数值分析思考题答案

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析课后习题答案

数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0

1 2
0 0 0 1 1 0
1 2

1 2


1 2
1
0 0 0 1 0

1 2

1 2


0
1 2

1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3

16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5

2 A 1
1 3
1 2


2 11
22
1
5 2
1

3 21来自,所以 A12
1
2 1 1



5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6

3 2 6 4 10 7 0 7 10 7 0 7

r1r2
消元

10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623

数值分析课后部分习题答案

数值分析课后部分习题答案


x * = 2.00021 = 0.200021 × 101 ,即 m = 1
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 2 ; y* = 0.032 = 0.32 × 101 ,即 m = 1
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 ,Fra bibliotek2 2=
f [x1 , x2 ,⋯ , x n ]-f [ x0 , x1 ,⋯ , x n−1 ] g[ x1 , x2 ,⋯ , x n ] − g[ x0 , x1 ,⋯ , x n−1 ] + x n − x0 x n − x0
( x − 1)( x − 2)( x − 3) 1 =- ( x − 1)( x − 2)( x − 3) , (0 − 1)(0 − 2)(0 − 3) 6
x ( x − 2)( x − 3) 1 = x ( x − 2)( x − 3) , (1 − 0)(1 − 2)(1 − 3) 2 x( x − 1)( x − 3) 1 =- x( x − 1)( x − 3) , (2 − 0)(2 − 1)(2 − 3) 2 x( x − 1)( x − 2) 1 = x ( x − 1)( x − 2) , (3 − 0)(3 − 1)(3 − 2) 6

数值分析思考题

数值分析思考题

数值分析思考题1、 一个算法局部误差和整体误差的区别是什么?如何定义常微分方程数值方法的阶?称 ()n n n e y x y =-为某方法在点n x 的整体截断误差,设n y 是准确的,用某种方法计算n y 时产生的截断误差,称为该方法的局部截断误差。

可以知道,整体误差来自于前面误差积累,而局部误差只来自于n y 的误差。

如果给定方法的局部截断误差为11()p n T O h ++=,其中p 为自然数,则称该方法是p 阶的或具有p 阶精度。

2、 显式方法和隐式方法的优缺点分别是什么?多步法中为什么还要使用单步法?显式方法优点:方法简单快速。

缺点:精度低。

隐式方法优点:稳定性好。

缺点:精度低,计算量大。

多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。

3、 刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳定方法是什么?了保证数值稳定性,步长h 需要足够小,但是为了反映解的完整性,x 区间又需要足够长,计算速度变慢。

最简单的稳定方法就是扩大绝对稳定域。

4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta 法、四阶Adams 方法计算下列微分方程初值问题的解。

(1)3,12(1)0.4dy y x x dxx y ⎧=-≤≤⎪⎨⎪=⎩;(2)'109,'1011,y y z z y z =-+⎧⎨=-⎩ 满足(1)1,(1)1,y z =⎧⎨=⎩,12x ≤≤。

解:(1)取步长为0.1,向前Euler 公式:3101=0.11.(,)()n n n n n n ny y hf x y x y x +=++-向后Euler 公式:41111110101.(,).n n n n n n n n x y x y y hf x y x +++++++=+=+改进的Euler 公式:()11333113211(,),(,)20.10.12n n n n n n n n n n nn n n n n n hy y f x y f x y h f x y y x y y x x x x x ++++++=+++⎡⎤⎣⎦⎡⎤+=+-+-⎢⎥+⎣⎦经典的四阶Runge-Kutta 法:11234226()n n hy y k k k k +=++++1(,)n n k f x y =2122(,)n n h hk f x y k =++ 3222(,)n n h hk f x y k =++43(,)n n k f x h y hk =++四阶显示Adams 方法:01112233555937924()[(,)(,)(,)(,)]n n n n n n n n n n hy y f x y f x y f x y f x y +------=+-+- 01111122919524()[(,)(,)(,)(,)]n n n n n n n n n n h y y f x y f x y f x y f x y +++----=++-+(2)二元微分方程组,经典的四阶Runge-Kutta 法公式为:11234226()n n hy y k k k k +=++++ 11234226()n n hz z L L L L +=++++1(,,)n n n k f x y z =211222(,,)n n n h h h k f x y k z L =+++ 322222(,,)n n n h h hk f x y k z L =+++433(,,)n n n k f x h y hk z hL =+++1(,,)n n n L g x y z =211222(,,)n n n h h h L g x y k z L =+++ 322222(,,)n n n h h hL g x y k z L =+++433(,,)n n n L g x h y hk z hL =+++改进的欧拉即为特殊的二阶龙格-库塔,公式在此不累述,注意系数。

