河北省xx中学高三高考押题(二)理数试题 含答案
河北省正定中学2023届高三模拟预测(二)数学试题(含解析)

河北省正定中学2023届高三模拟预测(二)数学试题学校:___________姓名:___________班级:___________考号:___________三、填空题(1)求证:直线BE ⊥直线1AC ;(2)求平面1BME N 与平面1BEF 所成角的正弦值21.已知函数()()ln 1f x x =+-(1)求()f x 的单调区间;(2)若()()221f x x a x b +≤+++参考答案:故选:C 7.D【分析】首先化简函数,再结合三角函数的性质,即可判断选项【详解】因为()(sin 2023f x =所以直线AP 与CD 所成角的正弦值的范围为2,12⎡⎤⎢⎥⎣⎦,故选项对于C ,因为14AP AC =,所以点P 是1AC 上靠近A 的四等分点,过点P 作平面11CDD C 的垂线,垂足为Q ,过Q 作QK ⊥则PCQ ∠为直线CP 与平面11CDD C 所成的角,由正方体的性质知,Q 是1DC 靠近D 的四等分点,连接在Rt PCQ △中,易得2232,12144PQ CQ ⎛⎫==+-⨯⨯ ⎪ ⎪⎝⎭所以310tan 10PQ PCQ CQ ∠==,故选项C 正确;对于D ,因为点P 在四边形11ACC A 内(含四边形的边)运动,当P 点在1A 或1C 点时,其外接球的体积最大为正方体ABCD 当P 点不在1A 或1C 时,其外接球体积较小,故D 正确.故选:ACD.10.ABD【分析】利用导数的几何意义求出切线方程判断A ;计算f 求出解析式判断C ;利用导数探讨单调性结合零点存在性定理判断【详解】对于A ,函数()21e 2x f x x =-,求导得()e x f x '=-所以()f x 在0x =处的切线方程为10y x -=-,即1x y -+=【点睛】关键点睛:本题D 选项的解决关系是利用内角平分线定理得到坐标()()()001r ,,,,,0G P x y I x y G x 之间的关系,由此得解13.142故答案为:5π217.(1)π3(2)3 421.(1)单调递增区间为1,2⎛-- ⎝(2)证明见解析【分析】(1)在定义域范围内求导函数大于零或小于零的解集即可;线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.。
2025届河北省实验中学高考冲刺押题(最后一卷)数学试卷含解析

2025届河北省实验中学高考冲刺押题(最后一卷)数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( )A .3B .223C .22D .132.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=,则()2AE AC +的最小值为( ) A .232B .12C .252D .133.已知焦点为F 的抛物线2:4C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为( ) A .1y x =+或1y x =-- B .1122y x =+或1122y x =-- C .22y x =+或22y x =--D .22y x =-+4.函数f (x )=21xx e-的图象大致为() A . B .C .D .5.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米B .63厘米C .69厘米D .76厘米6.若θ是第二象限角且sin θ =1213,则tan()4πθ+= A .177-B .717- C .177D .7177.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+,x ,y R ∈,则23x y +=( ) A .2B .53C .43D .328.下图所示函数图象经过何种变换可以得到sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 9.已知点()2,0A 、()0,2B -.若点P 在函数y x =的图象上,则使得PAB △的面积为2的点P 的个数为( )A .1B .2C .3D .410.已知函数()f x 满足()()11f x f x -=+,当1x ≥时,()2f x x x=-,则()}{21x f x +>=( ) A .{3x x <-或}0x > B .{0x x <或}2x > C .{2x x <-或}0x > D .{2x x <或}4x >11.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .12.已知P 与Q 分别为函数260x y --=与函数21y x =+的图象上一点,则线段||PQ 的最小值为( )A .65BCD .6二、填空题:本题共4小题,每小题5分,共20分。
河北省衡水中学高三高考押题(二)理数试题含答案

河北衡水中学高考押题试卷含答案理数试卷(二)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x xx x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B I =( ) A .{0,1} B .{0,1,2}C .{0,1,2,3}D .{1,0,1,2}- 2.设复数z 满足121z i i +=-+,则1||z=( )A .15C D 3.若1c o s ()43πα+=,(0,)2πα∈,则sin α的值为( )B 718D4.已知直角坐标原点O 为椭圆:C 22221(0)x ya b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b+=-没有交点”的概率为( )B D5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率]e 时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6π B .[,]63ππ C.[,]43ππ D .[,]32ππ 6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.313(3)2222π+++ B .3133()22242π+++ C.13222π+ D .13224π+ 7.函数s i n l n ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)na x ab b x+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则a b 的值为( )A .4B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)nn n a a +-=--,*n N ∈,则2017S 的值为( ) A .201610101⨯- B .10092017⨯ C.201710101⨯- D .10092016⨯11.已知函数()s i n ()fx A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x fx f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x 的最大值为2C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行 D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π12.已知函数32()31fx a x x =-+,若()f x 存在三个零点,则a 的取值范围是( ) A .(,2)-∞- B .(2,2)- C.(2,)+∞D .(2,0)(0,2)-U 第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分 13.向量(,)a mn =r ,(1,2)b =-r ,若向量a r ,b r 共线,且||2||a b =r r,则mn 的值为 .14.设点M 是椭圆22221(0)x ya b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若P M Q ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 .16.在平面五边形A B C D E 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3A B =,3A E =,当五边形A B C D E 的面积6393S 时,则B C 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a=,121n n S S -=+*(2,)n n N ≥∈. (1)求数列{}n a 的通项公式; (2)记12log n n ba =*()n N ∈求11{}n n b b +的前n 项和n T . 18.如图所示的几何体A B C D E F 中,底面A B C D 为菱形,2A B a =,120A B C ∠=︒,AC 与BD 相交于O 点,四边形B D E F 为直角梯形,//D E B F ,B D D E ⊥,222D E B F a ==,平面B D E F ⊥底面A B C D .(1)证明:平面A E F ⊥平面AFC ; (2)求二面角E A CF --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关? (3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20. 已知椭圆C :22221(0)x y a b a b +=>>2,且过点23P ,动直线l :y k x m-+交椭圆C 于不同的两点A ,B ,且0O AO B ⋅=u u u r u u u r(O 为坐标原点) (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由. 21. 设函数22()l n fx a x x a x =-+-()a R ∈. (1)试讨论函数()f x 的单调性;(2)设2()2()l n x x aa x ϕ=+-,记()()()h x fx x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.选修4-4:坐标系与参数方程在直角坐标系xO y 中,曲线1C :3cos ,2sin x t y t αα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4s i n ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xO y 中的普通方程,并指出两曲线有公共点时a 的取值范围; (2)当3a =时,两曲线相交于A ,B 两点,求||AB . 23. 选修4-5:不等式选讲. 已知函数()|21||1|f x x x =-++. (1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 参考答案及解析 理科数学(Ⅱ)一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题e < 15.27[,]5416.三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,① 可知121n n S S +=+,② ②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈(2)由(1)及12log n n b a =*()n N ∈,可知121lo g ()2nn b n ==, 所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=L 11111[(1)()()]2231nn -+-++-=+L 1111n n n -=++. 18.解:(1)因为底面A B C D 为菱形,所以A C B D⊥, 又平面B D E F ⊥底面A B C D ,平面B D E F I 平面A B C DB D =, 因此A C ⊥平面B D E F ,从而A C E F ⊥. 又B D D E ⊥,所以D E ⊥平面AB C D , 由2A B a =,2D E B F =,120A B C ∠=︒,可知A ,2BD a =,E,A ,从而222A FF E A E +=,故E F A F⊥. 又A F A C A =I ,所以E F ⊥平面AFC .又E F ⊂平面AEF ,所以平面A E F ⊥平面AFC . (2)取EF 中点G ,由题可知//O G D E ,所以O G ⊥平面A B C D ,又在菱形A B C D 中,O A O B⊥,所以分别以O A uuu r ,O B uuu r ,O G uuur的方向为x ,y ,z 轴正方向建立空间直角坐标系O x y z -(如图示),则(0,0,0)O ,(3,0,0)Aa ,(3,0,0)C a -,(0,,22)E a a -,(0,,2)F a a , 所以(0,,22)(3,0,0)A E a a a =--=u u u r (3,,22)a a a --,(3,0,0)(3,0,0)A C a a =--=u u u r (23,0,0)a -,(0,,2)(0,,22)E F a a a a =--u u u r (0,2,2)a a =-.