高中数学《圆锥曲线方程》重要公式

合集下载

高中数学圆锥曲线性质与公式总结

高中数学圆锥曲线性质与公式总结


1 r22

1 a2
1 b2
(r1 | OP |, r2
| OQ |)
.
16.若椭圆
x2 a2

y2 b2
1(a>b>0)上中心张直角的弦
L
所在直线方程为
Ax By
1
( AB
0)
,则(1)
1 a2
1 b2

A2 B2 ;(2)
L
2 a4 A2 b4B2 a2 A2 b2B2
或(o, m)为其对称轴上除中心,顶点外的任一点,过 M 引一
条直线与椭圆相交于 P、Q 两点,则直线 A1P、A2Q(A1 ,A2 为对称轴上的两顶点)的交点 N 在直线 l :x a2 (或 m
y b2 )上. m
40.设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相
1
则直线
BC
有定向且 kBC

b2 x0 a2 y0
(常数).
x2 20.椭圆 a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2 ,则椭圆
的焦点三角形的面积为 SF1PF2
b2
tan 2
, P(
a c
c2 b2 tan 2 , b 2 tan ) 2c 2
应于焦点 F 的椭圆准线于 M、N 两点,则 MF⊥NF.
41.过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A2 为椭圆长轴上的顶点,A1P 和 A2Q 交于点 M,
A2P 和 A1Q 交于点 N,则 MF⊥NF.

高中数学圆锥曲线知识点总结5篇

高中数学圆锥曲线知识点总结5篇

高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。

科学科研的公正性和透明度是科研活动的重要保障。

下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x ,y+y )。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。

② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

高中数学圆锥曲线有好用的公式

高中数学圆锥曲线有好用的公式

高中数学圆锥曲线有什么好用的公式吗那些考试拿高分的,一定是简单的题目做得又快又对,这样他们才有时间去思考难题。

因此,适当地掌握一些教材中没有提到,但是可以加速解题过程的公式和定理,对提高解题速度,尤其是选择和填空题的解题速度极为有效。

下面就来简单总结一下与圆锥曲线有关的好用公式:1.利用椭圆的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。

我们先证明一下这个公式:通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。

【我们先不使用这个定理来解决这个问题】:【在知道公式的情况下】翻译的图像和条件不变:那我们比较这两种做法,显然第一种需要用数学三招去思考,去动点脑筋去想,但如果利用好这个公式,我们几乎不需要思考,只需要熟练的计算即可迅速解出答案!2.利用椭圆的切线方程快速解题只需记下这个简单的结论,在圆锥曲线中椭圆这一章中,遇到切线问题就可以思路更清晰,解题更迅速噢。

【直接记住结论解题】再盯住已经转化过的目标,要求上述式子的最小值,联想有关的定理和定义,我们想到了利用函数的性质或者不等式的方法求最值,所以要把x1•x2,y1•y2,x1+x2换成与m有关的代数式。

利用这个定理,有效的缩短了解题时间,让我们对这一类型的题目处理起来更得心应手。

不仅是椭圆,在圆上这个定理也是成立的:大家记住了吗?3.利用双曲线的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。

我们先证明一下这个公式:因为上次椭圆的已经进行简便性验证了,那么同学们多记这4个字——椭加双减,再加上本身这个公式就很好记,结合三角形对比一下,多记4个字又可以解决一类题,投资回报比是很高的!利用本质教育的第一招翻译,翻译出图形:再利用本质教育的第三招盯住目标立马联想我们背过的公式:椭加双减3.二次曲线弦长万能公式(另外一个类似,可以证明)这就是泽宇老师在录播课中提到的“韦达定理模式”,解大题的时候,把以上证明过程写出来即可。

