气-液分离器设计
旋流式液气分离器的设计

毕业论文(设计)题目名称:旋流式液气分离器的设计题目类型:毕业设计学生姓名:狄磊院(系):机械工程学院专业班级:装备10901班指导教师:张琴辅导教师:时间:至目录毕业论文(设计)任务书 (Ⅰ)开题报告 (Ⅱ)指导教师审查意见 (Ⅲ)评阅教师评语 (Ⅳ)答辩会议记录 (Ⅴ)中文摘要 (Ⅵ)外文摘要 (Ⅶ)1 绪论 (7)选择旋流式液气分离器的意义 (7)国内外现状和进展趋势 (7)国外现状和进展趋势 (7)国内现状和进展趋势 (9)2 方案论证 (9)旋流式液气分离方案的可行性 (9)旋流式分离器的结构及工作原理 (10)3 分离器的整体设计 (11)旋流器的直径和长度的计算 (11)分离器结构设计 (13)分离器整体结构设计 (13)脱气结构 (15)钻井液入口的尺寸 (15)旋流器的结构设计 (15)外筒体的设计 (17)接口管设计 (18)外部结构 (21)4、要紧零部件的设计及校核计算 (22)筒体和封头的壁厚计算 (22)外容器筒体、封头壁厚计算 (22)旋流器筒体封头壁厚计算 (24)人孔 (25)人孔选择 (25)人孔补强 (26)支座 (26)分离器的总质量 (26)支座的选用及安装要求 (28)5 分离器的安装 (28)焊接 (28)安装顺序 (29)6 壳体的有限元分析 (32)7 总结 (35)参考文献 (37)致谢 (39)附录一 (40)附录二 (43)旋流式液气分离器的设计学生:狄磊,长江大学机械工程学院指导教师:张琴,长江大学机械工程学院【摘要】旋流分离器,是一种利用离心沉降原理将非均相混合物中具有不同密度的相分离的机械分离设备。
在具有密度差的混合物以必然的方式及速度从入口进入旋流分离器后,在离心力场的作用下,密度大的相被甩向周围,并顺着壁面向下运动,作为底流排出;密度小的相向中间迁移,并向上运动,最后作为溢流排出。
如此就达到了分离的目的。
旋流分离技术可用于液液分离、气液分离、固液分离、气固分离等。
立式重力气-液分离器的工艺设计

立式重力气-液分离器的工艺设计许建华【摘要】Gravity gas-liquid separator has been widely used in the chemical industry,and the most used of which is the vertical gravity gas-liquid separator.In this paper,a brief introduction to the common gravity gas-liquid separator is introduced,and as an example,an engineering design of a gas-liquid separator is showed.The selection of equipment and the key parameters of vertical gravity gas-liquid separator are introduced in details,and several key issues which should be cared in the process design are also listed.%重力气-液分离器在化工生产中一直被广泛应用,其中以立式重力气-液分离器应用最多。
简单介绍了化工装置中常见的重力气-液分离器,并以一台气-液分离器的工程设计为例,就立式重力气-液分离器的设备选型和关键参数的工艺计算做了详细介绍,并指出了立式重力气-液分离器在工艺设计中应注意的几个问题。
【期刊名称】《化工设计通讯》【年(卷),期】2016(042)007【总页数】2页(P99-99,124)【关键词】重力气-液分离器;设备选型;工艺设计【作者】许建华【作者单位】南京扬子石油化工设计工程有限责任公司,江苏南京 210048【正文语种】中文【中图分类】TQ053.2重力气-液分离器因分离负荷范围大,在化工生产中一直被广泛应用。
气液分离器

气液分离器{气水分离器)翌SM^NG:鸵i气液分离器俗称油水分离器,用来分离气体中大于5微米的液体和固体颗粒。
是在气体中除油水的最简单实用的设备。
PX QF气液分离器可应用于对压缩空气、合成气、煤气、氢气、氮气、氧气、天然气、瓦斯气、沼气、氨气、硫化氢、尾气等各种气体的气液分离。
PX QF气液分离器设计制造符合国内或国外的各种标准和规范,如GB150《钢制压力容器》或ASME标准,并刻有CS及ASME钢印。
PX QF气液分离器工作原理通过五级分离—降速、离心、碰撞、变向、凝聚等原理,除去压缩空气(气体)中的液态水份和固体颗粒,达到净化的作用。
湿气在冷却过程中冷凝后,在分离器中的挡板廹使气体改变方向二次,并以设计好的速度旋转,产生离心力高效地分离出液体和颗粒,排水器应及时排放出冷凝液。
常安置在后冷却器的后面,因为要求进气温度越低越好,一般不超过60°C。
PXQF气液分离器产品特点1.除水效率高:可除去99%的液态水份,油份。
2.体积小、重量轻。
3.安装方便,管道式连接、可悬挂安装。
4.免维护、可靠性好。
5.寿命长:可使用20年。
6.按GB150压力容器标准制造,安全可靠。