由(1)可知E F ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)E F a a =-u u u r. 设平面AEC 的法向量为(,,)n x y z =r,则0,0,n A E n A C ⎧⋅=⎪⎨⋅=⎪⎩r uuu r r uuu r 即3220,0,x y z x ⎧--+=⎪⎨=⎪⎩即22,0,y z x ⎧=⎪⎨=⎪⎩令2z =,得4y =,所以(0,4,2)n =r.从而c o s ,n E F <>=r u u u r 3||||63n E F n E F a ⋅==⋅r u u u rr u u u r . 故所求的二面角E A CF --的余弦值为33.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(3210569078037026)1⨯+⨯+⨯+⨯+⨯91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A级4个,B级7个,从而任意选取3个,这3个为A级的个数ξ的可能值为0,1,2,3.则03473117(0)33CCPCξ===,124731128(1)55C CPCξ===,214731114(2)55CCPCξ===,30473114(3)165C CPCξ===.因此可得ξ的分布列为:则728144()0123335555165Eξ=⨯+⨯+⨯+⨯1211=.20.解:(1)由题意可知2ca=,所以222222()a c a b==-,即222a b=,①又点23(P在椭圆上,所以有2223144a b+=,②由①②联立,解得21b=,22a=,故所求的椭圆方程为2212xy+=.(2)设1122(,),(,)A xyB xy,由0O AO B⋅=u u u r u u u r,可知1212x x y y+=.联立方程组22,1,2y k x mxy=+⎧⎪⎨+=⎪⎩消去y化简整理得222(12)4220k x kmx m+++-=,由2222168(1)(12)0km m k∆=--+>,得2212k m+>,所以122412k mx xk+=-+,21222212mx xk-=+,③又由题知12120x x y y +=, 即1212()()0x x k x m k x m +++=, 整理为221212(1)()0k x x k m x xm ++++=. 将③代入上式,得22222224(1)01212m k m k k m m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21. 解:(1)由22()l n fx a x x a x =-+-,可知2'()2a f x x a x =-+-=222(2)()x a x a x ax a x x--+-=. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x fx x ϕ=+=2(2)l n x a xax +--(0)x >, 所以'()2(2)a hx x a x =+--=22(2)(2)(1)x a xa xa x x x+---+=. 所以当(0,)2ax ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02ah =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20ah x x=+>,即'()h x 单调递增,故只需证明1222x x a+>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)l n ,(2)l n ,x ax a x m x ax a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(l n l n )a xx x x -+-=22121222x x x x -+-,从而221212121222l n l n x x x x a x x x x -+-=-+-,故只需证明2212121212122222(l n l n )x x x x x x x x x x +-+->-+-, 即22121212121222l n l n x x x x x x x x x x -+-+=-+-. 因为1212l n l n 0xx x x -+-<, 所以(*)式可化为12121222l n l n x x x x x x --<+,即11212222ln1x x x x x x -<+.因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈.记22()l n 1t Rt t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t tt -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增. 又(1)0R =,因此()0Rt <,(0,1)t ∈,故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=.曲线2C :4s i n ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=. 把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136ax x x=-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5].(2)当3a =时,曲线1C :22(3)(2)9x y -+-=,两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =, 所以482||249A B =-=.23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =.所以2232a b +=,从而227112a b +++=,从而221411a b +=++2222214[(1)(1)]()71a b a ab ++++=++2222214(1)[5()]711b a a b ++++≥++2222214(1)18[527117b a a b +++⋅=++.当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。
河北省曲阳县一中2024学年高考冲刺二数学试题

河北省曲阳县一中2024学年高考冲刺二数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数12z i =+,若复数12,z z 在复平面内对应的点关于虚轴对称,则12z z 等于( ) A .345i+-B .345i+ C .34i -+D .345i-+ 2.已知函数()sin3cos3f x x x =-,给出下列四个结论:①函数()f x的值域是⎡⎣;②函数4f x π⎛⎫+ ⎪⎝⎭为奇函数;③函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦单调递减;④若对任意x ∈R ,都有()()()12f x f x f x ≤≤成立,则12x x -的最小值为3π;其中正确结论的个数是( ) A .1B .2C .3D .43.已知双曲线2222:10,0()x y C a b a b-=>>的左、右顶点分别为12A A 、,点P 是双曲线C 上与12A A 、不重合的动点,若123PA PA k k =, 则双曲线的离心率为( ) ABC .4D .24.设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q =( ) A .4±B .4C .2±D .25.在ABC ∆中,D 在边AC 上满足13AD DC =,E 为BD 的中点,则CE =( ). A .7388BA BC - B .3788BA BC - C .3788BA BC + D .7388BA BC +6.若,,x a b 均为任意实数,且()()22231a b ++-=,则()()22ln x a x b -+- 的最小值为( ) A.B .18C.1D.19-7.已知正方体1111ABCD A B C D -的体积为V ,点M ,N 分别在棱1BB ,1CC 上,满足1AM MN ND ++最小,则四面体1AMND 的体积为( )A .112V B .18VC .16VD .19V8.某人2018年的家庭总收人为80000元,各种用途占比如图中的折线图,2019年家庭总收入的各种用途占比统计如图中的条形图,已知2019年的就医费用比2018年的就医费用增加了4750元,则该人2019年的储畜费用为( )A .21250元B .28000元C .29750元D .85000元9.某设备使用年限x (年)与所支出的维修费用y (万元)的统计数据(),x y 分别为()2,1.5,()3,4.5,()4,5.5,()5,6.5,由最小二乘法得到回归直线方程为ˆˆ1.6yx a +=,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( ) A .8年B .9年C .10年D .11年10.已知函数2,0()4,0xx f x x x -⎧⎪=+>,若()02f x <,则0x 的取值范围是( )A .(,1)-∞-B .(1,0]-C .(1,)-+∞D .(,0)-∞11.设集合{}2320M x x x =++>,集合1{|()4}2xN x =≤ ,则 M N ⋃=( )A .{}2x x ≥- B .{}1x x >-C .{}2x x ≤-D .R12.已知向量()3,1a =,()3,1b =-,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π 二、填空题:本题共4小题,每小题5分,共20分。
河北省衡水中学2018年高考押题(二)理科数学(含答案)

河北衡水中学2018年高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则AB =( ) A .{0,1} B .{0,1,2}C .{0,1,2,3}D .{1,0,1,2}-2.设复数z 满足121z i i +=-+,则1||z=( ) A .5 B .15 C .55 D .525 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( ) A .426- B .426+ C .718D .23 4.已知直角坐标原点O 为椭圆C :22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( ) A .24 B .424- C .22D .222- 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90的正角.已知双曲线E :22221(0,0)x y a b a b -=>>,当其离心率[2,2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6π B .[,]63ππ C .[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A .313(3)2222π+++B .3133()22242π+++ C .13222π+ D .13224π+ 7.函数sin ln y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)n ax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8C .12D .169.执行如图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A .81B .812C .814D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯C .201710101⨯-D .10092016⨯11.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A .函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈ B .函数()g x 的最大值为22C .函数()g x 的图象上存在点P ,使得在P 点处的切线与直线l :31y x =-平行D .方程()2g x =的两个不同的解分别为1x ,2x ,则12x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A .(,2)-∞-B .(2,2)-C .(2,)+∞D .(2,0)(0,2)-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且2a b =,则mn 的值为 . 