数值分析思考题2

数值分析思考题2

数值分析思考题二1、 怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区间多少次?答: (1)已知1020()x f x e x =+-=,作210x e x =-的图像,可得在区间[0,1]之间有交点,即有且仅有一个根。

由于()102x f x e x =+-,所以()f x 在区间[0,1]上连续,且()00100210f e =+⨯-=-,()11101280f e e =+⨯-=+,即()()010f f •,又()'100x f x e =+,根据零点定理得知,在()f x 在区间[0,1]有唯一实根。

由二分法的估计式()*211102k k x x b a ε-+-≤-=,得到()ln 102ln10 4.60511 5.645ln 20.693k-+-≈-≈,因此取6k =。

1211102 4.6022f e ⎛⎫=+⨯-≈ ⎪⎝⎭,又()1002f f ⎛⎫• ⎪⎝⎭,()f x 在区间[0,12]有唯一实根。

1411102 1.8044f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[0,14]有唯一实根。

18111020.38088f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[0,18]有唯一实根。

116111020.3101616f e ⎛⎫=+⨯-≈- ⎪⎝⎭,又110816f f ⎛⎫⎛⎫• ⎪ ⎪⎝⎭⎝⎭,()f x 在区间[18,116]有唯一实根。

332331020.03603232f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[116,332]有唯一实根。

56455102.0146464f e ⎛⎫=+⨯-=- ⎪⎝⎭,故 50.07864=即为所求。

数值分析课后习题答案

数值分析课后习题答案

7、计算的近似值,取。

利用以下四种计算格式,试问哪一种算法误差最小。

〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。

解:在计算机上计算该级数的是一个收敛的级数。

因为随着的增大,会出现大数吃小数的现象。

9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。

10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。

解:此算法是数值稳定的。

第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。

〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

设A是n×n的正交矩阵。

证明A-1也是n×n的正交矩阵。

证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。

设A是非奇异的对称阵,证A-1也是非奇异的对称阵。

A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。

证A-1也是单位上〔下〕三角阵。

证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。

R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0的根底解系。

A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。

数值分析课后习题答案

数值分析课后习题答案

第一章习题解答1. 在下列各对数中,X 是精确值a的近似值(1) a=π,x=3.1 (2) a=1/7,x=0.143 (3) a=π/1000,x=0.0031 (4) a=100/7,x=14.3 试估计x 的绝对误差和相对误差。

解:(1) e=∣3.1-π∣≈0.0416, δr = e/∣x ∣≈0.0143 (2) e=∣0.143-1/7∣≈0.0143 δr = e/∣x ∣≈0.1 (3) e=∣0.0031-π/1000∣≈0.0279 δr = e/∣x ∣≈0.9 (4) e=∣14.3-100/7∣≈0.0143 δr = e/∣x ∣≈0.0012. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。

解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[-x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.497073. 设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

电子科技大学数值分析-第四章思考题

电子科技大学数值分析-第四章思考题

电⼦科技⼤学数值分析-第四章思考题《数值分析》第四章思考题1.解线性⽅程组的迭代法与直接法相⽐哪些不同?解:解⽅程的迭代法分为多种迭代法,迭代法适⽤于求解⼤规模稀疏矩阵的线性⽅程组。

直接法适⽤于求解阶数⽐较低的线性⽅程组。

2.雅可⽐迭代法中的迭代矩阵如何构造?解:雅可⽐迭代法的矩阵表⽰,可以⽤矩阵分裂导出。

传统的矩阵分裂法是将⽅程组Ax = b 的系数矩阵 A 分为三部分之和,设A=D?L?U3.迭代法中的迭代矩阵与⽅程组数值解误差有何关系?解:迭代格式收敛的充分必要条件是B k=0limk→∞经过证明过程得:这也就是说明迭代法产⽣的序列收敛,且序列的极限是⽅程组(I?B)?1x=f的解。

4.迭代矩阵的幂级数有何数学意义?解:5.矩阵的谱半径与矩阵的范数相⽐哪⼀个⼤?解:设n阶矩阵B的特征值为λ1,λ2,λ3,?λn,则称|λk|ρ(B)=max1≤k≤n为矩阵B的谱半径。