PXQF气液分离器应用范围1.压缩空气冷凝水分离回收2.蒸汽管线冷凝水分离3.气液混合部位的进/出口分离4.真空系统中冷凝水分离排放5.水冷却塔后的冷凝水分离6.地热蒸汽分离器7.其他多种气液分离应用PXQF气液分离器PXQF DN65 400 600 159 360 18 自动放水阀HL10/1 PXQF DN80 510 760 219 420 42 自动放水阀HL13/1,20/1 PXQF DN100 580 850 273 480 60 自动放水阀HL40/1 PXQF DN125 580 850 273 480 60 自动放水阀HL60/1,70/1,80/1 PXQF DN150 650 990 426 630 120 自动放水阀HL100/1 PXQF DN200 630 1040 426 630 150 自动放水阀HL150/1 PXQF DN250 770 1180 478 680 200 自动放水阀325 HL200/1 PXQF DN300 840 1300 630 830 400 自动放水阀HL370/1 PXQF DN400 1180 1910 820 1090 600 自动放水阀HL370/1 PXQF DN450 2200 920 自动放水阀£气液分离器。
气水分离器设计图

汽水分离器设计图 汽水分离器的工作原理:大量含水的蒸汽进入汽水分离器,并在其中以离心向下倾斜式运动;夹带的水分由于速度降低而被分离出来;被分离的液体流经疏水阀排出,干燥清洁的蒸汽从分离器出口排出。
汽水分离器的作用;过滤水分、净化气体。
设计原因:在浸麦过程中产生大量的二氧化碳,不利于大麦的呼吸与生长,需要将其抽出外排。
二氧化碳风机抽出的气体为蒸汽,在通过气管外排的过程中,冷凝水易积结回流,影响二氧化碳气体的排出,同时也易烧损风机。
气液分离器设计

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.气—液分离器设计2005-04-15 发布2005-05-01 实施0文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.目次1 总则1.1 目的1.2 范围1.3 编制本标准的依据2 立式和卧式重力分离器设计2.1应用范围2.2 立式重力分离器的尺寸设计2.3 卧式重力分离器的尺寸设计2.4 立式分离器(重力式)计算举例2.5附图3 立式和卧式丝网分离器设计3.1 应用范围 3.2 立式丝网分离器的尺寸设计3.3 卧式丝网分离器的尺寸设计3.4 计算举例3.5 附图4 符号说明1 总则 1.1 目的本标准适用于工艺设计人员对两种类型的气—液分离器设计,即立式、卧式重力分离器设计和立式、卧式丝网分离器设计。
并在填写石油化工装置的气—液分离器数据表时使用。
1.2 范围本标准适用于国内所有化工和石油化工装置中的气-液分离器的工程设计。
1.3 编制本标准的依据:化学工程学会《工艺系统工程设计技术规定》HG/T20570.8-1995第8篇气—液分离器设计。
2 立式和卧式重力分离器设计 2.1 应用范围2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。
2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。
2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。
2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。
2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法5.0⎪⎪⎭⎫ ⎝⎛-=G GL s t K V ρρρ (2.2.1—1)式中V t ——浮动(沉降)流速,m/s ;ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数d *=200μm 时,K S =0.0512; d *=350μm 时,K S =0.0675。
气液分离器设计资料

中国石化集团兰州设计院标准SLDI 233A14-98中国石化集团兰州设计院目次1 说明 (1)2 立式和卧式重力分离器设计 (1)2.1 应用范围 (1)2.2 立式重力分离器的尺寸设计 (1)2.3 卧式重力分离器的尺寸设计 (3)2.4 立式分离器(重力式)计算举例 (5)2.5 附图 (6)3 立式和卧式丝网分离器设计 (11)3.1 应用范围 (11)3.2 立式丝网分离器的尺寸设计 (12)3.3 卧式丝网分离器的尺寸设计 (15)3.4 计算举例 (16)3.5 附图 (17)4 符号说明 (19)1 说明1.1 本规定适用于两种类型的气—液分离器设计:立式和卧式重力分离器设计和立式和卧式丝网分离器设计。
2 立式和卧式重力分离器设计 2.1 应用范围2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。
2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。
2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。
2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。