高中数学素材:圆锥曲线知识点与公式

高中数学素材:圆锥曲线知识点与公式

第1节 椭圆【知识梳理】1.椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(12122PF PF a F F +=>),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 若1212PF PF F F +=,则动点P 的轨迹为线段12F F ;若1212PF PF F F +<,则动点P 的轨迹无图形.2.椭圆的标准方程与几何性质 3.椭圆的通径以及有关最值过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a .①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点. ②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c −.[使用点到点的距离公式证明] 4.点与椭圆的位置关系对于椭圆22221(0)x y a b a b+=>>,点00()P x y ,在椭圆内部,等价于2200221x y a b +<,点00()P x y ,在椭圆外部,等价于2200221x y a b+>.5.椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)1(0)F c −,,2(0F证明:设12,PF m PF n ==()()()()()()122222221222cos 2121cos 1sin 32F PF m n a b c m n mn mn S mn θθθ+==+−−= + = ,: 1222222sin cossin 22tan 1cos 22cos 2F PF S b b b θθθθθθ⇒=⋅=⋅=+ .6.椭圆的切线(1)椭圆22221(0)x y a b a b +=>>上一点00()P x y ,处的切线方程是00221x x y y a b+=; (2)过椭圆22221(0)x y a b a b +=>>外一点00()P x y ,,所引两条切线的切点弦方程是00221x x y ya b+=; (3)椭圆 22221(0)x y a b a b+=>>与直线0Ax By C ++= 相切的条件是22222A a B b c +=.第二讲 双曲线【知识梳理】1.双曲线定义在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲1(0)F c −,,2(0)F c ,1(0)F c −,,F 2|2(F c c a b ==+12||2(F F c c =={y y a y a 或≤−≥轴和原点对称2.双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22ba .3.点与双曲线的位置关系对于双曲线22221(0)x y a b a b −=>>,点00()P x y ,在双曲线内部,等价于2200221x y a b−>.点00()P x y ,在双曲线外部,等价于2200221x y a b −<结合线性规划的知识点来分析.4.双曲线常考性质性质一 双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c; [使用点到直线的距离公式即可证明]性质二 双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;证明 设11()P x y ,是双曲线22221(0)x y a b a b−=>>上任意一点,该双曲线的两条渐近线方程分别是0ay bx −=和0ay bx +=,点11()P x y ,和222a b c =. 5. 双曲线焦点三角形面积为2tan 2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)6. 双曲线的切线点00()M x y ,在双曲线22221x y a b−=(00)a b ,>>上,过点M 作双曲线的切线方程为00221x x y y a b−=.若点00()M x y ,在双曲线22221x y a b −=(00)a b ,>>外,则点M 对应切点弦方程为00221x x y ya b −=第3节 抛物线【知识梳理】1.抛物线定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 22(0)y px p =>22(0)y px p =−>22(0)x py p =>22(0)x py p =−>0),0y ≥,x R ∈0y ≤,x R ∈ 所以p 的值永远大于0.另外,焦半径使用定义即可证明.3.抛物线的通径过焦点且垂直于抛物线对称轴的弦叫做抛物线的通径.对于抛物线22(0)y px p =>,由()2pA p ,,()2p B p −,,可得||2AB p =,故抛物线的通径长为2p .4.弦的中点坐标与弦所在直线的斜率的关系:0p y k =证明(点差法):设11()A x y ,,22()B x y ,为抛物线22(0)y px p =>上两点,则2112y px =,2222y px =作差得21211202y y p px x y y y −==−+,其中00()M x y ,是AB 中点.