混凝土的硫酸盐腐蚀
混凝土硫酸盐腐蚀简介

02 共同作用导致混凝土产生剥落型破坏; 其相对动弹性模量和质量随腐
中的Ca(OH)2含量蚀时间先下降 ,后稳定 ,最后加速下降。混凝土所在青含海的盐各湖种卤化水中学腐成分
高。
蚀,其损伤演化规律与混凝土在硫酸镁溶液中的和破坏矿形物式成一分致也。不尽相
03
同,而且拌合比也不
混凝土在硫酸盐溶液中腐蚀 ,钙矾石、石膏是主要腐蚀产物 ; 随腐蚀
原因三
13
试验结果
混凝土在青海盐湖卤水溶液腐蚀下的损伤失
原因一
水泥用量大则混凝土 中的Ca(OH)2含量 高。
原因二
当的控制水灰比,就 会使得混凝土的孔隙 率降低,减少碳化速 度。
原因三
14
试验结果
混凝土在硫酸盐溶液中腐蚀破坏形态
原因一
水泥用量大则混凝土 中的Ca(OH)2含量 高。
原因二
当的控制水灰比,就 会使得混凝土的孔隙 率降低,减少碳化速 度。
原因三
17
最终 结论
最终结论
01
原因一
混凝土在硫酸钠溶液中浸烘循环腐蚀, 腐蚀溶液中的 SO2 4 导致混凝土产生膨胀性破坏; 其 E rd和质量随腐蚀时间的演化规律 包括 3 个阶段: 初始劣化段、性能改善段和性能劣化段
原因二
原因三
水泥用量大则混凝土 混凝土在硫酸镁溶液中腐蚀 ,腐蚀溶液中的水SO泥2的4 品- 和种M不g同2 +,其
6
试验方法
材料选择:
7
试验方法
材料选择:
江南水泥厂 P·Ⅱ·42. 5 水泥, 其矿物组成见 。河 砂,表观密度为 2. 65g cm3 ,细度模数为 2. 6 ; 石灰 石, 表 观 密 度 为 2. 53g cm3 , 堆 积 密 度 为1600kg m3 , 颗粒级配为 5 ~ 10mm 。江苏省建科院的JM-B 型萘系减水剂( 用于普通混凝土) 和 JM-PCA 型聚羧酸 减水剂( 用于高强混凝土)。混凝土坍落度控制在 100~ 160mm 。
混凝土抗硫酸盐腐蚀机理与防治策略探究

混凝土抗硫酸盐腐蚀机理与防治策略探究1、硫酸盐侵蚀混凝土劣化机理当环境中的硫酸盐离子进入水泥石内部以后,会与水泥石中的一些固相发生化学反应,生成一些难溶物引起的。
这些难溶物一般强度很低,并且在生成时会产生体积膨胀,引起混凝土的开裂、剥落和解体,此外还会使水泥石中的CH和C-S-H等组分溶出或分解,使混凝土失去强度和粘结力。
混凝土硫酸盐侵蚀主要有以下几种[1][2]。
1.1钙矾石膨胀破坏环境中的SO42-会与水泥石中的氢氧化钙和水化铝酸钙反应生成水化硫铝酸钙(钙矾石,3CaO·Al2O3·CaSO4·32H2O)。
钙矾石是一种溶解度非常低的盐类矿物,即使在石灰浓度很低的溶液中也能稳定存在。
钙矾石晶体会结合大量的水分子,其体积比水化铝酸钙增加了2.2倍。
并且钙矾石在析出时会形成及其微细的针状或片状晶体,在水泥石中产生很大的内应力,引起混凝土结构破坏。
1.2石膏膨胀破坏当SO42- 大于1000mg/L时,同时水泥石的毛细孔被饱和石灰溶液填充的情况下,会有石膏晶体析出:Ca(OH)2+2H2O→CaSO4·2H2O+2OH-生成的CaSO4·2H2O体积增大1.24倍,导致混凝土内部膨胀应力增加而破坏;同时消耗了水泥水化生成的CH,使胶凝物质分解失去强度。