14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230220220x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则y x 的取值范围为 . 16.在平面五边形ABCDE 中,已知120A ∠=,90B ∠=,120C ∠=,90E ∠=,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a =,*121(2,)n n S S n n N -=+≥∈. (1)求数列{}n a 的通项公式;(2)记*12log ()n n b a n N =∈,求11{}n n b b +的前n 项和n T .18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ;(2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点23(,)22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点).(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21.设函数22()ln ()f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.参考答案及解析理科数学(Ⅱ)一、选择题1-5: BCAAD 6-10: AABCC 11、12:CD二、填空题13. 8- 14. 625122e --<< 15. 27[,]54 16. [3,33) 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,①可知121n n S S +=+,②②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故*1()2n n a n N =∈. (2)由(1)及*12log ()n n b a n N =∈, 可知121log ()2nn b n ==, 所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=++⋅⋅⋅11111[(1)()()]2231n n =-+-+⋅⋅⋅+-+1111n n n =-=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF ⊥.又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,222DE BF a ==,120ABC ∠=,可知22426AF a a a =+=,2BD a =,22426EF a a a =+=,224823AE a a a =+=,从而222AF FE AE +=,故EF AF ⊥.又AF AC A =,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示),则(0,0,0)O ,(3,0,0)A a ,(3,0,0)C a -,(0,,22)E a a -,(0,,2)F a a , 所以(0,,22)(3,0,0)AE a a a =--(3,,22)a a a =--,(3,0,0)(3,0,0)AC a a =--(23,0,0)a =-,(0,,2)(0,,22)EF a a a a =--(0,2,2)a a =-.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)EF a a =-.设平面AEC 的法向量为(,,)n x y z =,则00n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,即32200x y z x ⎧--+=⎪⎨=⎪⎩,即220y z x ⎧=⎪⎨=⎪⎩,令2z =,得4y =, 所以(0,4,2)n =. 从而cos ,n EFn EF n EF ⋅<>=⋅63363a a==. 故所求的二面角E AC F--的余弦值为33.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=,则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=. (2)这100名学生成绩的平均分为1(321005690780100⨯+⨯+⨯370260)91.3+⨯+⨯=, 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3. 则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为: ξ 0 1 2 3 P 733 28551455 4165 则72814()012335555E ξ=⨯+⨯+⨯412316511+⨯=. 20.解:(1)由题意可知22c a =,所以222222()a c a b ==-,即222a b =,① 又点23(,)22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)设11(,)A x y ,22(,)B x y ,由0OA OB ⋅=,可知12120x x y y +=.联立方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩, 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412km x x k +=-+,21222212m x x k -=+,③ 又由题知12120x x y y +=,即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=. 将③代入上式,得22222224(1)01212m km k km m k k -+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21.解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-222(2)()x ax a x a x a x x --+-==. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+2(2)ln (0)x a x a x x =+-->, 所以'()2(2)a h x x a x=+--22(2)(2)(1)x a x a x a x x x +---+==. 所以当(0,)2a x ∈-时,'()0h x <;当(,)2a x ∈-+∞时,'()0h x >;当2a x =时,'()02a h =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20a h x x=+>,即'()h x 单调递增,故只需证明1222x x a +>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln (2)ln x a x a x m x a x a x m ⎧+--=⎪⎨+--=⎪⎩,两式相减并整理得1212(ln ln )a x x x x -+-22121222x x x x =-+-, 从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 设22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos 2sin x t y tαα=+⎧⎨=+⎩,消去参数t 可得普通方程为222(3)(2)x y a -+-=. 曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5]. (2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =, 所以4822493AB =-=. 23.解:(1)因为()211f x x x =-++3,112,1213,2x x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩, 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而 2222142[(1)(1)]117a b a b +=+++++22222214214(1)()[5()]1711b a a a b a b +++=++≥++++ 2222214(1)18[52]7117b a a b ++=+⋅=++. 当且仅当222214(1)11b a a b ++=++时,等号成立,即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。
2023年河北省衡水中学高考数学押题卷(理科)(金卷二)(解析版)

2023年河北省衡水中学高考数学押题卷(理科)(金卷二) 一.选择题:本大题共12小题,每小题5分,在每小题给出地四个选项中.只有一项是符合题目要求地.1.集合M={x|y=lg(x2﹣8x)},N={x|x=2n﹣1,n∈Z},则{1,3,5,7}=( )A.∁R(M∩N)B.(∁R M)∩N C.(∁R M)∩(∁R N)D.M∩(∁R N)2.若复数z满足(+2i﹣3)(4+3i)=3﹣4i,则|z|=( )A.B.C.3D.23.将函数f(x)=3sin2x﹣cos2x地图象向左平移个单位,所得地图象其中地一条对称轴方程为( )A.x=0B.x=C.x=D.x=4.已知等差数列{a n},S n为数列{a n}地前n项和,若S n=an2+4n+a﹣4(a∈R),记数列{}地前n项和为T n,则T10=( )A.B.C.D.5.执行如下图所示地程序框图,若输出地s=86,则判断框内地正整数n地所有可能地值为( )A.7B.6,7C.6,7,8D.8,96.已知夹角为地两个向量,,,向量满足()•()=0,则||地取值范围为( )A.[1,]B.[0,2]C.[1,]D.[0,2]7.若实数x、y满足不等式组,且z=ax+y仅在点P(﹣,)处取得最小值,则a地取值范围为( )A.0<a<1B.a>1C.a≥1D.a≤08.已知双曲线C:﹣=1(a>0,b>0)地左焦点为F1,P为左支上一点,|PF1|=a,P0与P关于原点对称,且=0.则双曲线地渐近线方程为( )A.y=±x B.y=x C.y=x D.y=±2x9.设函数f(x)=,其中对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)成立,且g(0)=1,若不等式f(x﹣a)≤1(a∈R)地解集为D,且2e∈D(e为自然对数地底数),则a地最小值为( )A.0B.1C.e D.2e10.某几何体地三视图如下图所示,且该几何体地体积为,则正视图中x地值为( )A.B.2C.D.11.已知正项数列{a n}地前n项和为S n,a1=2,且对于任意地正整数n≥2, +=1,设数列{b n}满足b n=a sin,其前4n项和为T4n,则满足T4n≤﹣36地最小正整数n地值为( )A.1B.2C.3D.412.若二次函数f(x)=x2+1地图象与曲线C:g(x)=ae x+1(a>0)存在公共切线,则实数a 地取值范围为( )A.(0,]B.(0,]C.[,+∞)D.[,+∞)二.填空题:本大题共4小题.每小题5分.13.数列{a n}地前n项和记为S n,a1=3,a n+1=2S n(n≥1),则S n=_______.14.已知α∈(0,),若cos(α+)=,则tan(2α+)=_______.15.已知点A、F分别是椭圆C: +=1(a>b>0)地上顶点和左焦点,若AF与圆O:x2+y2=4相切于点T,且点T是线段AF靠近点A地三等分点,则椭圆C地标准方程为_______.16.将三项式(x 2+x +1)n 展开,当n=0,1,2,3,…时,得到以下等式:(x 2+x +1)0=1(x 2+x +1)1=x 2+x +1(x 2+x +1)2=x 4+2x 3+3x 2+2x +1(x 2+x +1)3=x 6+3x 5+6x 4+7x 3+6x 2+3x +1…观察多项式系数之间地关系,可以仿照杨辉三角构造如下图所示地广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数地,缺少地数计为0)之和,第k 行共有2k +1个数.若在(1+ax )(x 2+x +1)5地展开式中,x 7项地系数为75,则实数a 地值为_______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.如图,设△ABC 地个内角A 、B 、C 对应地三条边分别为a 、b 、c,且角A 、B 、C 成等差数列,a=2,线段AC 地垂直平分线分别交线段AB 、AC 于D 、E 两点.(1)若△BCD 地面积为,求线段CD 地长;(2)若DE=,求角A 地值.18.如图,已知三棱柱ABC ﹣A 1B 1C 1中,CA=CB,侧面AA 1B 1B 是菱形,且∠ABB 1=60°.(I )求证:AB ⊥B 1C ;(Ⅱ)若AB=B 1C=2,BC=,求二面角B ﹣AB 1﹣C 1地正弦值.19.2023年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2023年1月1日起正式实施.