019.3 26944.5 1996 9338.02 15733.39 10722.513.9710813.116880322974 32152.3 1997 9978.9316074.14 11511.41 13.73 11355.53 16973422913.534854.64、建立模型将原始数据导入到Eviews6.0(破解版)的数据框中,然后用Eviews软件做线性回归分析如下:在Eviews主窗口菜单单击Quick/Estimate Equation,弹出方程估计窗口,再在弹出的窗口清单内填入以下回归方程的书写形式。

计量经济学实验报告及心得体会

计量经济学实验报告及心得体会
2、模型检验
从回归估计的结果来看,D.W= 1.931058模型拟合较好。可决系数R=0.901826,表明城镇居民人均消费支出的变化的90.1826%可由人均可支配收入的变化来解释。从斜率项的t检验值来看,大于5%显著性水平下自由度为n-2=29的临界值t(29)=2.05,且该斜率值满足0<0.674007<1,符合经济理论中边际消费倾向在0与1之间的绝对收入假说
【实验软件】EVIEWS软件
【实验要求】选择方程建立一元线性回归方程,做散点图,并进行一元线性回归分析,经济,拟合优度,参数显著性,和方程显著性等检验。
【实验过程】
1.普通最小二乘法估计:
(1)启用EVIEWS软件→file→new→workfile,选择“workfile frequeney”的类型为“undated or irreqular”,在“start date”中输入“1”,在“end date”中输入“31”,单击“ok”。
.【实验小结】
(1)建立模型:本例中我们假设拟建立如下一元回归模型:Y=
Dependent Variable: Y
Method: Least Squares
Date:04/07/12Time:19:37
Sample: 1 31
Included observations: 31
Variable
Coefficient
【实验软件】EVIEWS软件
【实验要求】选择方程建立多元线性回归方程,并进行多元线性回归分析,经济,拟合优度,参数显著性,和方程显著性等检验。
《计量经济学》实验报告三
实验时间:2012-04-07系别:经济管理系专业班级:09国贸本一
学 号:姓名: 成 绩:
【实验名称】实验三p61课后习题一元回归分析及检验、预测

计量经济学实训报告

计量经济学实训报告

计量经济学实训报告一、实验设计:本次实验是基于计量经济学的理论知识和方法,通过对已有的数据进行回归分析,验证理论假设的可行性。

实验的目的是了解计量经济学在实际应用中的重要性,以及掌握回归分析等基本方法。

二、实验过程:1.数据收集:我们选择了一个包含多个变量的数据集,包括自变量和因变量,旨在通过回归模型来预测因变量的取值。

2.数据清洗:对收集到的数据进行清洗和预处理,包括处理缺失值、异常值等。

3.变量选择:根据计量经济学的原理和假设,选择适合的自变量和因变量,并对其进行初步的分析。

4.模型建立:根据选择的自变量和因变量,建立回归模型,并假设一些条件。

5.模型估计:利用统计软件对建立的回归模型进行估计和拟合,获得回归系数和拟合度等相关参数。

6.模型诊断与检验:对建立的回归模型进行诊断和检验,检查模型的拟合度和有效性。

7.结果分析:根据模型估计和检验结果,分析自变量对因变量的影响程度和显著性等,并解读模型。

三、实验结果:经过以上的实验过程和分析,我们得到了以下结论:1.自变量X对因变量Y的影响具有统计显著性;2.自变量X1对因变量Y的影响程度较大,而自变量X2的影响相对较小;3.拟合度较高,模型的解释能力较强。

四、实验感想:通过本次实验,我们深刻认识到计量经济学在实际问题中的重要性。

通过建立回归模型,我们可以对研究对象的变量关系进行实证分析,从而对问题进行解释和预测。

同时,我们也了解到了回归分析中的一些注意事项,如数据的选择和处理、模型的建立和检验等。

在今后的学习中,我们将进一步掌握和应用计量经济学的方法,提高对实际问题的分析和解决能力。

同时,我们也意识到计量经济学的方法和理论需要结合实际问题来进行应用,只有在实际问题中进行实践和应用,才能更好地理解和掌握计量经济学的知识。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

《计量经济学》实训报告内容

《计量经济学》实训报告内容
Object-Generate Series Quick-Generate Series…,输入生成新数据的公式: w=1/resid Quick-Equation Estimation-输入计量模型,在Option选项 卡中选择Weighted LS/TSLS
进一步检查是否存在异方差,倘若存在,更改权重 (例如,残差项平方的倒数作为权重)
2019/2/14 4
第二次实训内容:对时间序列数据 进行线性回归
• 基本步骤
建立数据文件 Quick-Equation Estimation-输入计量模型
2019/2/14
5
• 如何防止多重共线性?
相关性分析(View-Covariance Analysis) 解决方法:排除变量法、差分法(在时间序列 数据、面板数据中使用)
2019/2/14
6
• 如何防止序列相关性?
在回归方程中加入ar(1)、ar(2)……,检验D.W. 值是否接近于2
2019/2/14
7
第三次实训内容:对面板数据进行 线性回归
• 基本步骤
建立数据文件
如何防止多重共线性?略。
一般不考虑异方差性和序列相关性。
2019/2/14
8
Estimate,在Specification中输入被解释变量 (加一个问号),在cross-section中选择 random;在Common coefficents中各自变 量(每个自变量后面加一个问号,并且用空格 隔开),点击确定。 固定效应和随机效应的选择:ViewFixed/Random Effect Testing-Correlated Random Effects-Hausman Test,倘若 Cross-section random的伴随概率小于0.1, 那么运用固定效应,否则运用随机效应。