若水泥处于干湿交替状态,即使SO42-浓度不高,也往往会因为水分蒸发而使侵蚀溶液浓缩,石膏结晶侵蚀成为主导因素。
1.3MgSO4溶蚀-结晶破坏MgSO4破坏是最严重的一种,即使掺硅灰的混凝土也难以抵抗MgSO4的侵蚀。
因Mg2+与SO42-均为侵蚀源,二者相互叠加,构成严重的复合侵蚀。
除石膏或钙矾石的膨胀破坏外,还会使氢氧化钙转化为氢氧化镁,降低碱度,破坏C-S-H水化产物稳定存在的条件,使C-S-H分解,造成水泥基材强度与粘结性损失。
1.4碳硫硅钙石溶液-结晶型破坏在硫酸盐腐蚀过程中还会产生碳硫硅钙石(CaSO3·SCaSO4·CaSiO4·15H2O),其生成途径有两种,一是C-S-H与硫酸碳酸盐直接反应生成,二是由钙矾石过度相逐渐转变而成[3]。
混凝土中硫酸盐侵蚀原理与防治方法

混凝土中硫酸盐侵蚀原理与防治方法标题:混凝土中硫酸盐侵蚀原理与防治方法引言:混凝土是现代建筑中广泛使用的重要建材之一,但在某些情况下,混凝土表面会遭受到硫酸盐的侵蚀,导致结构衰败和损害。
本文将深入探讨混凝土中硫酸盐侵蚀的原理,以及一些有效的防治方法。
一、硫酸盐侵蚀的原理1. 混凝土中的硫酸盐来源1.1 大气中的硫化物:例如来自大气污染物的二氧化硫,会在空气中与水反应生成硫酸根离子。
1.2 地下水和土壤中的硫酸盐:地下水和土壤中的硫酸盐通常来自含有硫酸盐的酸性岩石,或者是由人为原因引起的,如污水渗入土壤或含硫污染物的倾倒。
2. 硫酸盐对混凝土的侵蚀作用2.1 硫酸盐与水反应:硫酸盐在混凝土中与水反应生成硫酸,使混凝土中pH值下降,同时释放出大量的氢离子。
2.2 硫酸离子的腐蚀作用:硫酸离子对混凝土中的水化产物、钙铝硅酸盐胶凝材料和钢筋等产生腐蚀作用,导致混凝土的体积膨胀、强度降低,进而引发开裂、剥落和结构损坏。
二、混凝土中硫酸盐侵蚀的分类为了更好地认识混凝土中硫酸盐侵蚀的特点和严重程度,我们将其分为三个等级:1. 轻度硫酸盐侵蚀:混凝土表面出现轻微腐蚀现象,无明显损害。
2. 中度硫酸盐侵蚀:混凝土表面出现腐蚀现象,开裂和表面剥落明显,并且强度降低。
3. 重度硫酸盐侵蚀:混凝土表面严重腐蚀,大面积剥落和破坏,失去正常的结构强度。
三、混凝土中硫酸盐侵蚀的防治方法1. 选用合适的混凝土配方:在混凝土原材料中添加硫酸盐抑制剂,合理调整水灰比和骨料的优选,以提高混凝土的抗硫酸盐侵蚀性能。
2. 表面保护措施:2.1 表面涂层:使用耐酸碱的涂层材料,如环氧树脂、聚氨酯等,形成一层防护膜,防止硫酸盐的进一步侵蚀。
2.2 防水材料:混凝土表面涂覆防水材料,减少水的渗透,以降低硫酸盐的侵蚀。
3. 抗渗措施:3.1 高性能混凝土:采用高抗渗混凝土,减少水分渗透,降低硫酸盐的侵蚀。
3.2 改善混凝土工艺:优化混凝土制作和施工工艺,减少混凝土产生裂缝的可能性,避免硫酸盐通过裂缝侵蚀混凝土。
混凝土中硫酸盐侵蚀机理及其防治技术

混凝土中硫酸盐侵蚀机理及其防治技术一、前言混凝土是建筑物中常用的材料之一,其具有优良的耐久性和承载力,但是在一些特殊的环境下,如海洋、化工厂等,混凝土会遭受到硫酸盐的侵蚀,导致混凝土的性能下降,甚至失去原有的功能。