某地计划生育部门为了了解当地家庭对"全面二胎"地赞同程度,从当地200位城市居民中用系统抽样地方法抽取了20位居民进行问卷调查.统计如表:居民编号28问3577110771024778957755卷得分62806028040880457385(注:表中居民编号由小到大排列,得分越高赞同度越高)(Ⅰ)列出该地得分为100分地居民编号;(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样地方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对"全面二胎"地赞同程度(不要求算出具体数值,给出结论即可);(Ⅲ)将得分不低于70分地调查对象称为"持赞同态度".当地计划生育部门想更进一步了解城市居民"持赞同态度"居民地更多信息,将调查所得地频率视为概率,从大量地居民中采用随机抽样地方法每次抽取1人,共抽取了4次.(i )求每次抽取1人,抽到"持赞同态度"居民地概率;(ii )若设被抽到地4人"持赞同态度"地人数为ξ.每次抽取结果相互独立,求ξ地分布列、期望E (ξ)及其方差D (ξ).20.已知点M 是抛物线C 1:y 2=2px (p >0)地准线与x 轴地交点,点P 是抛物线C 1上地动点,点A 、B 在y 轴上,△APB 地内切圆为圆C 2,(x 一1)2+y 2=1,且|MC 2|=3|OM |为坐标原点.(I )求抛物线C 1地标准方程;(Ⅱ)求△APB 面积地最小值.21.已知函数f (x )=x 3﹣x 2+ax +2,g (x )=lnx ﹣bx,且曲线y=f (x )在点(0,2)处地切线与x 轴地交点地横坐标为﹣2.(Ⅰ)求a 地值;(Ⅱ)若m 、n 是函数g (x )地两个不同零点,求证:f (mn )>f (e 2)(其中e 为自然对数地底数).[选修4-1:几何证明选讲]22.如图,直线ED与圆相切于点D,且平行于弦BC,连接EC 并延长,交圆于点A,弦BC 和AD 相交于点F .(I )求证:AB •FC=AC •FB ;(Ⅱ)若D 、E 、C 、F 四点共圆,且∠ABC=∠CAB,求∠BAC .[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy中,直线l地参数方程为(t为参数,φ∈[0,]),以坐标原点O为极点,x轴地非负半轴为极轴建立极坐标系,已知圆C地圆心C地极坐标为(2,),半径为2,直线l与圆C相交于M,N两点.(I)求圆C地极坐标方程;(Ⅱ)求当φ变化时,弦长|MN|地取值范围.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣2|+|x﹣a|.(I)当a=1时,解不等式f(x)≤2;(Ⅱ)当a=3时,若f(x)≥m恒成立,求实数m地取值范围.2023年河北省衡水中学高考数学押题卷(理科)(金卷二)参考解析与试卷解析一.选择题:本大题共12小题,每小题5分,在每小题给出地四个选项中.只有一项是符合题目要求地.1.集合M={x|y=lg(x2﹣8x)},N={x|x=2n﹣1,n∈Z},则{1,3,5,7}=( )A.∁R(M∩N)B.(∁R M)∩N C.(∁R M)∩(∁R N)D.M∩(∁R N)【考点】交、并、补集地混合运算.【分析】先化简集合M,根据N={x|x=2n﹣1,n∈Z},和{1,3,5,7}可得解析.【解答】解:∵x2﹣8x>0,解得x<0或x>8,∴M=(﹣∞,0)∪(8,+∞),∴∁R M=[0,8],∵N={x|x=2n﹣1,n∈Z},∴(∁R M)∩N={1,3,5,7}.故选:B.2.若复数z满足(+2i﹣3)(4+3i)=3﹣4i,则|z|=( )A.B.C.3D.2【考点】复数求模.【分析】把已知等式变形,利用复数代数形式地乘除运算求得,再由求得解析.【解答】解:由(+2i﹣3)(4+3i)=3﹣4i,得=,∴.故选:C.3.将函数f(x)=3sin2x﹣cos2x地图象向左平移个单位,所得地图象其中地一条对称轴方程为( )A.x=0B.x=C.x=D.x=【考点】函数y=Asin(ωx+φ)地图象变换.【分析】利用两角差地正弦函数公式可求f(x)=2sin(2x﹣),根据函数y=Asin(ωx+φ)地图象变换规律可得g(x)=2sin(2x+),利用正弦函数地对称性即可得解.【解答】解:f(x)=sin2x﹣cos2x=2sin(2x﹣),将函数地图象向左平移个单位得到函数g(x)=2sin[2(x+)﹣]=2sin(2x+),由2x+=kπ+,k∈Z,可得所得地图象地对称轴方程为:x=+,k∈Z,当k=0时,可知函数g(x)图象关于直线x=对称.故选:B.4.已知等差数列{a n},S n为数列{a n}地前n项和,若S n=an2+4n+a﹣4(a∈R),记数列{}地前n项和为T n,则T10=( )A.B.C.D.【考点】数列地求和.【分析】由等差数列{a n}地前n项和地性质及其S n=an2+4n+a﹣4,可得a﹣4=0,a=4.于是S n=4n2+4n.=.利用"裂项求和"方法即可得出.【解答】解:由等差数列{a n}地前n项和地性质及其S n=an2+4n+a﹣4,可得a﹣4=0,解得a=4.∴S n=4n2+4n.∴=.∴T10=+…+==.故选:D.5.执行如下图所示地程序框图,若输出地s=86,则判断框内地正整数n地所有可能地值为( )A.7B.6,7C.6,7,8D.8,9【考点】程序框图.【分析】由已知中地程序框图可知:该程序地功能是利用循环结构计算并输出变量s地值,模拟程序地运行过程,分析循环中各变量值地变化情况,可得解析.【解答】解:模拟执行程序,可得s=1,k=0执行循环体,s=2,k=2不满足条件2>n,执行循环体,s=6,k=4不满足条件4>n,执行循环体,s=22,k=6不满足条件6>n,执行循环体,s=86,k=8此时,应该满足条件8>n,执行循环体,退出循环,输出s地值为86,所以,判断框内n地值满足条件:6≤n<8,则判断框内地正整数n地所有可能地值为6,7.故选:B.6.已知夹角为地两个向量,,,向量满足()•()=0,则||地取值范围为( )A.[1,]B.[0,2]C.[1,]D.[0,2]【考点】平面向量数量积地运算.【分析】由向量垂直地条件可得•=0,运用向量地平方即为模地平方,可得|+|=2,再化简运用向量地数量积地定义,结合余弦函数地值域,即可得到所求最大值,进而得到所求范围.【解答】解:由题意可得•=0,可得|+|==2,(﹣)•(﹣)=2+•﹣•(+)=||2﹣||•|+|cos<+,>=0,即为||=2cos<+,>,当cos<+,>=1即+,同向时,||地最大值是2.则||地取值范围为[0,2].故选:B.7.若实数x、y满足不等式组,且z=ax+y仅在点P(﹣,)处取得最小值,则a地取值范围为( )A.0<a<1B.a>1C.a≥1D.a≤0【考点】简单线性规划.【分析】由题意作平面区域,化z=ax+y为y=﹣ax+z,从而可得﹣a<﹣1,从而解得.【解答】解:由题意作平面区域如下,,z=ax+y可化为y=﹣ax+z,∵z=ax+y仅在点P(﹣,)处取得最小值,∴﹣a<﹣1,∴a>1,故选:B.8.已知双曲线C:﹣=1(a>0,b>0)地左焦点为F1,P为左支上一点,|PF1|=a,P0与P关于原点对称,且=0.则双曲线地渐近线方程为( )A.y=±x B.y=x C.y=x D.y=±2x【考点】双曲线地简单性质.【分析】根据双曲线地定义结合直角三角形地边角关系进行求解即可.【解答】解:设双曲线地右焦点为F2,则由对称性知,|P0F2|=|PF1|=a,则|P0F1|﹣|P0F2|=2a,即|P0F1|=3a,∵=0,∴P0F1⊥PF1,即P0F1⊥P0F2,则4c2=(3a)2+a2=10a2=4(a2+b2)即3a2=4b2,则,即=,即双曲线地渐近线方程为y=x,故选:C.9.设函数f(x)=,其中对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)成立,且g(0)=1,若不等式f(x﹣a)≤1(a∈R)地解集为D,且2e∈D(e为自然对数地底数),则a地最小值为( )A.0B.1C.e D.2e【考点】函数地图象.【分析】根据函数地单调性地定义可得g(x)在(﹣∞,0]内单调递增,根据题意作出函数f (x)地简图,利用树形结合地思想即可求出.【解答】解:对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1),∴[g(x2)﹣g(x1)](x2﹣x1)>0,∴g(x)在(﹣∞,0]内单调递增,根据题意作出函数f(x)地简图,如图所述,令f(x)≤1,由f(x)地图象可知x≤e,若f(x﹣a)≤1,则x≤e+a,∴D=(﹣∞,e+a],又2e∈D,∴2e≤a+e,∴a≥e,则a地最小值是e,故选:C.10.某几何体地三视图如下图所示,且该几何体地体积为,则正视图中x地值为( )A.B.2C.D.【考点】由三视图求面积、体积.【分析】由三视图知几何体是直三棱柱ABC﹣DEF为长方体一部分,画出直观图求出几何体地棱,结合几何体地体积和柱体地体积公式列出方程,求出x即可.【解答】解:根据三视图知几何体是:直三棱柱ABC﹣DEF为长方体一部分,直观图如下图所示:其中AB=x,且BC=2,长方体底面地宽是,∵该几何体地体积为,∴=,解得x=,故选:D.11.已知正项数列{a n}地前n项和为S n,a1=2,且对于任意地正整数n≥2, +=1,设数列{b n}满足b n=a sin,其前4n项和为T4n,则满足T4n≤﹣36地最小正整数n地值为( )A.1B.2C.3D.4【考点】数列递推式.【分析】先由递推公式得到数列{a n}是以2为首项吗,以1为公差地等差数列,再求出b n,分别计算前4项和,5﹣8项和,9﹣12项和,找到规律得到T4n递减,当n=2时,满足,问题得以解决.【解答】解:由题意可得,当n=2时, +=1,∴=1,即a22﹣a2﹣6=0,解得a2=3或a2=﹣2(舍去),当n≥2, +=1,∴2(S n+1)+S n﹣1•a n=a n(S n+1),∴2(S n+1)+(S n﹣a n)a n=a n(S n+1),∴2S n+2=a n2+a n,当n≥3时,2S n﹣1+2=a n﹣12+an﹣1,两式相减得2a n=a n2+a n﹣a n﹣12﹣an﹣1,∴a n+a n﹣1=a n2﹣a n﹣12,∵正项数列{a n},∴a n﹣a n﹣1=1,(n≥3),∵a2﹣a1=1,∴数列{a n}是以2为首项吗,以1为公差地等差数列,∴a n=2+(n﹣1)=n+1,∴b n=(n+1)2sin,∴当n=1时,sin=1,n=2时,sinπ=0,n=3时,sin=﹣1,n=4时,sin2π=0,∴b1+b2+b3+b4=4+0﹣16+0=﹣12,b5+b6+b7+b8=36+0﹣64+0=﹣28,b9+b10+b11+b12=102+0﹣122+0=﹣44,…b4n﹣3+b4n﹣2+b4n﹣1+b n=(4n﹣2)2﹣(4n)2=﹣2(8n﹣2)=4﹣16n<0,∴T4n递减,当n=2时,满足,故选:B12.若二次函数f(x)=x2+1地图象与曲线C:g(x)=ae x+1(a>0)存在公共切线,则实数a 地取值范围为( )A.(0,]B.(0,]C.[,+∞)D.[,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】设公切线与f(x)、g(x)地切点坐标,由导数几何意义、斜率公式列出方程化简,分离出a后构造函数,利用导数求出函数地单调区间、最值,即可求出实数a地取值范围.【解答】解:设公切线与f(x)=x2+1地图象切于点(x1,),与曲线C:g(x)=ae x+1切于点(x2,),∴2x1===,化简可得,2x1=,得x1=0或2x2=x1+2,∵2x1=,且a>0,∴x1>0,则2x2=x1+2>2,即x2>1,由2x1=得a==,设h(x)=(x>1),则h′(x)=,∴h(x)在(1,2)上递增,在(2,+∞)上递减,∴h(x)max=h(2)=,∴实数a地取值范围为(0,],故选:A.二.填空题:本大题共4小题.每小题5分.13.数列{a n}地前n项和记为S n,a1=3,a n+1=2S n(n≥1),则S n=3n.【考点】数列递推式.【分析】由a n+1=2S n(n≥1),可得S n+1﹣S n=2S n,即S n+1=3S n利用等比数列地通项公式即可得出.【解答】解:∵a n+1=2S n(n≥1),∴S n+1﹣S n=2S n,即S n+1=3S n,∴数列{S n}是等比数列,首项为S1=3,公比为q=3,∴S n=3•3n﹣1=3n.故解析为:3n.14.已知α∈(0,),若cos(α+)=,则tan(2α+)=.【考点】三角函数中地恒等变换应用.【分析】由同角三角函数关系得sin(α+)=,由二倍角公式得tan[2(α+)]=,由两角差地正切公式得结果.【解答】解:∵cos(α+)=,α∈(0,),∵cos2(α+)+sin2(α+)=1,α+∈(,)∴sin(α+)=,∴tan(α+)=,∴tan[2(α+)]==,∴tan(2α+)=tan(2α+﹣)=tan[2(α+)﹣]=.15.已知点A、F分别是椭圆C: +=1(a>b>0)地上顶点和左焦点,若AF与圆O:x2+y2=4相切于点T,且点T是线段AF靠近点A地三等分点,则椭圆C地标准方程为=1.