2021年计量经济学实验报告2

2021年计量经济学实验报告2

1.背景经济增加是指一个国家生产商品和劳务能力扩大。

在实际核实中, 常以一国生产商品和劳务总量增加来表示, 即以国民生产总值(GDP )和中国生产总值增加来计算。

古典经济增加理论以社会财富增加为中心, 指出生产劳动是财富增加源泉。

现代经济增加理论认为知识、 人力资本、 技术进步是经济增加关键原因。

从古典增加理论到新增加理论, 都重视物质资本和劳动贡献。

物质资本是指经济系统运行中实际投入资本数量.然而, 因为资本服务流量难以测度, 在这里我们用全社会固定资产投资总额(亿元)来衡量物质资本。

中国拥有十三亿人口, 为经济增加提供了丰富劳动力资源。

所以本文用总就业人数(万人)来衡量劳动力。

居民消费需求也是经济增加关键原因。

经济增加问题既受各国政府和居民关注,也是经济学理论研究一个关键方面。

在1978—31年中,中国经济年均增加率高达9.6%,综合国力大大增强,居民收入水平与生活水平不停提升,居民消费需求数量和质量有了很大提升。

不过,中国现在仍然面临消费需求不足问题。

本文将以中国经济增加作为研究对象, 选择时间序列数据计量经济学模型方法, 将中国中国生产总值与和其相关经济变量联络起来, 建立多元线性回归模型, 研究中国中国经济增加变动趋势, 以及关键影响原因, 并依据所得结论提出相关提议与意见。

用计量经济学方法进行数据分析将得到愈加含有说服力和愈加具体指标, 能够愈加好帮助我们进行估计与决议。

所以, 对中国经济增加计量经济学研究是有意义同时也是很必需。

2.模型建立 2.1 假设模型为了具体分析各要素对中国经济增加影响大小, 我们能够用中国生产总值(Y )这个经济指标作为研究对象; 用总就业人员数(1X )衡量劳动力; 用固定资产投资总额(2X )衡量资本投入: 用价格指数(3X )去代表消费需求。

利用这些数据进行回归分析。

这里被解释变量是, Y: 中国生产总值,与Y-中国生产总值亲密相关经济原因作为模型可能解释变量, 累计3个, 它们分别为:1X 代表社会就业人数, 2X 代表固定资产投资,3X 代表消费价格指数,μ代表干扰项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:
课程名称:计量经济学
学生姓名:阳诗琪
学号:201174250203
班级: 1102班
专业:金融学
2013 年 5 月 5日
计量经济学实验报告
多元回归模型实验
【实验目标】:通过上机实验,使学生能够使用 Eviews 软件
【实验内容】:1.用Eviews完成多元线性回归模型的统计检验
2.对Eviews结果对应的相关统计检验进行解释
【实验步骤及分析】:
1、经济理论
理论上认为影响成品钢材的需求量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。

为此,收集了我国成品钢材的需求量 选择与其相关的八个因素 原油产量、生铁产量、原煤产量、发电量、铁路货运量、固定资产投资额、居民消费作为影响变量 1980——1998年的有关数据如下表。

年份成品钢
材(万
吨)y 原油(万
吨)x
1
生铁(万
吨)x
2
原煤(亿
吨)x
3
发电量
(亿千
瓦)x
4
铁路货
运量(万
吨)x
5
固定资
产投资
额(亿
元)x
6
居民消
费(亿
元)x
7
1980 2716.2105953802.4 6.23006.2111279 910.92317.1 1981 2670.1101223416.6 6.23092.107673 9612604.1 1982 2902102123551 6.663277113491230.4 2867.9
2、模型估计
多元线性回归模型的基本形式:设随机变量y 与一般变量x 1,x 2,...x p 的理论线性回归模型为:
y=εββββ+++++p p x x x (22110)
其中β1,β2,。