2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法5.0−=G GL s t K V ρρρ (2.2.1—1)式中V t ——浮动(沉降)流速,m/s ; ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数d *=200μm 时,K S =0.0512;d *=350μm 时,K S =0.0675。
近似估算法是根据分离器内的物料流动过程,假设Re =130,由图2.5.1—1查得相应的阻力系数C W =1,此系数包含在K s 系数内,K S 按式(2.2.1—1)选取。
由式(2.2.1—1)计算出浮动(沉降)流速(V t ),再设定一个气体流速(u e ),即作为分离器内的气速,但u e 值应小于V t 。
气液分离器的原理与完善(丝网式)

气液分离器的原理与完善大中气液分离器采用的分离结构很多,其分离方法也有:1、重力沉降;2、折流分离;3、离心力分离;4、丝网分离;5、超滤分离;6、填料分离等。
但综合起来分离原理只有两种:一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。
气体与液体的密度不同,相同体积下气体的质量比液体的质量小。
二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。
液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。
一、重力沉降1、重力沉降的原理简述由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。
2、重力沉降的优缺点优点:1)设计简单。
2)设备制作简单。
3)阻力小。
缺点:1)分离效率最低。
2)设备体积庞大。
3)占用空间多。
3、改进重力沉降的改进方法:1)设置内件,加入其它的分离方法。
2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。
4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。
由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。
二、折流分离1、折流分离的原理简述由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。
2、折流分离的优缺点优点:1)分离效率比重力沉降高。
2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。
3)工作稳定。
缺点:1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。
2)阻力比重力沉降大。
3、改进从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢究其原因:1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。
(完整word版)气液分离器选型

7.8气液分离器7.8.1概述气液分离器的作用是将气液两相通过重力的作用进行气液的分离。
7.8.2设计步骤(1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定气体流速对分离效率是一个重要因素。
如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。
气速对分离效率的影响见下图:图7-69 分离效率与气速的关系图2) 计算方法G u 5.0)(GG L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kgG K 为常数,通常107.0=G K 3) 尺寸设计丝网的直径为5.0)(0188.0GG G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。
由于安装的原因(如支承环约为mm 1070/50⨯),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。
低液位(LL )和高液位(HL )之间的距离由下式计算:21.47DtV H L L = 式中D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ;L H —低液位和高液位之间的距离,m ;液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。
气体空间高度的尺寸见下图所示。
丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。
图7-70 立式丝网分离器5) 接管直径① 入口管径两相混合物的人口接管的直径应符合下式要求 Pa u GL G 15002<ρ 式中GL u ——接管内两相流速,s m /; G ρ——气相密度,3/m kg ; 由此导出25.05.03)(1002.3GG L p V V D ρ⨯+⨯⨯>-式中p D ——接管直径,m ;L V ——液体体积流量,h m /3; G V ——气体体积流量,h m /3; 其余符号意义同前。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
SLDI 233A14-98
得 ALA = Ab + 2A1 = 0.107 + 2 × 0.4 = 0.289