【考点】椭圆地简单性质;椭圆地标准方程.【分析】如下图所示,设|AT|=m,|FT|=2m,即|AF|=3m.由△AOT∽△OFT,可得:|OT|2=|TF||AT|,解得m.又|OT|=2,可得b2=2+m2.c2=9m2﹣b2=12.可得a2=b2+c2,即可得出.【解答】解:如下图所示,设|AT|=m,|FT|=2m,即|AF|=3m.由△AOT∽△OFT,可得:|OT|2=|TF||AT|,∴4=2m2,解得m=.又|OT|=2,∴b2=2+22=6.c2=9m2﹣b2=12.∴a2=b2+c2=18.∴椭圆C地标准方程为=1.故解析为:=1.16.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:(x2+x+1)0=1(x2+x+1)1=x2+x+1(x2+x+1)2=x4+2x3+3x2+2x+1(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1…观察多项式系数之间地关系,可以仿照杨辉三角构造如下图所示地广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数地,缺少地数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5地展开式中,x7项地系数为75,则实数a 地值为1.【考点】归纳推理.【分析】由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5地展开式中,x7项地系数为30+45a=75,即可求出实数a地值.【解答】解:由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5地展开式中,x7项地系数为30+45a=75,所以a=1.故解析为:1.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.如图,设△ABC地个内角A、B、C对应地三条边分别为a、b、c,且角A、B、C成等差数列,a=2,线段AC地垂直平分线分别交线段AB、AC于D、E两点.(1)若△BCD地面积为,求线段CD地长;(2)若DE=,求角A地值.【考点】正弦定理;余弦定理.【分析】(1)先根据三角形地内角A,B,C成等差数列,求出B地度数,再根据三角地面积公式求出BD,再根据余弦定理即可求出,(2)根据垂直平分线地性质得到AC=2AE=,再根据正弦定理,即可求出解析.【解答】解:(1)三角形地内角A,B,C成等差数列,则有2B=A+C.又A+B+C=180°,∴B=60°,∵△BCD地面积为,a=2∴BD•BC•sin60°=,∴BD=,由余弦定理,CD2=BD2+BC2+2BD•BC•cos60°=+4+2××2×=,∴CD=,(2)∵线段AC地垂直平分线分别交线段AB、AC于D、E两点,DE=,∴AE=,∴AC=2AE=2×=,由正弦定理可得=,即=,∴cosA=,∵0<A<180°,∴A=45°18.如图,已知三棱柱ABC﹣A1B1C1中,CA=CB,侧面AA1B1B是菱形,且∠ABB1=60°.(I)求证:AB⊥B1C;(Ⅱ)若AB=B1C=2,BC=,求二面角B﹣AB1﹣C1地正弦值.【考点】二面角地平面角及求法;直线与平面垂直地性质.【分析】(1)取AB中点,连接OC,OB1,证明AB⊥平面OCB1,即可证明.AB⊥B1C;(2)建立空间坐标系,求出平面地法向量,利用向量法先求出二面角地余弦值,然后求正弦值即可.【解答】解:(1)∵四边形AA1B1B是菱形,且∠ABB1=60°.∴△ABB1是等边三角形,取AB中点,连接OC,OB1,则AB⊥OB1,∵CA=CB,∴AB⊥OC,∵OC∩OB1=O,OB1,OC⊂平面OB1C,∴AB⊥平面OCB1,∴AB⊥B1C;(2)∵△ABB1是等边三角形,AB=2,∴OB1=,∵在△ABC中,AB=2,BC=AC=,O为AB地中点,∴OC=1,∵B1C=2,0B1=,∴OB12+OC2=B1C2,∴OB1⊥OC,∵OB1⊥AB,∴OB1⊥平面ABC,以O为坐标原点,OB,OC,OB1地方向为x,y,z轴地正向,建立如下图所示地坐标系,可得A(﹣1,0,0),B1(0,0,),B(1,0,0),C(0,1,0),则=+=+=(﹣1,1,),则C(﹣1,1,),=(1,0,),=(0,1,),则平面BAB1地一个法向量为=(0,1,0),设=(x,y,z)为平面AB1C1地法向量,则:•=x+z=0,•=y+z=0,令z=﹣1,则x=y=,可得=(,,﹣1),故cos<,>==,则sin<,>==,即二面角B﹣AB1﹣C1地正弦值是.19.2023年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2023年1月1日起正式实施.某地计划生育部门为了了解当地家庭对"全面二胎"地赞同程度,从当地200位城市居民中用系统抽样地方法抽取了20位居民进行问卷调查.统计如表:居民编号2 8问卷得分3652787161072781024478788945577735 855(注:表中居民编号由小到大排列,得分越高赞同度越高)(Ⅰ)列出该地得分为100分地居民编号;(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样地方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对"全面二胎"地赞同程度(不要求算出具体数值,给出结论即可);(Ⅲ)将得分不低于70分地调查对象称为"持赞同态度".当地计划生育部门想更进一步了解城市居民"持赞同态度"居民地更多信息,将调查所得地频率视为概率,从大量地居民中采用随机抽样地方法每次抽取1人,共抽取了4次.(i)求每次抽取1人,抽到"持赞同态度"居民地概率;(ii)若设被抽到地4人"持赞同态度"地人数为ξ.每次抽取结果相互独立,求ξ地分布列、期望E(ξ)及其方差D(ξ).【考点】离散型随机变量及其分布列;列举法计算基本事件数及事件发生地概率;离散型随机变量地期望与方差.【分析】(Ⅰ)数列{a n}为由小到大排列居民编号,依题意知数列{a n}为等差数列,即可求出解析;(Ⅱ)根据茎叶图和平均数中位数即可判断农村居民"全面二胎"地赞同程度要高于城市居民;(Ⅲ)(i)城市居民"持赞同态度"地居民有12人,即可求出解析,(ii)由题意知ξ~B(4,),故ξ地分步列如下表,根据数学期望和方差地计算公式计算即可.【解答】解:(Ⅰ)记数列{a n}为由小到大排列居民编号,依题意知数列{a n}为等差数列,公差d=10,且a3=28,得到为100分地居民编号分别对应为a6,a9,则a6=a3+3d=58,a9=a3+6d=88,所以得分为100分地居民编号分别为58,88,(Ⅱ)通过茎叶图可以看出,该地区农村居民问卷得分地平均值明显高于城市居民问卷得分地平均值,农村居民问卷得分地中位数为(94+96)=95,城市居民问卷得分地中位数为(72+73)=72.5,农村居民问卷得分地中位数明显高于城市居民问卷得分地中位数,所以农村居民"全面二胎"地赞同程度要高于城市居民;(Ⅲ)(i)城市居民"持赞同态度"地居民有12人,每次抽到"持赞同态度"居民地概率为=,(ii)由题意知ξ~B(4,),故ξ地分步列如下表,ξ01234PE(ξ)=4×=所以D(ξ)=np(1﹣p)=4××=20.已知点M是抛物线C1:y2=2px(p>0)地准线与x轴地交点,点P是抛物线C1上地动点,点A、B在y轴上,△APB地内切圆为圆C2,(x一1)2+y2=1,且|MC2|=3|OM|为坐标原点.(I)求抛物线C1地标准方程;(Ⅱ)求△APB面积地最小值.【考点】抛物线地简单性质;抛物线地标准方程.【分析】(I)求出M(﹣,0),可得=,即可求抛物线C1地标准方程;(Ⅱ)设P(x0,y0),A(0,b),B(0,c),求得直线PA地方程,运用直线和圆相切地条件:d=r,求得b,c地关系,求得△PAB地面积,结合基本不等式,即可得到最小值.【解答】解:(I)由题意,C2(1,0),∵|MC2|=3|OM|,∴M(﹣,0),∴=,∴p=1,∴抛物线C1地标准方程是y2=2x;(Ⅱ)设P(x0,y0),A(0,b),B(0,c),直线PA地方程为:(y0﹣b)x﹣x0y+x0b=0,又圆心(1,0)到PA地距离为1,即=1,整理得:(x0﹣2)b2+2y0b﹣x0=0,同理可得:(x0﹣2)c2+2y0c﹣x0=0,所以,可知b,c是方程(x0﹣2)x2+2y0x﹣x0=0地两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c﹣b)2=,因为y02=2x0,所以:|b﹣c|=||所以S=|b﹣c|•|x0|=(x0﹣2)++4≥8当x0=4时上式取得等号,所以△PAB面积最小值为8.21.已知函数f(x)=x3﹣x2+ax+2,g(x)=lnx﹣bx,且曲线y=f(x)在点(0,2)处地切线与x轴地交点地横坐标为﹣2.(Ⅰ)求a地值;(Ⅱ)若m、n是函数g(x)地两个不同零点,求证:f(mn)>f(e2)(其中e为自然对数地底数).【考点】利用导数研究曲线上某点切线方程;函数零点地判定定理.【分析】(Ⅰ)求出f(x)地导数,可得切线地斜率,运用两点地斜率公式可得a=3:(Ⅱ)求出f(x)地导数,可得f(x)在R上递增,要证f(mn)>f(e2),只需证mn>e2,m、n是函数g(x)地两个不同零点,可得lnm=bm,lnn=bn,相加减,可得ln(mn)=ln•=ln•,设m>n>0,令t=>1,则h(t)=lnt•,只需证得当t>1时,h(t)>2.设φ(t)=lnt+﹣2,求得导数,判断单调性,即可得证.【解答】解:(Ⅰ)函数f(x)=x3﹣x2+ax+2地导数为f′(x)=x2﹣2x+a,可得曲线y=f(x)在点(0,2)处地切线斜率为k=a,由两点地斜率可得=a,解得a=3;(Ⅱ)证明:f(x)=x3﹣x2+x+2地导数为f′(x)=x2﹣2x+1=(x﹣1)2≥0,即有f(x)在R上递增,要证f(mn)>f(e2),只需证mn>e2,m、n是函数g(x)地两个不同零点,可得lnm=bm,lnn=bn,相减可得lnm﹣lnn=b(m﹣n),相加可得lnm+lnn=b(m+n),可得b==,即有ln(mn)=ln•=ln•,设m>n>0,令t=>1,则h(t)=lnt•,下证当t>1时,h(t)>2.即当t>1时,lnt•>2,即lnt>=2(1﹣),只需证t>1时,lnt+﹣2>0,设φ(t)=lnt+﹣2,则φ′(t)=﹣=>0,即φ(t)在(1,+∞)递增,可得φ(t)>φ(1)=0,即ln(mn)>2,故f(mn)>f(e2).[选修4-1:几何证明选讲]22.如图,直线ED与圆相切于点D,且平行于弦BC,连接EC并延长,交圆于点A,弦BC和AD 相交于点F.(I)求证:AB•FC=AC•FB;(Ⅱ)若D、E、C、F四点共圆,且∠ABC=∠CAB,求∠BAC.【考点】与圆有关地比例线段;圆內接多边形地性质与判定.【分析】(I)连接CD,证明:△CFD∽△ACD,得到,即可证明AB•FC=AC•FB;(Ⅱ)证明∠ACF=∠CFA.∠EAD=∠DAB,即可求∠BAC.【解答】(I)证明:连接CD,∵直线ED与圆相切于点D,∴∠EDC=∠EAD,∵ED∥BC,∴∠EDC=∠DCB,∴∠EAD=∠DCB,∴∠CAD=∠DCF,∵∠CDF=∠ADC,∴△CFD∽△ACD,∴,∴AB•FC=AC•FB;(Ⅱ)解:∵D、E、C、F四点共圆,∴∠CFA=∠CED,∵ED∥BC,∴∠ACF=∠CED,∴∠ACF=∠CFA.由(I)可知∠EAD=∠DCB,∠DCB=∠DAB,∴∠EAD=∠DAB,设∠EAD=∠DAB=x,则∠ABC=∠CAB=2x,∴∠CFA=∠FBA+∠FAB=3x,在等腰△ACF中,∠CFA+∠ACF+∠CAF=π=7x,∴x=∴∠BAC=2x=.[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy 中,直线l 地参数方程为(t 为参数,φ∈[0,]),以坐标原点O 为极点,x 轴地非负半轴为极轴建立极坐标系,已知圆C 地圆心C 地极坐标为(2,),半径为2,直线l 与圆C 相交于M,N 两点.(I )求圆C 地极坐标方程;(Ⅱ)求当φ变化时,弦长|MN |地取值范围.【考点】参数方程化成普通方程;简单曲线地极坐标方程.【分析】(I )由圆C 地圆心C 地极坐标为(2,),即,半径为2,可得圆地标准方程为: =4,展开 利用互化公式即可化为极坐标方程.(II )把直线l 地参数方程代入圆C 地方程可得:t 2+2tcos φ﹣3=0,利用根与系数地关系可得:|MN |=|t 1﹣t 2|=,再利用三角函数地单调性与值域即可得出.【解答】解:(I )由圆C 地圆心C 地极坐标为(2,),即,半径为2,可得圆地标准方程为:=4,展开可得:x 2+y 2﹣2x ﹣2y=0,化为极坐标方程:ρ2﹣2ρcos θ﹣2ρsin θ=0,即ρ=2cos θ+2sin θ=4cos .(II )把直线l 地参数方程代入圆C 地方程可得:t 2+2tcos φ﹣3=0,∴t 1+t 2=﹣2cos φ,t 1t 2=﹣3.∴|MN |=|t 1﹣t 2|==2,∵φ∈[0,],∴cos φ∈,cos 2φ∈.∴|MN |∈.[选修4-5:不等式选讲]24.已知函数f (x )=|x ﹣1|+|x ﹣2|+|x ﹣a |.(I)当a=1时,解不等式f(x)≤2;(Ⅱ)当a=3时,若f(x)≥m恒成立,求实数m地取值范围.【考点】绝对值三角不等式;绝对值不等式地解法.【分析】(Ⅰ)a=1时,通过讨论x地范围,求出各个区间上地不等式地解集,取并集即可;(Ⅱ)a=3时,通过讨论x地范围,求出f(x)地最小值,从而求出m地范围即可.【解答】解:(Ⅰ)a=1时,f(x)=2|x﹣1|+|x﹣2|=,x≤1时,4﹣3x≤2,解得:≤x≤1,1<x<2时,x≤2,∴1<x<2,x≥2时,3x﹣4≤2,∴x=2,综上,不等式地解集是{x|≤x≤2};(Ⅱ)a=3时,f(x)=,x≤1时,6﹣3x≥3,∴f(x)≥3,1<x≤2时,2≤4﹣x<3,∴2≤f(x)<3,2<x≤3时,2<f(x)≤3,x>3时,3x﹣6>3,∴f(x)>3,综上,x=2时,f(x)地最小值是2,若f(x)≥m恒成立,则m≤2,故实数m地范围是(﹣∞,2].2023年9月8日。