或者说,若设AB 的斜率为k ,则AB 中点纵坐标0py k=.[焦点在y 轴上的抛物线,同理]111||[||||][||||]||222MN AC BD AF BF AB =+=+=,90ANB ∠=°,故以AB 为直径的圆与准线l 相切.设E 是AF 的中点,则E 的坐标为11222p x y +(,),则点E 到y 轴的距离为12221AF p x d =+= 故以AF 为直径的圆与y 轴相切,同理以BF 为直径的圆与y 轴相切.(2)在ACN △与AFN △中,||||||||AN AN AC AF ==,;在Rt ABN △中,NAM ANM ∠=∠90CAN ANM ACN AFN AFN ACN FN AB ∠=∠∠=∠=°⊥,△≌△,因为2()D p y F −=,,1()C p y F −=,,所以212+=0DF CF p y y =,所以FC FD ⊥.(3)设直线AB 的方程为2p x ty =+与抛物线22y px =联立得:22()2py p ty =+,即2220y pty p −−=,故212y y p =−,2221212224y y p x x p p ==. (4)11211122OA y y p k y x y p===,2222212122222OD y y py py pk p p p y y y ==−=−==−,则A 、O 、C 三点共线,同理B 、O 、C 三点共线.上述证明方式并非唯一,多种方法均可证明,不再赘述.6.抛物线的切线问题点00()M x y ,在抛物线22y px =(0)p >上,过点M 作抛物线的切线方程为00()y yp x x =+.点00()M x y ,在抛物线22y px =(0)p >外,过点M 对应切点弦方程为00()y yp x x =+. 点00()M x y ,在抛物线22x py =(0)p >内,过点M 作抛物线的弦AB ,分别过A B 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线00()x xp y y =+.第4节 焦长与焦半径体系【知识梳理—椭圆篇】1.焦半径公式设椭圆22221(00)x y a b a b +=>>,的右焦点为2(0)F c ,,11()A x y ,是椭圆上任意一点,则21212222121222221221212121222)1(2)(a cx x ac c b cx x a b a ax b c cx x y c x AF +−=++−−=−++−=+−=11cax a ex a=−=−.其中e 为椭圆的离心率,焦半径公式也可由第二定义快速得到2211()a AF e x a ex c=−=−,同理可以推出其他焦半径公式.焦点在y 轴上的椭圆和双曲线的时候,同理也可推出焦半径公式.总结:在椭圆和双曲线中,11()A x y ,到焦点的距离为1AF a ex =±(焦点在x 轴上) 1AF a ey =±(焦点在y 轴上)[长短记忆法:画图看长短来判断谁加谁减.] [口诀记忆法: 左加右减,上加下减,长正短负]焦半径范围:根据公式21AF a ex =−里面坐标x 1的范围,可得2AF 的范围为2a c AF a c −≤≤+. 2.焦点弦长公式椭圆焦点弦长公式.在椭圆22221(0)x y a b a b+=>>中,结合椭圆的焦点弦公式,过右焦点F的弦长为221212 ||()()2()a aMN e x e x a e x x c c =−+−=−+.3.椭圆焦长以及焦比问题焦长公式:A 是椭圆22221(0)x y a b a b+=>>上一点,1F 、2F 是左、右焦点,12AF F ∠为α,AB过1F ,c 是椭圆半焦距,则:(1)21||cos b AF a c α=−;(2)21||cos b BF a c α=+;(3)2222222222||cos sin ab ab AB a c b c αα==−+.图1-1-1证明 (1)如图1-1-1所示,12||||2AF AF a +=;12||||2BF BF a +=,故22||||||4AB AF BF a ++=; (2)设1||AF m =,1||BF n =,2||2AF a m =-,2||2BF a n =-,由余弦定理得 222(2)(2)2(2)cos m c a m m c α+--=⋅;整理得21||cos b AF a c α=-① 同理:222(2)(2)2(2)cos(180)n c a n n c α︒+--=⋅-;整理得21||cos b BF a c α=+②①+②得,则过焦点的弦长:2222222222||cos sin ab ab AB m n a c b c αα=+==-+③焦比定理 过椭圆22221x y a b +=的左焦点1F 的弦21||cos b AF a c α=−,21||cos b BF a c α=+,令11||||AF F B λ=,即221cos cos cos 1b b e ac a c λλαααλ-=⇒=-++④,代入焦长公式①可得21(1)||2b AF aλ+=⑤.推论 根据公式1cos 1e λαλ-=+,利用tan k α=把角度替换掉可以得到e =注意:1.