ATOT
ATOT
3.14
查图2.5.1—5得 hLA = 0.333,从最低液位经2min后得到液面高度为 DT
hLA = 0.333 × DT = 0.333× 2000 = 666mm(hLA即是图中h)
2
SLDI 233A14-98
a) 入口接管
两相入口接管的直径应符合式(2.2.2—3)要求。
式中
ρG uP2 <1000Pa
(2.2.2—3)
up——接管内流速,m/s; рG——气体密度,kg/m3。
由此导出
式中
DP>3.34×10-3(VG+VL)0.5
ρ
0. 25 G
(2.2.2—4)
VG、VL——分别为气体与液体体积流量,m3/h; DP——接管直径,m。
低液位(LL)与高液位(HL)之间的距离,采用式(2.2.2—2)计算
式中
HL
=
VLt 47.1D2
(2.2.2—2)
HL——液体高度,m;
t——停留时间,min;
D——容器直径,m; VL——液体体积流量,m3/h。
气、液
图2.2.2 立式重力分离器 停留时间(t)以及釜底容积的确定,受许多因素影响。这些因素包括上、下游设备的工艺要求以及停 车时塔板上的持液量。当液体量较小时,规定各控制点之间的液体高度最小距离为100mm。表示为:LL(低 液位)-100mm-LA(低液位报警)-100mm-NL(正常液位)-100mm-HA(高液位报警)-100mm-HL(高液位)。 2.2.2.3 接管直径
Re
=
Vt d * ρG µG
=
0.841× 350 ×10−6 14.6 ×10−6
×
4.9
= 98.8 由图2.5.1—1查得CW=1.25,由式(2.2.1—2)计算,得Vt=0.75,再由式(2.2.1—3)计算,得Re=88.4, 由图 2.5.1—1查得
近似估算法是根据分离器内的物料流动过程,假设Re=130,由图2.5.1—1查得相应的阻力系数CW=1, 此系数包含在Ks系数内,KS按式(2.2.1—1)选取。由式(2.2.1—1)计算出浮动(沉降)流速(Vt),再
设定一个气体流速(ue),即作为分离器内的气速,但ue值应小于Vt。
真正的物料流动状态,可能与假设值有较大的出入,会造成计算结果不准确,因此近似估算法只
Cw——阻力系数。 首先由假设的Re数,从图2.5.1—1查CW,然后由所要求的浮动液滴直径(d*)以及ρL、ρG按式
(2.2.1—2)来算出Vt' ,再由此Vt' 计算Re。
式中
Re
=
d *Vt' ρG µG
μG——气体粘度,Pa·S。
(2.2.1—3)
1
SLDI 233A14-98
其余符号意义同前。
试算直径
式中
1
DT
=
2.12VLt 3 C⋅A
(2.3.1)
其中
C=LT/DT=2~4(推荐值是2.5);
DT、LT——分别为圆柱部分的直径和长度,m; VL——液体的体积流量,m3/h; t——停留时间,min; A——可变的液体面积(以百分率计)即 A=ATOT-(Aa+Ab),均以百分率计
工程设计标准
中国石化集团兰州设计院 实施日期:1999.06.01
气—液分离器设计
SLDI 233A14-98 第 1 页 共 21 页
1 说明
1.1 本规定适用于两种类型的气—液分离器设计:立式和卧式重力分离器设计和立式和卧式丝网分离 器设计。
2 立式和卧式重力分离器设计
2.1 应用范围
2.1.1 重力分离器适用于分离液滴直径大于200μm的气液分离。
中国石化集团兰州设计院标准
SLDI 233A14-98
气—液分离器设计
0
新编制
修改 标记
简要说明
全部
修改 页码
编制
校核
审核
审定
日期
1999 - 05 - 21 发布
1999 - 06 - 01 实施
中国石化集团兰州设计院
目次
1 说明…………………………………………………………………………………………… (1) 2 立式和卧式重力分离器设计…………………………………………………………………… (1) 2.1 应用范围……………………………………………………………………………………… (1) 2.2 立式重力分离器的尺寸设计………………………………………………………………… (1) 2.3 卧式重力分离器的尺寸设计………………………………………………………………… (3) 2.4 立式分离器(重力式)计算举例…………………………………………………………… (5) 2.5 附图…………………………………………………………………………………………… (6) 3 立式和卧式丝网分离器设计…………………………………………………………………… (11) 3.1 应用范围……………………………………………………………………………………… (11) 3.2 立式丝网分离器的尺寸设计………………………………………………………………… (12) 3.3 卧式丝网分离器的尺寸设计………………………………………………………………… (15) 3.4 计算举例……………………………………………………………………………………… (16) 3.5 附图…………………………………………………………………………………………… (17) 4 符号说明………………………………………………………………………………………… (19)
由计算求得Re数,查图2.5.1—1,查得新CW,代入式(2.2.1—2),反复计算,直到前后两次迭代的
Re数相等即Vt' = Vt 为止。 取ue≤Vt,即容器中的气体流速必须小于悬浮液滴的浮动(沉降)流速(Vt).