2017届河北省衡水中学高三高考押题2卷数学(理)试题(解析版)_Word版_含答案

河北省衡水中学2017届高三高考押题2卷理数试题一、选择题1.设集合2{|60,}A x x x x Z =--<∈, {|,,}B z z x y x A y A ==-∈∈,则集合A B ⋂=( )A. {}0,1B. {}0,1,2C. {}0,1,2,3D. {}1,0,1,2- 【答案】B【解析】由题意可得: {}{}1,0,1,2,0,1,2,3A B =-= ,则集合A B ⋂={}0,1,2. 本题选择B 选项.2.设复数满足,则=( )A. B. C. D.【答案】C【解析】由题意可得: .3.若1cos 43πα⎛⎫+= ⎪⎝⎭, 0,2πα⎛⎫∈ ⎪⎝⎭,则sin α的值为( ) A.426- B. 426+ C. 718D. 23 【答案】A 【解析】由题意可得:2322,,sin 1cos 444443πππππααα⎛⎫⎛⎫⎛⎫+∈∴+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 结合两角和差正余弦公式有:42sin sin sin cos cos sin 444444ππππππαααα⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ . 本题选择A 选项.4.已知直角坐标原点O 为椭圆2222:1(0)x y C a b a b+=>>的中心, 1F , 2F 为左、右焦点,在区间()0,2任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.4B. 44-C. 2D. 22【答案】A【解析】满足题意时,椭圆上的点()cos ,sin P a b θθ 到圆心()0,0O 的距离:()()222222cos 0sin 0d a b r a b θθ=-+->=+ ,整理可得2222222222sin sin 11,111sin 1sin 1sin 2b b e a a θθθθθ>∴=-<-=<+++ ,据此有:21,02e e <<<,题中事件的概率0220p -==- . 本题选择A 选项.5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E : 22221(0,0)x y a b a b-=>>,当其离心率e ⎤∈⎦时,对应双曲线的渐近线的夹角的取值范围为( ) A. 0,6π⎡⎤⎢⎥⎣⎦ B. ,63ππ⎡⎤⎢⎥⎣⎦ C. ,43ππ⎡⎤⎢⎥⎣⎦ D. ,32ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】由题意可得: [][]222222212,4,1,3c b b e a a a==+∈∴∈ ,设双曲线的渐近线与x 轴的夹角为θ , 双曲线的渐近线为b y x a =±,则,46ππθ⎡⎤∈⎢⎥⎣⎦, 结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦. 本题选择D 选项.6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A. 31332222π⎛⎫+++ ⎪ ⎪⎝⎭B. 313322242π⎛⎫+++ ⎪ ⎪⎝⎭C.13222π+ D. 13224π+ 【答案】A 【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:2222313111=3,=3434232V a a V a a ππ⨯⨯⨯=⨯⨯=圆锥三棱锥由题意: 223132,242a a a ππ+=+∴= ,据此可知:31=2223242S a ππ⨯+⨯⨯=+底 ,3313=1324S ππ⨯⨯=圆锥侧 ,1=2211222S ⨯⨯=棱锥侧 ,它的表面积是 31332222π⎛⎫+++⎪ ⎪⎝⎭.本题选择A 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.7.函数sin ln y x x =+在区间[]3,3-的图象大致为( )A. B. C.D.【答案】A【解析】由题意()()sin ln sin ln f x x x x x -=-+-=-+ ,则()()f x f x -≠ 且()()f x f x -≠- ,函数为非奇非偶函数,选项C,D 错误; 当0x +→ 时, sin 0,ln x x →→-∞ ,则函数值y →-∞ ,排除选项B. 本题选择A 选项.8.二项式1(0,0)nax a b bx ⎛⎫+>> ⎪⎝⎭的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A. 4B. 8C. 12D. 16 【答案】B【解析】二项式1(0,0)nax a b bx ⎛⎫+>> ⎪⎝⎭的展开式中只有第6项的二项式系数最大,则10n = , 二项式101ax bx ⎛⎫+ ⎪⎝⎭ 展开式的通项公式为:()1010102110101rrrr r r rr T C ax C a b xbx ----+⎛⎫==⨯ ⎪⎝⎭, 由题意有: 282102137331103C a b T T C a b-+-+== ,整理可得: 8ab = .本题选择D 选项.点睛:二项式系数与展开式项的系数的异同一是在T r +1=r n C a n -r b r 中, rn C 是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指rn C ,而后者是字母外的部分,前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.二是二项式系数的最值与增减性与指数n 的奇偶性有关,当n 为偶数,中间一项的二项式系数最大;当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值. 9.执行下图的程序框图,若输入的0x =, 1y =, 1n =,则输出的p 的值为( )A. 81B. 812C. 814D. 818【答案】C【解析】依据流程图运行程序,首先 初始化数值, 0,1,1x y n === ,进入循环体:1,12y y nx n y +====,时满足条件2y x ≥ ,执行12n n =+= ,进入第二次循环,32,22y y n xn y +====,时满足条件2y x ≥ ,执行13n n =+= ,进入第三次循环,99,24y y n x n y +====,时不满足条件2y x ≥ ,输出814p xy == . 本题选择C 选项.10.已知数列11a =, 22a =,且()2221nn n a a +-=--, *n N ∈,则2017S 的值为( )A. 201610101⨯-B. 10092017⨯C. 201710101⨯-D. 10092016⨯【答案】C【解析】由递推公式可得:当n 为奇数时, 24n n a a +-= ,数列{}21n a - 是首项为1,公差为4的等差数列, 当n 为偶数时, 20n n a a +-= ,数列{}21n a - 是首项为2,公差为0的等差数列,()()20171320172420161100910091008410082220171010 1.S a a a a a a =+++++++=+⨯⨯⨯+⨯=⨯-L L本题选择C 选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项. 11.已知函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的图象如图所示,令()()()'g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B. 函数()g x 的最大值为2C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行D. 方程()2g x =的两个不同的解分别为1x , 2x ,则12x x -最小值为2π 【答案】C【解析】由函数的最值可得2A = ,函数的周期2242,136T ππππωω⎛⎫=⨯-==∴= ⎪⎝⎭,当6x π=时, ()12,2623x k k k Z πππωϕϕπϕπ+=⨯+=+∴=+∈ ,令0k = 可得3πϕ=,函数的解析式()2sin 3f x x π⎛⎫=+⎪⎝⎭.则: ()()()'223334712g x f x f x sin x cos x x x πππππ=+⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=++ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭结合函数的解析式有()7'12g x x π⎛⎫⎡=+∈- ⎪⎣⎝⎭,而3⎡∉-⎣ ,选项C 错误,依据三角函数的性质考查其余选项正确.本题选择C 选项.12.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A. (),2-∞-B. ()2,2-C. ()2,+∞D. ()()2,00,2-⋃ 【答案】D【解析】很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==, 由题意得不等式: ()()122281210f x f x a a=-+< ,即: 2241,4,22a a a><-<< ,综上可得a 的取值范围是 ()()2,00,2-⋃.本题选择D 选项.点睛:函数零点的求解与判断(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.二、填空题13.向量(),a m n =r , ()1,2b =-r ,若向量a r , b r 共线,且2a b =r r,则mn 的值为_________. 【答案】-8【解析】由题意可得: ()22,4a b ==-r r 或()22,4a b =-=-r r,则: ()248mn =-⨯=- 或()248mn =⨯-=- .14.在平面直角坐标系xoy 中,点M 是椭圆()222210x y a b a b+=>>上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P 、Q 两点.若MPQ V 为锐角三角形,则该椭圆离心率的取值范围是 .【解析】试题分析:∵△PQM 是锐角三角形,∴2,c 4b QMD PMD aπ∠=∠<<∴222cos cos ,42MD c QMD ac a c b QM aπ∠==>=<-2222,a c ac a c >-<-∴2210,10e e e +->+-<解得e e ><故答案为:1,22⎛⎫⎪ ⎪⎝⎭15.设x , y 满足约束条件230,{220,220,x y x y x y +-≥-+≥--≤则yx的取值范围为__________. 【答案】27,54⎡⎤⎢⎥⎣⎦【解析】绘制不等式组表示的可行域如图所示,目标函数yx表示可行域内的点(),xy 与坐标原点()0,0之间连线的斜率,目标函数在点47,55A⎛⎫⎪⎝⎭处取得最大值74,在点51,42⎛⎫⎪⎝⎭处取得最小值25,230,220,220,x yx yx y+-≥-+≥--≤则yx的取值范围为27,54⎡⎤⎢⎥⎣⎦.点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.16.在平面五边形ABCDE中,已知120A∠=︒,90B∠=︒,120C∠=︒,90E∠=︒,3AB=,3AE=,当五边形ABCDE的面积63,93S⎡∈⎣时,则BC 的取值范围为__________.【答案】3,33【解析】由题意可设:BC DE a==,则:()21313918393333363,93 2244ABCDES a a⎡=⨯+⨯=-∈⎣,则:当33a=时,面积由最大值3;当3a=时,面积由最大值63;结合二次函数的性质可得:BC的取值范围为3,33.三、解答题17.已知数列{}n a 的前n 项和为n S , 112a =, ()*1212,n n S S n n N -=+≥∈. (1)求数列{}n a 的通项公式;(2)记()*12log n n b a n N =∈求11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)()*12n na n N =∈;(2)1n n +. 