因此,探究混凝土中硫酸盐侵蚀的机理,以及相应的防治技术具有重要的理论和实践意义。
二、混凝土中硫酸盐侵蚀机理1. 硫酸盐的作用硫酸盐是混凝土中的一种化学物质,是混凝土中的一种主要成分。
在一些特殊环境下,如化工厂、海洋等,硫酸盐会与混凝土中的水泥石化学反应,形成一种具有腐蚀性的化合物,从而导致混凝土的性能下降。
2. 硫酸盐侵蚀的机理硫酸盐侵蚀是混凝土中常见的一种损伤形式,其机理主要有以下几个方面:(1) 产生化学反应:硫酸盐与水泥石化学反应,生成一种新的化合物,使混凝土中的水泥石发生破坏。
(2) 形成酸性环境:硫酸盐的反应产物具有强酸性,会导致混凝土中的pH值降低,从而加速混凝土的侵蚀和腐蚀。
(3) 生成硫酸盐晶体:硫酸盐在混凝土中结晶,形成晶体,使混凝土中的孔隙度降低,从而导致混凝土的性能下降。
三、混凝土中硫酸盐侵蚀的防治技术1. 混凝土配合比的设计混凝土的配合比设计是防治硫酸盐侵蚀的重要措施之一。
在混凝土配合比设计中,应当考虑到混凝土所处环境的特点,如环境pH值、温度、湿度等因素,从而使混凝土具有更好的耐久性和抗侵蚀性能。
2. 使用防蚀材料为了提高混凝土的耐侵蚀性能,可以在混凝土中加入一些防蚀材料,如聚合物、玻璃纤维等。
这些材料能够提高混凝土的抗压强度和抗拉强度,从而提高混凝土的耐久性和抗侵蚀性能。
3. 表面涂层表面涂层是一种常用的混凝土防蚀技术,可以有效地提高混凝土的抗侵蚀性能。
表面涂层可以采用一些防蚀涂料,如耐酸碱涂料、耐磨涂料等,这些涂料能够降低混凝土的表面粗糙度,从而减少硫酸盐的侵蚀。
4. 增加混凝土中的气孔为了防止硫酸盐侵蚀,可以在混凝土中增加一些气孔,从而降低混凝土的密度,使其更加透气。
硫酸盐侵蚀混凝土机理

硫酸盐侵蚀混凝土机理引言混凝土是一种常用的建筑材料,其广泛应用于各种结构中。
然而,在某些环境条件下,混凝土可能会受到硫酸盐的侵蚀,导致其性能下降甚至损坏。
因此,了解硫酸盐侵蚀混凝土的机理对于设计和维护混凝土结构至关重要。
硫酸盐的来源和特性硫酸盐是一种常见的化学物质,它可以来自于多种来源,包括工业废水、大气污染物和地下水。
硫酸盐具有强烈的腐蚀性,特别是在湿润环境中。
混凝土与硫酸盐的反应当硫酸盐与混凝土接触时,发生一系列复杂的化学反应。
首先,硫酸根离子(SO4^2-)与水中的氢离子(H+)发生反应生成硫酸(H2SO4)。
这个过程会导致溶液变得更加酸性。
接着,硫酸与混凝土中的水化产物反应,包括水化硅酸钙(C-S-H)凝胶和氢氧化钙(CH)。
这些反应会导致水化产物的溶解和破坏,进一步削弱混凝土的结构。
此外,硫酸盐还可以与混凝土中的铝离子反应生成硫铝酸盐。
这种化合物在一定条件下会形成膨胀产物,从而引起混凝土的体积膨胀和开裂。
影响硫酸盐侵蚀的因素硫酸盐侵蚀混凝土的程度受到多种因素的影响。
以下是一些主要因素:1.硫酸盐浓度:浓度越高,侵蚀作用越明显。
2.温度:较高温度下,反应速率加快。
3.湿度:湿润环境有利于溶解和扩散。
4.混凝土配比:合理的配比可以提高混凝土抵抗硫酸盐侵蚀的能力。
5.水泥类型:不同类型的水泥对硫酸盐的抵抗能力不同。
硫酸盐侵蚀的影响硫酸盐侵蚀对混凝土结构的影响是多方面的。