整个焦长体系只需要记住上面~①⑤的公式,其他要熟悉推导,涉及到的面积问题记住是焦长当底即可;当直线过右焦点,或者上焦点、下焦点时,要熟悉此时的公式会如何变化,详见后面记忆方法处.2.学习焦长焦比体系要非常熟悉推导过程[定义+余弦定理+abc 的平方关系],在处理解答题的时候,若用本模块公式到必须给出必要证明.3.公式1cos 1e λαλ-=+和21(1)||2b AF a λ+=这两个公式属于结论公式,一般用上能很快解题,所以在解小题的时候要优先考虑这两个公式.和角度相关优先想第一个,只和长度相关优先想第二个.4.焦长公式利用极坐标或第二定义都能更快证明,这个问题大家可以自己去掌握,解答题中的证明建议以余弦定理的方式为主;其他证法本文不在阐述,读者可以自己去掌握.[长短记忆法: 画图,看长短来记忆.当焦点在x 轴上的时候,焦长为2cos b a c α±,其中α为焦长所在直线的倾斜角或者其补角,为方便判断,一般选用锐角记为α.例如上图,如果记12AF F ∠为α,那么根据草图1||AF 为长边,则分母小即可得到21||cos b AF a c α=-,不管交于左右都是如此,交于y 轴的话需要把cos α换成sin α.焦比公式,如果1cos 1e λαλ-=+,λ为两个焦长之比,可以选=λ长短也可以=λ短长,但是公式里面要正负对齐,如果α选的是锐角,那么左侧是正的,右侧也要为正的,此时=λ长短;反之α选钝角,右侧=λ短长最后一个公式一样的,2(1)2b a λ+,代入的=λ长短算出来的就是长边,如果代入的=λ短长,算出来就是短边]1.双曲线焦长以及焦比问题周长问题:双曲线22221x y a b-=(00)a b ,>>,的两个焦点为1F 、2F ,弦AB 过左焦点1F (A 、B 都在左支上),||AB l =,则2ABF △的周长为42a l +(如图)图1-2-1 图1-2-2 图1-2-3 设A 是双曲线22221x y a b-=(00)a b ,>>上一点,设12AF F ∠为α,直线AB 过点1F .(1)直线和渐近线平行时,此时1cos e α=. (2)当AB 交双曲线于一支时,则21cos b AF a c α=+;21cos b BF a c α=−.2222222222||cos sin ab ab AB a c b c αα==−+,22222||cos ab AB a c α=-,2221cos 01cos a c e αα->⇒<< 令11||||BF F A λ=,即221cos cos cos 1b b e a c a c λλαααλ-=⇒=-++,代入弦长公式可得21(1)||2b AF aλ+=. 当AB 交双曲线于两支时,21cos b AF a c α=+;21cos b BF a c α=−;22222||cos ab AB c a α=-,2221cos 0cos a c e αα-<⇒>(图1-2-3),令11||||BF F A λ=,221cos (1)cos cos 1b b e c a a c λλαλααλ+=⇒=>-+-,代入弦长公式可得21(1)||2b BF aλ-=.=λ长(其中)短 [总结:焦点在x 轴上的时候,直线和双曲线交于单支的时候,公式形式和椭圆完全一样; 直线和双曲线交于双支的时候,公式形式有所变化,具体参考上面书写] 因为双曲线的部分考题会涉及渐近线,不过焦点的时候要注意,注意鉴别.1.||||1cos 1cos p pAF BF αα==−+;. 2.1222||sin p AB x x p α=++=. 3.22sin AOBp S △α=. 4.设||||AF BF λ=,则11cos ;||12AF p λλαλ−+==+. 5.设AB 交准线于点P ,则||cos ||AF PA α=;||cos ||BF PB α=. 证明1.||||||||||||cos 1cos AC AF p AF p FD AC AF θθ= ⇒===−−,同理||1cos pBF α=+. 2.22||||||1cos 1cos sin p p pAB AF BF ααα=+=+=-+. 3.设O 到AB 的距离为d ,则 sin 2pd α=,故22112||sin 22sin 22sin AOB p p p S AB d ααα===△. 4.||1cos 1cos ||1cos 1AF BF αλλλααλ+−=⇒=⇒=−+,1||1cos 2p AF p λα+==−. 5.||2A p AF x =+,||2B p BF x =+,||cos ||AF PA α=,||cos ||BF PB α=. 关于抛物线22x py =的焦长公式及定理(A 为直线与抛物线右交点,B 为左交点,90 α<为AB 倾斜角)1.||1sin p AF α=−;||1sin pBF α=+.2.1222||cos pAB y y p α=++=. 3.22cos AOBp S α=△.4.设||||AF BF λ=,则1sin 1λαλ−=+;1||2AF p λ+=.5.设AB 交准线于点P ,||||sin ;sin ||||AF BF PA PB αα==. [总结:抛物线焦点在x 轴的时候的,焦长为1cos p α±,1cos 1λαλ−=+,焦长为12p λ+,记忆方法参考椭圆模块;当焦点在y 轴上的时候cos 换成sin]。