【解析】试题分析: (1)由题意可得数列{}n a 是以12为首项, 12为公比的等比数列, 12n n a = ()*n N ∈. (2)裂项求和, 11111n n b b n n +=-+,故1n n T n =+. 试题解析:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,① 可知121n n S S +=+,② ②-①得12n n a a +=,即()1122n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项, 12为公比的等比数列,故12n n a =()*n N ∈. (2)由(1)及12log n n b a = ()*n N ∈,可知121log 2nn b n ⎛⎫== ⎪⎝⎭,所以()1111111n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=L1111112231n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-++-= ⎪ ⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L 1111nn n -=++. 18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形, 2AB a =, 120ABC ∠=︒, AC 与BD 相交于O 点,四边形BDEF 为直角梯形, //DE BF ,BD DE ⊥, 222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值. 【答案】(1)见解析;(23 【解析】试题分析:(1)利用题意证得EF ⊥平面AFC .由面面垂直的判断定理可得平面AEF ⊥平面AFC .(2)结合(1)的结论和题意建立空间直角坐标系,由平面的法向量可得二面角E AC F --3 试题解析:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF ⋂平面ABCD BD =, 因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =, 222DE BF a ==, 120ABC ∠=︒, 可知22426AF a a a =+, 2BD a =,22426EF a a a =+=, 224823AE a a a +=,从而222AF FE AE +=,故EF AF ⊥.又AF AC A ⋂=,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD中, OA OB ⊥,所以分别以OA u u u r , OB uuu r , OG u u u r的方向为x , y , z 轴正方向建立空间直角坐标系O xyz -(如图示),则()0,0,0O , ()3,0,0Aa , ()3,0,0C a -, ()0,,22E a a -, ()0,2F a a ,所以())0,,223,0,0AE a a a =--=u u u r()3,,22a a a --, ())3,0,03,0,0AC a a =--=u u u r()23,0,0a -,()()0,,20,,22EF a a a a =--u u ur()0,2,2a a =-.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为()0,2,2EF a a =-u u u r.设平面AEC 的法向量为(),,nx y z =r,则0,{0,n AE n AC ⋅=⋅=u u u r r u u u rr 即3220,{0,x y z x --+==即22,{0,y z x ==令2z =,得4y =, 所以()0,4,2n =r.从而cos ,n EF =u u u r r 363n EF an EF ⋅==⋅u u u r r u u u r r . 故所求的二面角E AC F --的余弦值为33.点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.【答案】(1)448;(2)该校高三年级目前学生的“考前心理稳定整体”已过关;(3)见解析.【解析】试题分析:(1)由频率分布直方图估算该校高三年级学生获得成绩为B 的人数为448; (2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关. (3) ξ的可能值为0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为1211. 试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为()1321005690780370260100⨯+⨯+⨯+⨯+⨯91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个, B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则()03473117033C C P C ξ===, ()124731128155C C P C ξ===, ()214731114255C C P C ξ===, ()304731143165C C P C ξ===. 因此可得ξ的分布列为:则()7281440123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.已知椭圆C : 22221(0)x y a b a b +=>>223P ⎝⎭,动直线l : y kx m -+交椭圆C 于不同的两点A , B ,且0OA OB ⋅=u u u r u u u r(O 为坐标原点)(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.【答案】(1)2212x y +=;(2)22322m k -=. 【解析】试题分析:(1)由题意求得21b =, 22a =,故所求的椭圆方程为2212x y +=. (2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得22322m k -=为定值.试题解析: (1)由题意可知c a =()222222a c a b ==-,即222a b =,①又点,22P ⎛⎫⎪ ⎪⎝⎭在椭圆上,所以有2223144a b +=,② 由①②联立,解得21b =, 22a =,故所求的椭圆方程为2212x y +=. (2)设()()1122,,,A x y B x y ,由0OA OB ⋅=u u u r u u u r,可知12120x x y y +=.联立方程组22,{1,2y kx m x y =++=消去y 化简整理得()222124220k x kmx m +++-=,由()()22221681120k m m k ∆=--+>,得2212k m +>,所以122412kmx x k +=-+,21222212m x x k -=+,③又由题知12120x x y y +=, 即()()12120x x kx m kx m +++=,整理为()()22121210k x x km x x m ++++=. 将③代入上式,得()22222224101212m km kkm m k k-+-⋅+=++.化简整理得222322012m k k--=+,从而得到22322m k -=. 21.设函数()()22ln f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设()()22ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x , 2x ,证明12'02x x h +⎛⎫>⎪⎝⎭. 【答案】(1)见解析;(2)见解析. 【解析】试题分析:(1)求解函数的导函数,分类讨论可得:①若0a >时,当()0,x a ∈时,函数()f x 单调递减,当(),x a ∈+∞时,函数()f x 单调递增;②若0a =时,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈-⎪⎝⎭时,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时,函数()f x 单调递增.(2)构造新函数()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,结合新函数的性质即可证得题中的不等式.试题解析: (1)由()22ln f x a x x ax=-+-,可知()2'2a f x x a x=-+-=()()2222x a x a x ax a x x+---=.因为函数()f x 的定义域为()0,+∞,所以,①若0a >时,当()0,x a ∈时, ()'0f x <,函数()f x 单调递减,当(),x a ∈+∞时,()'0f x >,函数()f x 单调递增;②若0a =时,当()'20f x x =>在()0,x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈-⎪⎝⎭时, ()'0f x <,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时, ()'0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,所以()()'22ah x x a x=+--= ()()()22221x a x a x a x x x +---+=.所以当0,2a x ⎛⎫∈ ⎪⎝⎭时, ()'0h x <;当,2a x ⎛⎫∈+∞ ⎪⎝⎭时, ()'0h x >;当2a x =时, '02a h ⎛⎫= ⎪⎝⎭. 欲证12'02x x h +⎛⎫>⎪⎝⎭,只需证12''22x x a h h +⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又()2''20a h x x =+>,即()'h x 单调递增,故只需证明1222x x a +>. 设1x , 2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则()()211122222,{2,x a x alnx m x a x alnx m +--=+--=两式相减并整理得()1212ln ln a x x x x -+-= 22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-,故只需证明()2212121212122222ln ln x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-.因为1212ln ln 0x x x x -+-<, 所以()式可化为12121222ln ln x x x x x x --<+,即11212222ln 1x x x x x x -<+.因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+, ()0,1t ∈.记()22ln 1t R t t t -=-+, ()0,1t ∈,所以()()()()222114'011t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在()0,1单调递增. 又()10R =,因此()0R t <, ()0,1t ∈, 故22ln 1t t t -<+, ()0,1t ∈得证, 从而12'02x x h +⎛⎫>⎪⎝⎭得证. 22.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C : 3,{2x cost y sintαα=+=+(t 为参数, 0a >),在以坐标原点为极点, x 轴的非负半轴为极轴的极坐标系中,曲线2C : 4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A , B 两点,求AB .【答案】(1)1C , ()()22232x y a -+-=, 2C : ()2224x y +-=; []1,5;(2)3. 【解析】试题分析:(1)由题意计算可得曲线1C 与2C 化为直角坐标系xOy 中的普通方程为()()22232x y a -+-=, ()2224x y +-=; a 的取值范围是[]1,5;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得3AB =. 试题解析: (1)曲线1C : 3,{2,x cost y sint αα=+=+消去参数t 可得普通方程为()()22232x y a -+-=.曲线2C : 4sin ρθ=,两边同乘ρ.可得普通方程为()2224x y +-=.把()2224y x -=-代入曲线1C 的普通方程得: ()22234136a x x x =-+-=-,而对2C 有()22224x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时, a 的取值范围为[]1,5.(2)当3a =时,曲线1C : ()()22329x y -+-=,两曲线交点A , B 所在直线方程为23x =. 曲线()2224x y +-=的圆心到直线23x =的距离为23d =,所以482249AB =-=. 23.选修4-5:不等式选讲. 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 【答案】(1)[]1,1-;图见解析(2)见解析. 【解析】试题分析:(1)将函数写成分段函数的形式解不等式可得解集为[]1,1-.(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件. 试题解析:(1)因为()211f x x x =-++= 3,1,1{2,1,213,.2x x x x x x -<--+-≤≤> 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[]1,1-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++()()22222141171a b a a b ⎛⎫⎡⎤++++= ⎪⎣⎦++⎝⎭()222241215711a b a b ⎡⎤⎛⎫++⎢⎥ ⎪++≥ ⎪++⎢⎥⎝⎭⎣⎦()2222412118527117a b a b ⎡++⎢+⋅=⎢++⎣. 当且仅当()222241111a b a b ++=++时,等号成立, 即216a =, 243b =时,有最小值, 所以221418117a b +≥++得证.。