2.2.2 尺寸设计
尺寸图见图2.2式中
D
=
0.0188
A1=120×1/(60×5)=0.4m2
图2.3.3 卧式重力分离器液位高度
其它几个高度按下述方法求出:
hLL/DT=150/2000=0.075,由图2.5.1—5查得
Ab ATOT
= 0.034(hLL即是图中h) 。
Ab = 0.034 × ATOT = 0.034 × 3.14 = 0.107m2
的比)来校核液滴的分离,计算进口和出口接管之间的距离( L'N )。
式中
L'N
=
0.524a ⋅VG
DT'2
Aa
(
ρL
− ρG ρG
)0.5
R
(2.3.2—1)
L'N 、 DT' 、a——分别为进出口接管间距离、卧式容器直径和气体空间高度,m;
VG——气体流量,m3/h; ρL、ρG——分别为液体密度、气体密度,kg/m3; Aa——气体部分横截面积,%; R对于d*=350μm,使用R=0.167
得 ANL = Ab + 3A1 = 0.107 + 3× 0.4 = 0.416
ATOT
ATOT
3.14
查图2.5.1—5得 hNL =0.434,过1min后,液面高度为hNL=0.434×2000=868mm(hNL即是图中h) DT
得 AHA = Ab + 4A1 = 0.107 + 4 × 0.4 = 0.544
对于d*=200μm,使用R=0.127
R=τs/τT 其中 τs——直径为d*的液滴,通过气体空间高度(a)所需要的时间,s;
τT——气体停留时间,s。 两相流进口到气体出口间的距离(LN)不应小于 L'N 。
接管设计见2.2.2.3规定。
2.3.3 液位和液位报警点计算实例 已知:VL=120m3/h,t=6min,DT=2000mm,LT=5000mm,最低液位高度hLL=150mm。 最低液位(LL)、低液位报警(LA)、正常液位(NL)、高液位报警(HA)、最高液位(HL)之
ATOT——总横截面积,%; Aa——气体部分横截面积,%; Ab——液位最低时液体占的横截面积,%。
气 气、液
LT
液
图2.3.1 卧式重力分离器 通常开始计算时取A=80%,并假设气体空间面积Aa为14%,最小液体面积Ab为6%。 选择C值时,须考虑容器的可焊性(壁厚)和可运输性(直径、长度)。 由DT和Aa=14%,查图2.5.1-4,得出气体空间高度(a),a值应不小于300mm。如果a<300mm,需用A
2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。
2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min,应采用卧式重力分离器。
2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm来加以
限制的,应采用立式重力分离器。
间的时间间隔分别是2、1、1、2min。要计算对应时间间距的各液位高度。
解题:如图2.3.3所示。
最低液位,即液面起始高度(计算时间为0)的液位高度(hLL)为150mm。 容器横截面积(ATOT):
ATOT
= πDT2 4
=π
× 22 4
= 3.14m2
相当于液体在容器中停留时间为1min所占的横截面积为:
VGmax ue
0.5
(2.2.2—1)
D——分离器直径,m; VGmax——气体最大体积流量,m3/h;