谱半径与矩阵的算⼦范数之间如下关系:ρ(B)≤‖B‖6.迭代法收敛定理对⽅程组数值解的误差是如何估计的?解:如果迭代法收敛。

当迭代次数⾜够⼤时,可⽤最后相邻两次迭代解的差替代最后⼀次迭代解的误差。

7.如果系数矩阵是主对⾓占优矩阵,是否可⽤雅可⽐迭代法或赛德迭代法求解⽅程组?解:如果系数矩阵是严格主对⾓占优矩阵,可以⽤赛德尔迭代法求解。

8.如果系数矩阵是实对称正定矩阵,是否可⽤雅可⽐迭代法或赛德迭代法求解⽅程组?解:如果系数矩阵是对称正定矩阵,可以⽤赛德尔迭代法求解。

9.何谓共轭向量组?共轭向量组与正交向量组有何区别?向量共轭是向量正交关系的推⼴。

10.何谓线性⽅程组的初等变分原理?初等变分原理有哪些应⽤?解:对于⼀个系数矩阵为对称正定矩阵的线性⽅程组,求解过程可以与⼀个多元⼆次函数的极⼩值点相联系。

设线性⽅程组Ax = b 的系数矩阵 A 是实对称正定矩阵,构造⼆次函数f(x)=1(Ax,x)?(b,x),x∈R n由于A对称正定,故⽅程组Ax =b有唯⼀解x?,且⼆次函数f(x) 也有唯⼀的极⼩值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


数值分析课程思考题
1.叙述拉格朗日插值法的设计思想。

Lagrange插值是把函数y=f(x)用代数多项式pn(x)代替,构造出一组n次差值基函数;将待求得n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件确定其中的待定函数,从而求出插值多项式。

2.函数插值问题的提出以及插值法发展的脉络。

问题的提出:实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。

但是,通过观察或测量或试验只能得到在[a,b]区间上有限个离散点x0,x1,…,xn上的函数值y=f(xi),(i=0,…,n)或者f(x)函数表达式是已知的,但却很复杂而不便于计算希望用一个简单的函数描述它。

发展脉络:在工程中用的多的是多项式插值和分段多项式插值。

在多项式插值中,首先谈到的是Lagrange插值,其成功地用构造插值基函数的方法解决了求n次多项式插值函数的问题,但是其高次插值基函数计算复杂,且次数增加后,插值多项式需要重新计算,所以在此基础上提出Newton插值,它是另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。

如果对插值函数,不仅要求他在节点处与函数同值,还要求它与函数有相同的一阶,二阶甚至更高阶的导数值,这就提出了Hermite插值,它是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的。

为了提高精度,加密节点时把节点分成若干段,分段用低次多项式近似函数,由此提出了分段多项式插值。

最后,由于许多工程中对插值函数的光滑性有较高的要求,就产生了样条插值。

3.描述数值积分算法发展和完善的脉络。

数值积分主要采用插值多项式来代替函数构造插值型求积公式。

通常采用Lagrange插值。

如果取等距节点,则得到Newton-Cotes公式,其中,当n=1时,得到梯形公式;当n=2时,得到Simpson公式;当n=4时,得到Cotes公式。

由于高次Newton-Cotes公式的求积系数有正有负,将产生很大的计算误差,引起计算不稳定,所以受分段插值的启发,对数值积分也采用分段求积,导出复化求积公式;
其中,在小区间上用梯形公式求和的称为复化梯形公式,用Simpson公式求和的成为复化Simpson公式,用Cotes公式求和的称为Cotes公式。

但由于步长的选取是个问题,所以,导出逐次分半法来计算。

而由于有些函数在x=0的值无法求出,为
了求出很快收敛于f(0)的数列,就导出了Richardson 外推法,根据此思想,利用变步长的复化梯形公式推导出Romberg 积分法。

后来,人们希望能选择求积节点,确定求积系数,使代数精度有所提高,就得到Gauss 型求积公式,常用的有Gauss-Legendre 求积公式(权函数为1)Gauss-Chebyshev 求积公式(带权),Gauss-Laguerre 求积公式,Gauss-Hermite 求积公式(广义)。