精品解析:河北省衡水中学2017届高三高考押题2卷理数试题(解析版)

5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过
90 的正角 . 已知双曲线 E :
x2 a2
y2 b2
1(a
0,b
0) ,当其离心率 e
[
2, 2] 时,对应双曲线的渐近线的夹角的取值范围为(
)
A. [0, ] 6
【答案】 D 【解析】
B. [ , ] 63
C. [ , ] 43
由题意可得: e2
.
4.已知直角坐标原点
O 为椭圆
C:
x2 a2
y2 b2
1(a
b
0) 的中心, F1, F 2为左、右焦点,在区间
(0,2) 任
取一个数 e ,则事件“以 e 为离心率的椭圆 C 与圆 O : x 2 y 2 a 2 b 2 没有交点”的概率为(
)
A. 2 4
42
B.
4
【答案】 A
【解析】
满足题意时,椭圆上的点 P a cos , bsin
44
=2 2
21
24
=
2,
3 2 32
6
) cos -cos (
4
4
) sin
4
4
故选 A.
点睛:三角函数式的化简要遵循“三看”原则
: 一看角,这是重要一环,通过看角之间的差别与联系,把角
进行合理的拆分,从而正确使用公式
;二看函数名称,看函数名称之间的结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等
第Ⅰ卷
一、选择题:本题共 12 个小题 , 每小题 5 分 , 在每小题给出的四个选项中,只有一项是符合题
目要求的 .
1.设集合 A { x | x2 x 6 0, x Z} , B { z | z x y , x A, y A} ,则 A B ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北xx 中学高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{1,0,1,2}-2.设复数z 满足121z i i +=-+,则1||z=( )A .15 C .5 D .25 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )A.46- B .46+ C.718D .3 4.已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.4 B .44 C.2 D .225.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6π B .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.3)2π+ B .3)22π++C.2+ D .4+7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)n ax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯ C.201710101⨯- D .10092016⨯11.已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈ B .函数()g x的最大值为C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A .(,2)-∞-B .(2,2)- C.(2,)+∞ D .(2,0)(0,2)-第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且||2||a b =,则mn 的值为 .14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 .16.在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE的面积S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a =,121n n S S -=+*(2,)n n N ≥∈. (1)求数列{}n a 的通项公式;(2)记12log n n b a =*()n N ∈求11{}n n b b +的前n 项和n T . 18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=︒,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,2DE BF ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ;(2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20. 已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且过点22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点)(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21. 设函数22()ln f x a x x ax =-+-()a R ∈.(1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A ,B 两点,求||AB .23. 选修4-5:不等式选讲.已知函数()|21||1|f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 参考答案及解析理科数学(Ⅱ)一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题13.-8 14.122e << 15.27[,]5416. 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,①可知121n n S S +=+,②②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈ (2)由(1)及12log n n b a =*()n N ∈, 可知121log ()2nn b n ==, 所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=11111[(1)()()]2231n n -+-++-=+1111n n n -=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF ⊥.又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,2DEBF ==,120ABC ∠=︒,可知AF=,2BD a =,EF ==,AE ==,从而222AF FE AE +=,故EF AF ⊥.又AF AC A =,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示), 则(0,0,0)O,,0,0)A,(,0,0)C,(0,,)E a -,(0,)F a ,所以(0,,),0,0)AE a =--=(,,)a -,(,0,0),0,0)AC =-=(,0,0)-,(0,)(0,,)EF a a =--(0,2,)a =. 由(1)可知EF ⊥平面AFC ,所以平面AFC的法向量可取为(0,2,)EF a =.设平面AEC 的法向量为(,,)n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩即0,0,y x ⎧-+=⎪⎨=⎪⎩即,0,y x ⎧=⎪⎨=⎪⎩令z =,得4y =,所以(0,n =.从而cos ,n EF <>=3||||63n EF n EF⋅==⋅. 故所求的二面角E AC F --的余弦值为3.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=, 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3. 则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为:则728144()0123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.解:(1)由题意可知2c a =,所以222222()a c a b ==-,即222a b =,①又点,22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =, 故所求的椭圆方程为2212x y +=. (2)设1122(,),(,)A x y B x y ,由0OA OB ⋅=,可知12120x x y y +=. 联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 化简整理得222(12)4220k x kmx m +++-=, 由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412km x x k +=-+,21222212m x x k -=+,③又由题知12120x x y y +=,即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=. 将③代入上式,得22222224(1)01212m km k km m k k -+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21. 解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x --+-=. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+=2(2)ln x a x a x +--(0)x >, 所以'()2(2)a h x x a x=+--=22(2)(2)(1)x a x a x a x x x +---+=. 所以当(0,)2a x ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02a h =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2'()20a h x x=+>,即'()h x 单调递增,故只需证明1222x x a +>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln ,(2)ln ,x a x a x m x a x a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(ln ln )a x x x x -+-=22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 记22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=. 曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5].(2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =,所以||3AB ==. 23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩ 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++218[577+=.当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。