以下是一些主要影响:1.强度损失:硫酸盐侵蚀会导致混凝土的强度下降,甚至造成结构失效。
2.表面剥落:硫酸盐侵蚀会使混凝土表面产生剥落和龟裂现象。
3.颜色变化:硫酸盐侵蚀还可能导致混凝土颜色的改变,影响建筑外观。
4.膨胀和开裂:在一些情况下,硫铝酸盐的形成会引起混凝土体积膨胀和开裂。
防治措施为了防止或减轻硫酸盐对混凝土的侵蚀,可以采取以下措施:1.选择合适的水泥类型:一些特殊用途水泥具有更好的抗硫酸盐能力。
2.控制混凝土配比:合理控制水灰比、矿物掺合料的使用,增加混凝土的密实性和抗渗性。
混凝土的抗硫酸盐侵蚀

混凝土的抗硫酸盐侵蚀混凝土是一种常见的建筑材料,具有良好的耐久性和承载能力。
但是,当混凝土长时间暴露在硫酸盐环境下时,可能会遭受硫酸盐侵蚀,导致混凝土结构的损坏。
因此,研究混凝土的抗硫酸盐侵蚀性能以及相应的改进措施具有重要意义。
一、硫酸盐对混凝土的侵蚀机理混凝土遭受硫酸盐侵蚀主要是由于硫酸盐中的硫酸离子与混凝土中的水合钙、三钙硅酸盐等物质发生化学反应,形成硫酸钙等产物。
这些产物会导致混凝土内部的体积膨胀,并与混凝土内部的孔隙空间产生压力,最终导致混凝土的破坏。
二、提高混凝土的抗硫酸盐侵蚀性能的方法1. 选择合适的混凝土材料混凝土的抗硫酸盐侵蚀性能与材料的成分有着密切的关系。
因此,在设计混凝土配合比时,应选择适当的水泥种类和掺合料,并控制水灰比,以提高混凝土的抗硫酸盐侵蚀性能。
2. 添加抗硫酸盐侵蚀剂抗硫酸盐侵蚀剂是一种可以减缓硫酸盐对混凝土侵蚀的添加剂。
添加抗硫酸盐侵蚀剂可以改善混凝土的耐蚀性能,减少混凝土受硫酸盐侵蚀的速度。
3. 加强混凝土的密实性混凝土的密实性对其抗硫酸盐侵蚀性能有着重要影响。
通过采取密实性强的混凝土施工工艺,例如采用振捣和压实等措施,可以提高混凝土的抗硫酸盐侵蚀性能。
4. 表面防护措施为了进一步提高混凝土的抗硫酸盐侵蚀性能,可以对混凝土表面进行防护处理。
涂覆适当的防渗透剂或者表面涂料可以减少硫酸盐对混凝土的侵蚀,并提高混凝土的耐蚀性。
5. 定期维护与修复定期对混凝土进行维护与修复也是保证其抗硫酸盐侵蚀性能的重要手段。
通过及时修复混凝土表面的损坏和裂缝,可以防止硫酸盐渗入混凝土内部,减轻其侵蚀效应。
总结混凝土的抗硫酸盐侵蚀是保证混凝土结构耐久性的重要方面。
通过选择合适的混凝土材料、添加抗硫酸盐侵蚀剂、加强混凝土的密实性、采取表面防护措施以及定期维护与修复,可以提高混凝土的抗硫酸盐侵蚀性能,延长混凝土结构的使用寿命。
因此,在混凝土结构设计和施工过程中,需要充分考虑硫酸盐侵蚀的影响,并采取相应的措施来提高混凝土的耐蚀性能。
硫酸盐腐蚀混凝土原理

硫酸盐腐蚀混凝土原理
硫酸盐腐蚀混凝土是指硫酸盐与混凝土中的水泥反应,导致混凝土结构的破坏。
硫酸盐腐蚀混凝土的原理主要包括以下几个方面:
1. 硫酸盐与水泥反应
硫酸盐与水泥反应会产生硬化产物,但这种反应也会导致水泥中的钙矾石(C3A)和钙铝酸盐(C4AF)与硫酸盐反应,生成硬化产物和膨胀产物。
这些产物会导致混凝土的体积膨胀,从而破坏混凝土的结构。
2. 硫酸盐与混凝土中的钙反应