高中圆锥曲线公式总结大全

高中圆锥曲线公式总结大全

高中圆锥曲线公式总结大全
高中数学中,圆锥曲线是一个重要的内容,包括椭圆、双曲线和抛物线。

这些曲线的公式是
几何、物理、工程等领域中常用的,下面是圆锥曲线公式总结:
1. 椭圆公式
椭圆的标准方程为:((x-h)^2)/a^2 + ((y-k)^2)/b^2 = 1。

其中,(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x和y方向上的半轴长度。

2. 双曲线公式
双曲线的标准方程为:((x-h)^2)/a^2 - ((y-k)^2)/b^2 = 1。

其中,(h,k)表示双曲线的中心坐标,a和b分别表示双曲线在x和y方向上的半轴长度。

3. 抛物线公式
抛物线的标准方程为:y = ax^2 + bx + c。

其中,a、b和c分别为常数,a表示抛物线的开口方向、大小,b表示抛物线水平方向位置,c表示抛物线的最低点(也就是y轴截距)。

4. 曲率半径公式
曲线在某一点的曲率半径R可以使用以下公式计算:R = [(1+(y')^2)^(3/2)]/|y''|。

其中,y'和y''分别表示曲线在该点处的一阶和二阶导数。

5. 弧长公式
曲线在两点之间的弧长可以使用以下公式计算:L = ∫(a to b)[((1+(y')^2)^(1/2)]dx。

其中,a和b分别代表起点和终点,在这个区间内,x的取值范围满足 a≤x≤b。

总之,圆锥曲线的公式是高中数学中的重要内容,不仅在理论研究方面有着广泛的应用,也
在实际问题的建模和解决中具有重要意义。

圆锥曲线双曲线速求垂足坐标,高中生必看!基本技能高考高中数学数学秒杀学霸数学公式

圆锥曲线双曲线速求垂足坐标,高中生必看!基本技能高考高中数学数学秒杀学霸数学公式

圆锥曲线双曲线速求垂足坐标,高中生必看!基本技能高考高
中数学数学秒杀学霸数学公
圆锥曲线作为高考必考题型之一,在高考中占有相当重要的作用
椭圆双曲线抛物线这一大章节内容考察的定理性质公式比较多。