4.|
5. 什么是简单迭代法对某个非线性方程,构造一个迭代格式进行计算,发
现迭代不收敛,应该从哪些方面找原因。

简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求得近似根。

即由方程f(x)=0变换为x=(x), 然后建立迭代格式:
当给定处值x 0 后, 由迭代格式可求得数列{x k }。

如果{x k }收敛于x *,则它就是方
程的根。

用直接的方法从原方程中隐含的求出x ,从而确定迭代函数(x),这种迭代法收敛速度较慢。

应该看迭代函数的构造是否收敛,因为收敛性取决于迭代函数在根邻近的性态,还有初值的选取是否合理,要尽量接近精确值。

6.什么是截断误差和舍入误差他们分别对应算法的哪种性质
计算机只能完成有限次算术运算和逻辑运算,因此要将有些需用极限或无穷过程进行的运算有限化,对无穷过程进行截断,这就带来误差;若将前若干项的部分和作为函数值的近似公式,由于以后各项都舍弃了,自然产生了误差。

在数值计算过程中还会遇到无穷小数,因计算机受到机器字长的限制,它所能表示的数据只能有一定的有限位数,如按四舍五入规则取有限位数,由此引起的误差 :
它们分别对应算法的近似性和有限性。

7.牛顿迭代在什么情况下能达到平方收敛。

函数在其零点附近二阶连续可微,且其零点处的一阶导函数值不为零,则在其零点的邻近是平方收敛的。

8.非线性方程迭代法的收敛阶怎样定义怎样确定一个算法的收敛阶。

收敛阶定义:
)
(1k k x x ϕ=+*x x e k k -=记满足和若存在实数01>≥c p ,设*
lim x x k k =∞


确定一个算法的收敛阶:
9.。

10. 什么是解线性方程组的直接法。

哪些方法属于这种类型,他们能完成的
条件是什么常用的解线性方程组的迭代法有哪些收敛条件是什么描述SOR 算法的设计思想,该算法有哪些优点
直接法:是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法。

直接法:高斯消去法:要求主元素均不为零,当出现小主元素时会严重影响计算结果的精度;列主元素法;全主元素法;直接三角分解法:矩阵需为方阵,其顺序主子式均不为零;追赶法:严格对角占优的三对角矩阵,其非零元素集中分布在主对角线及其相邻的两条次对角线上,称为三对角矩阵;平方根法:矩阵为对称正定矩阵;改进的平方根法。

迭代法:Jacobi 迭代法;Gauss-Seidel 迭代法;松弛法(低松弛和SOR 法) 收敛条件:①Jacobi 迭代法收敛的充分必要条件是迭代矩阵谱半径小于1.②Gauss-Seidel 迭代法收敛的充分必要条件是迭代矩阵的谱半径小于1(谱半径小于所有范数)③Jacobi 迭代法和Gauss-Seidel 迭代法收敛的充分条件是系数矩阵为严格对角占优。

④Gauss-Seidel 迭代法和SOR 迭代法收敛的充分条件是系数矩阵为对称正定矩阵。

SOR :为了加速迭代过程的收敛,引入参数,在Gauss-Seidel 迭代法的基础上得到,将△x 乘上参数因子作为修正项而得到的公式,可看成是Gauss-Seidel 迭代p k
k k e e 1lim +∞→c =时称为平方收敛
时称为超线性收敛时称为线性收敛当阶收敛则称迭代法2,1,1,
=>=p p p p 附近满足:
在根如果迭代法迭代函数*)(x x ϕ阶导数均连续;
存在p x )()1(ϕ,0*)()1(==-x p ϕ =''='*)(*)()2(x x ϕϕ0
*)()(≠x p ϕ而p
x x k k 的收敛阶是则迭代法)(1ϕ=+
法的加速。

优点:收敛速度加快。

11. 舍入误差扩散的一般规律总结四则运算以及开方、乘方运算误差扩
散规律。

计算机参与运算的数据往往是近似数,都带有误差。

这些误差通过多次运算会进行传播,使计算结果产生一定的误差,这称为误差传播问题。

舍入误差传播与数字取有效数字位数有关,有效数字位数越少,舍入误差越大。


P4。

12. 什么是常微分方程数值解求常微分方程数值解得一般思路。

龙格—
库塔方法的设计思想。

定义和一般思路P231;R-K 方法的设计思想P237-238
13. 实际中怎样控制迭代次数,其理论基础是什么
非线性方程组得迭代:事前控制和事后控制。

(1) 事前控制:e x x L
L k
<--011解的k 值。

(2) 事后控制:e x x k k <-+1的是否满足条件。

线性方程组得迭代:理论上通过精度控制,即e x x k k <-+1。

在实际中,可通过迭代精度和迭代误差两个角度控制。

理论基础:大范围收敛定理/迭代法的收敛条件。

14.
描述两种样条插值法的计算步骤。

三弯矩法P124;三转角法P126。

相关文档
最新文档