硫酸盐还可以与混凝土中的钙反应,生成硬化产物和膨胀产物。
这些产物同样会导致混凝土的体积膨胀,从而破坏混凝土的结构。
3. 硫酸盐与混凝土中的铝反应
硫酸盐还可以与混凝土中的铝反应,生成硬化产物和膨胀产物。
这些产物同样会导致混凝土的体积膨胀,从而破坏混凝土的结构。
4. 硫酸盐与混凝土中的钾、钠反应
硫酸盐还可以与混凝土中的钾、钠反应,生成硬化产物和膨胀产物。
这些产物同样会导致混凝土的体积膨胀,从而破坏混凝土的结构。
总之,硫酸盐腐蚀混凝土的原理是硫酸盐与混凝土中的水泥、钙、铝、钾、钠等成分反应,生成硬化产物和膨胀产物,导致混凝土的体积膨胀,从而破坏混凝土的结构。
为了防止硫酸盐腐蚀混凝土,需要采取一系列的防护措施,如选择合适的水泥、控制混凝土中的硫酸盐含量、采用防水材料等。
混凝土的抗硫酸盐侵蚀

混凝土的抗硫酸盐侵蚀混凝土是一种常见的建筑材料,被广泛应用于各种建筑和基础设施项目中。
然而,由于环境因素的影响,混凝土会受到不同程度的侵蚀,其中硫酸盐侵蚀是一种常见的问题。
本文将探讨混凝土的抗硫酸盐侵蚀能力及相关措施。
一、硫酸盐侵蚀对混凝土的影响硫酸盐侵蚀是指硫酸盐离子与水中的氢氧根离子反应生成硫酸,进而与混凝土中的水化产物发生反应,导致水化产物的破坏和结构的疏松化。
这种侵蚀作用会引起混凝土的体积膨胀、强度下降、表面剥落等现象,最终影响混凝土的使用寿命和安全性能。
二、提高混凝土的抗硫酸盐侵蚀能力的方法为了提高混凝土的抗硫酸盐侵蚀能力,可以采取以下几种方法:1. 选用优质材料混凝土的抗硫酸盐侵蚀能力与材料的质量有着密切的关系。
选择高品质的水泥、矿物掺合料和骨料,可以提高混凝土的整体性能和抗硫酸盐侵蚀能力。
此外,合理控制配合比例,确保混凝土的均匀性和致密性,也是提高抗侵蚀能力的关键。
2. 表面防护措施在混凝土表面施加防护层或使用化学表面剂等方法可以有效减轻硫酸盐对混凝土的侵蚀作用。
常用的表面防护措施包括涂覆防酸漆、喷涂防蚀液、堆浆处理等,这些方法能够形成一层保护膜,减缓硫酸盐的渗透和侵蚀,提高混凝土的抗侵蚀性能。
3. 控制环境因素控制硫酸盐侵蚀的环境因素也是保护混凝土的重要措施。
例如,在设计和施工中合理选择材料与环境的接触形式,减少硫酸盐侵蚀的机会;合理排水,避免水分和硫酸盐的积聚;加强维护和管理,及时修复损坏部位等都能够有效延长混凝土的使用寿命。
三、混凝土抗硫酸盐侵蚀能力的评价标准为了对混凝土的抗硫酸盐侵蚀能力进行评估,常常采用硫酸盐侵蚀试验来判断其耐久性。
硫酸盐侵蚀试验可以通过浸泡、喷洒或循环浸泡硫酸盐溶液来模拟实际的侵蚀环境,根据试验前后的重量损失、抗折强度变化等指标来评估混凝土的抗侵蚀性能。
四、展望随着建筑材料科学技术的不断发展,人们对混凝土抗硫酸盐侵蚀性能的要求也越来越高。
未来,我们可以通过改进混凝土配方、开发新型材料以及加强施工和维护管理等方式,来进一步提高混凝土的抗硫酸盐侵蚀能力,以确保建筑物的安全性和耐久性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单硫酸盐 作用下混 凝土腐蚀
耦合-硫 酸. 盐腐
蚀
化学耦 合-硫酸 盐腐蚀
物理耦合 (包括荷载) -硫酸盐腐蚀.