,βp 是p+1个未知参数,β0称为回归常数,β1,β2,。

,βp 称为回归系数。

y 称为被解释变量(因变量),而x 1,x 2,...x p 是p 个可以精确测量并可控制的一般变量,称为解释变量(自变量)。

ε是随机误差。

3、画散点图
1983 3072 10607 3738 7.15 3514 118784 1430.1 3182.5 1984 3372 11461.3 4001 7.89 3770 124074 1832.9 3674.5 1985 3693 12489.5 4384 8.72 4107 130709 2543.2 4589 1986 4058 13068.8 5064 8.94 4495 135635 3120.6 5175 1987 4356 13414 5503 9.28 4973 140653 3791.7 5961.2 1988 4689 13704.6 5704 9.8 5452 144948 4753.8 7633.1 1989 4859 13764.1 5820 10.54 5848 151489 4410.4 8523.5 1990 5153 13830.6 6238 10.8 6212 150681 4517 9113.2 1991 5638 14009.2 6765 10.87 6775 152893 5594.5 10315.9 1992 6697 14209.7 7589 11.16 7539 157627 8080.1 12459.8 1993 7716 14523.7 8739 11.51 8395 162663 13072.3 15682.4 1994 8482 14608.2
9741
12.4
9281 163093 17042.1 20809.8 1995 8979.8 15004.94 10529.27 13.61 10070.3 165885 20019.3 26944.5 1996 9338.02 15733.39 10722.5
13.97
10813.1
168803
22974 32152.3 1997 9978.93
16074.14 11511.41 13.73 11355.53 169734
22913.5
34854.6
4、建立模型
将原始数据导入到Eviews6.0(破解版)的数据框中,然后用Eviews软件做线性回归分析如下:
在Eviews主窗口菜单单击Quick/Estimate Equation,弹出方程估计窗口,再在弹出的窗口清单内填入以下回归方程的书写形式。

整形式
y=c(1)+c(2)*x1+c(3)*x2+c(4)*x3+c(5)*x4+c(6)*x5+c(7)*x6+c(8)*x7
简化形式
y c x1 x2 x3 x4 x5 x6 x7
这里我们采用简化形式执行后得到输出结果为:
分析:从模型汇总表中可以看出,决定系数R2=0.998775,由决定系数看回归模型高度显著。

又由F=1164.425,P值=0.000000,回归模型通过了F检验,表明7个自变量整体对因变量y产生显著线性影响的判断所犯错误的概率仅为0.000000。

说明 x1,x2, x3 ,x4, x5,x6,x7,整体上对y有高度显著的线性影响。

表中第二列是我们的回归方程参数估计值,由此可以得到y对7个自变量的线性回归方程为:
7
6
5
4 3
2
1
0074963
.0
100421
.0
000331
.0
723643
.0
3385
.
102
235776
.0
041503
.0
41368
.
44
ˆ
x
x
x
x x
x
x
y
-
+
-
+ -
+
+
=
5、对估计结果的检验
①拟合优度的检验R2=0.998775,说明模型对样本拟合的很好
②显著性的F检验
分析:从表中结果可以看出Prob(F-statistic)即相伴概率P值,由F=1164.425,P 值=0.000000<0.05,可知此回归方程拒绝零假设,即做出7个自变量整体对因变量y产生显著线性影响的判断所犯错误的概率仅为0.000000,回归方程通过了F检验。

③变量的显著性检验(t检验)
分析:通过看上面的T检验表可以发现,在显著性水平α=0.05时,只有x
4,x
7
的Prob
(收尾概率)小于0.05,通过了显著性检验。

④变量t检验的分析
为了尽可能的保留合理变量,我们就针对逐个变量给以T检验分析,逐步剔除不合理的变量,使回归模型更完善。

因此我们首先剔除Prob最大的变量x
5
再做回归分析的T检验
分析:剔除x
5后,在显著性水平α=0.05时 有x
4,
x
7,
的Prob收尾概率小于0.05,通过了
显著性检验。

此时我们发现,剔除了x
5
后,通过T检验的变量增多, 这是一个很好的
结果。

因此我们再剔除Prob最大的变量x
1
,再做回归分析的T检验如下:
分析:剔除x
1,x
5
后,在显著性水平α=0.05 时,有x
4,
x
6,
x
7,
的Prob收尾概率小于0.05
通过了显著性检验。

此时我们发现,剔除了x
2,x
5
后,通过T检验的变量又增多了一个。

因此我们再剔除Prob最大的变量x
3,
再做回归分析的T检验如下:
分析:剔除x
1,x
3,
x
5
后,在显著性水平α=0.05 时,有x
4,
x
6,
x
7,
的Prob收尾概率小于0.05
通过了显著性检验。

因此我们再剔除Prob最大的变量x
2,
再做回归分析的T检验如下:
分析:剔除x
1,x
2.
x
3.
x
5
后,在显著性水平α=0.05 时 剩余变量x
4
,x
6
,x
7
的Prob收尾概率
都小于0.05,全部通过了显著性T检验。

以x
4,x
6
,x
7
做回归分析的输出表来看,决定系数
R2=0.998165,由决定系数看回归模型仍然具有高度的显著性。

又由F=2538.904,P=0.000000,回归模型通过了F检验,表明7个自变量整体对因变量y产生显
著线性影响的判断所犯错误的概率仅为0.000000。

说明x
4,x
6
,x
7
整体上对y有高度显著
的线性影响.
【实验结论】
从回归方程中可以看到,原油产量、发电量、固定资产投资额对成品钢材需求量起正影响,原煤产量、居民消费对成品钢材需求量起负影响。

此时回归方程虽然通过了F,T 检验,但是增加了不合理变量原煤产量、居民消费所占回归方程的比重,这也是不合社会实际的。

相关文档
最新文档