首先你得把这些基础的公式定理性质全部搞明白背诵理解会,要不然连题目在说什么都不明白。

所有解题一切的前提都是基础知识要过关,无论何时基础知识都是最重要的。

搞懂基础知识点才能拓展拔高。

8个高考最常考的圆锥曲线巧妙解法。

秒杀结论可以让你在一分钟之内得出答案,无疑为后面的大题争取更多做答时间,同时也为检查试卷争取了时间。

下面就看看8张图告诉你圆锥曲线双曲线速求垂足坐标的快速解法。

高中数学圆锥曲线常用98条结论

高中数学圆锥曲线常用98条结论

高中数学圆锥曲线常用98条结论1.椭圆的离心率小于1,且焦点在中心到长轴的垂线上。

2. 长轴和短轴的长度分别为2a和2b,则椭圆的标准方程为(x/a)+(y/b)=1。

3. 椭圆的焦距为c=√(a-b)。

4. 椭圆的面积为πab。

5. 椭圆的周长近似为2π√((a+b)/2)。

6. 椭圆的离心率为e=c/a。

7. 双曲线的离心率大于1,且焦点在中心到长轴的垂线上。

8. 长轴和短轴的长度分别为2a和2b,则双曲线的标准方程为(x/a)-(y/b)=1。

9. 双曲线的焦距为c=√(a+b)。

10. 双曲线的面积为πab。

11. 双曲线的渐近线方程为y=±(b/a)x。

12. 双曲线的离心率为e=c/a。

13. 抛物线的离心率等于1,且焦点在抛物线的顶点上。

14. 抛物线的标准方程为y=4ax。

15. 抛物线的焦距等于a。

16. 抛物线的面积为2/3×a×(4a/3)。

17. 抛物线的顶点坐标为(0,0)。

18. 抛物线的准线方程为y=-a。

19. 圆的标准方程为(x-a)+(y-b)=r。

20. 圆的直径为圆心的两倍半径。

21. 圆的周长为2πr。

22. 圆的面积为πr。

23. 直线与圆相交,切点到圆心的距离垂直于直线。

24. 切线方程为y-y=k(x-x),其中k为切线斜率。

25. 直线与圆相切,切点坐标为(x,y),则切线方程为(y-y)=k(x-x),其中k为直线斜率。

26. 椭圆的切线方程为(ay/b)+(x/a)=1。

27. 双曲线的切线方程为(ay/b)-(x/a)=1。

28. 抛物线的切线方程为y=2ax。

29. 椭圆的法线方程为(by/a)+(x/a)=1。

30. 双曲线的法线方程为(by/a)-(x/a)=1。

31. 抛物线的法线方程为y=-x/(2a)。

32. 椭圆的两条直径的交点在椭圆的中心点上。

33. 椭圆的两条直径的长度之和为2a。

34. 椭圆的两条直径的中垂线交于椭圆的中心点。

(完整版)高中数学圆锥曲线知识点总结

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。

用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。

其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。

用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。

其中定点叫焦点,定直线叫准线,常数e是离心率。

用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。

用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。

则椭圆的各性质(除切线外)均可在这个图中找到。

3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。

当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《圆锥曲线方程》重要公式
1.椭圆22
221(0)x y a b a b
+=>>焦半径公式
)(21c a x e PF +=,)(2
2x c
a e PF -=
2.椭圆22
221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩
.
3.椭圆的的内外部
(1)点00(,)P x y 在椭圆22
221(0)x y a b a b +=>>的内部22
00
221x y a b ⇔
+<. (2)点00(,)P x y 在椭圆22
221(0)x y a b a b
+=>>的外部2200
22
1x y a b ⇔
+>. 4. 椭圆的切线方程
(1)椭圆22
221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b
+=.
(2)椭圆22
221(0)x y a b a b
+=>>与直线0Ax By C ++=相切的条件是
22222A a B b c +=.
(3)过椭圆22
221(0)x y a b a b
+=>>外一点00(,)P x y 所引两条切线的切点弦方程是
00221x x y y
a b
+=. 5.双曲线22
221(0,0)x y a b a b
-=>>的焦半径公式
21|()|a PF e x c =+,2
2|()|a PF e x c
=-.
6.双曲线的内外部
(1)点00(,)P x y 在双曲线22
221(0,0)x y a b a b -=>>的内部22
00
221x y a b ⇔
->. (2)点00(,)P x y 在双曲线22
221(0,0)x y a b a b
-=>>的外部2200
2
21x y a b

-<. 7.双曲线的方程与渐近线方程的关系
(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a
b
y ±=.
(2)若渐近线方程为x a
b
y ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .
(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22
22b
y a x (0>λ,焦点在x
轴上,0<λ,焦点在y 轴上).
8. 双曲线的切线方程
(1)双曲线22
221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b
-=.
(2)过双曲线22
221(0,0)x y a b a b
-=>>外一点00(,)P x y 所引两条切线的切点弦方程是
00221x x y y
a b
-=. (3)双曲线22
221(0,0)x y a b a b
-=>>与直线0Ax By C ++=相切的条件是
22222A a B b c -=.
9. 抛物线px y 22
=的焦半径公式
抛物线2
2(0)y px p =>焦半径02
p CF x =+.
过焦点弦长p x x p
x p x CD ++=+++=21212
2.
10.抛物线px y 22
=上的动点可设为P ),2(2 y p
y 或或)2,2(2pt pt P P (,)x y ,其中
22y px =
11.抛物线的内外部
(1)点00(,)P x y 在抛物线22(0)y px p =>的内部2
2(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部2
2(0)y px p ⇔>>.
(2)点00(,)P x y 在抛物线22(0)y px p =->的内部2
2(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部2
2(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部2
2(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部2
2(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部2
2(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部2
2(0)x py p ⇔>->.
12.二次函数22
24()24b ac b y ax bx c a x a a
-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a
-+-;(3)准线方程是2414ac b y a
--=.
13. 抛物线的切线方程
(1)抛物线px y 22
=上一点00(,)P x y 处的切线方程是00()y y p x x =+.
(2)过抛物线px y 22
=外一点00(,)P x y 所引两条切线的切点弦方程是
00()y y p x x =+.
(3)抛物线2
2(0)y px p =>与直线0Ax By C ++=相切的条件是2
2pB AC =.
14.圆锥曲线的两类对称问题
(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.
(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是
2222
2()2()
(,)0A Ax By C B Ax By C F x y A B A B ++++-
-=++.
108.“四线”一方程
对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2
x ,用0y y 代2y ,用
00
2
x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程
0000000222
x y xy x x y y
Ax x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点
弦,弦中点方程均是此方程得到.
15.两个常见的曲线系方程
(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是
12(,)(,)0f x y f x y λ+=(λ为参数).
(2)共焦点的有心圆锥曲线系方程22
2
21x y a k b k
+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.
16.直线与圆锥曲线相交的弦长公式 AB =
1212|||AB x x y y ==-=-(弦端点
A ),(),,(2211y x
B y x ,由方程⎩⎨
⎧=+=0
)y ,x (F b kx y 消去y 得到02
=++c bx ax ,0∆>,α为直
线AB 的倾斜角,k 为直线的斜率).。

相关文档
最新文档