4.1 单硫酸盐作用下混凝土腐蚀
William 等的研究表明:硫酸根离子从 1%变化到 4%时,混凝土 的腐蚀情况加重明显。
Santhanam等系统地研宄了混凝土在不同硫酸盐腐蚀环境中的腐蚀 机理,总结了混凝土抗硫酸盐腐蚀的试验方法的发展历程,并给出了 硫酸盐腐蚀模型的临界参数取值。
Aanthanam 研究了水泥含铝量对混凝土硫酸盐侵蚀的影响,研究结 果表明低铝水泥可以明显提高钙矾石型硫酸盐侵蚀能力。
Shikrk 通过实验得出:随着硅灰掺量的增加,混凝土的抗硫酸钠腐 蚀能力随之提高,但抗硫酸镁能力逐渐降低。
4.1 单硫酸盐作用下混凝土腐蚀
Rozirre等进行了混凝土和砂浆在PH值为常量的硫酸盐腐蚀 环境中的性能退化,研究表明在水泥中掺入30%的粉煤灰可 以提高砂浆和混凝土的抗硫酸盐腐蚀能力,在水泥中掺入 0160%的高炉矿渣时04混凝土的性能最好。
2
03 硫酸盐腐蚀的机理
3
石膏结晶 型侵蚀
当侵蚀溶液中的硫酸根离子浓度大于1000mg/L时,且水泥石孔隙为 饱和的石灰溶液所填充,发生如下反应:
生成二水石膏,使体积膨胀,产生内应力,当内应力大于混凝土的极限 抗拉强度时就会产生破坏,使混凝土内部开始出现裂缝。
当混凝土具备硫酸根离子、碳酸根离子、SiO3基团、且温度低 15℃、充足水的条件下。水泥基材料中的C-S-H凝胶转变成一种灰白 色、无胶凝能力的烂泥状物质碳硫硅钙石,导致水泥基材料强度大幅 度降低甚至完全丧失强度。
1
硫酸盐结 晶型侵蚀
3
石膏结晶 型侵蚀
5
硫酸镁双 侵蚀型
2
钙矾石结 晶型侵蚀
4
碳硫硅钙 石结晶型
侵蚀
03 腐蚀的机理
1
硫酸盐结 晶型侵蚀
当混凝土孔隙溶液中硫酸盐达到一定浓度时,在没有与混凝土组 分发生化学反应之前,会有硫酸盐结晶析出,具体表现为体积膨胀, 产生的结晶压力使混凝土开裂,以此产生侵蚀现象。
碳硫硅钙石 结晶型侵蚀
4
5
硫酸镁双 侵蚀型
该类侵蚀是所有侵蚀中危害最大的一种,原因是Mg2+和SO42-均能 对混凝土造成腐蚀,并且能够发生协同作用,复合腐蚀的破坏作
用远远大于二者单独腐蚀的加和。反应方程式如下:Biblioteka 04混凝土抗硫酸盐 腐蚀研究
04 抗硫酸盐腐蚀研究
实际服役的混凝土结构暴露于复杂的硫酸盐环境中,其腐蚀 破坏是由材料、物理、化学、应力等诸多因素共同作用、相 互耦合导致的。本报告将以以下三种形式的硫酸盐腐蚀是做 一个简单介绍。
4.1 单硫酸盐作用下混凝土腐蚀
结论
研究表明适当调整混凝土材料组成(如改善水泥用量、
水胶比、掺加矿物掺合料等)能有效提高混凝土抗硫酸盐
侵蚀的能力
.
需要更深入探讨不同材料组成的混凝土微观特征随腐蚀 龄期的变化规律,特别是硫酸根离子在混凝土的运动传输 规律以及粗骨料与水泥砂浆的界面处组分与缺陷的变化情 况以及侵蚀产物的形态特征。
. 高礼雄等研究T掺his加is矿an物掺合料、纤维等材料,对混凝土抗 硫酸盐侵蚀性能ex的am影ple响。表明掺加矿物掺合料(粉煤灰、 矿渣、硅粉等)对tex混t. 凝土抗硫酸盐侵蚀性能的影响存在一 个临界掺量值。
02 杨礼Tehx明iasmi等spalen研究发03现采用三元混.杂纤维(聚丙烯+聚酯纤维+ 钢纤维te)xt. 的混凝土具有很好的抗硫酸镁侵蚀性能,比采用二 元混杂纤维(聚丙烯+钢纤维)的混凝土抗侵蚀性要强。
4.2 物理-硫酸盐耦合作用下的腐蚀研究
W. G. Piasta 等研究认为在硫酸盐及 压应力的共同作用下,压应力的应力 水平对混凝土抗硫酸盐腐蚀性能影响 较大,压应力在一定程度上限制了硫 酸盐引起的膨胀。
Schneider 在施加不同浓度的硝酸铵 溶液和施加不同的应力水平荷载的条 件下,研究了高性能混凝土在两者耦 合作用下的劣化现象。
钙矾石破坏是硫酸盐腐蚀中最常见的一种类型。主要是由于多种硫酸 盐都能与水泥石中Ca(OH) 2 作用生成硫酸钙,硫 酸钙再与水泥石中的固
态水化铝酸钙反应生成钙矾石。钙矾石在结构组成上会结合大量的. 结晶水,
即形成了钙矾石结晶,呈针状结晶,引起很大的内应力,会在混凝土表面 形成大裂缝。
钙矾石结 晶型侵蚀
02
硫酸盐腐蚀的来源 及影响因素
02 硫酸盐腐蚀的来源
外部
内部
大气
土壤
水
自身 组分
02 硫酸盐腐蚀的影响因素
03 硫酸盐腐蚀的类型及机理
03 腐蚀的机理
1
硫酸盐 侵蚀初期
腐蚀后期(210-300天):这一阶 段,混凝土试块腐蚀继续加重, 吸附区剥落严重,粗骨料外漏。 10%浓度下的混凝土试块,侧 面粗骨料几乎全部外漏,顶面 周边剥落现象也较严重,整个 混凝土试块形状趋向“O”形。
腐蚀初期(0-90天左右): 该阶段的腐蚀现象主要是 混凝土吸附区“长毛”。 此现象主要是硫酸盐溶液 在混凝土吸附区由于水分 蒸发使得盐浓度急剧增多 而产生的盐析出结晶现象。 盐结晶的高度随着硫酸盐 浓度的增大而增大增多。
.
硫酸盐侵蚀 后期
2
03 硫酸盐腐蚀的类型
一般根据反应产物及产生破坏现象的不同主要可以分为以下几类:
水泥混凝土抗硫酸盐腐蚀
目录
contents
引言
1
硫酸盐腐蚀类型 及机理
3
研究展望
5
2
硫酸盐腐蚀的来源及 影响因素
4
混凝土抗硫酸盐腐 蚀研究
南方某海港码头混凝土被腐蚀
01 引言
自混凝土产生以来,就以其原材料来源广泛、强 度高、可塑性好、成本低等优点被普遍应用。随着社 会的发展和科学技术的进步,环境污染也成为了人类 面临的一大重要问题,在空气和水中都产生了大量的 腐蚀性的物质,给混凝土结构的使用寿命带来了严峻 的考验。自1892年首先发现硫酸盐对混凝土的腐蚀现 象以来,各国学者先后对硫酸盐腐蚀进行了大量研究。 据统计,全世界因硫酸盐的腐蚀而造成的经济损失非 常巨大,每年的修复费用高达几百亿到几千亿美元。 如何避免硫酸盐对混凝土结构的腐蚀破坏、提高混凝 土抗硫酸盐腐蚀能力已成为混凝土结构耐久性研究的 重要内容之一。我国对混凝土硫酸盐腐蚀的研究起步 较晚,直到20 世纪50年代初,才开始混凝土硫酸盐侵 蚀破坏的研究探索,针对我国硫酸盐含量丰富的地质 条件,在提高混凝土抗硫酸盐腐蚀能力方面也取得了 一定成果。