离散课后习题答案4
离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。
离散数学课后习题答案

1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
离散数学第四版课后答案(第4章)

第4章 习题解答4.1 A :⑤; B :③; C :①; D :⑧; E :⑩4.2 A :②; B :③; C :⑤; D :⑩; E :⑦4.3 A :②; B :⑦; C :⑤; D :⑧; E :④分析 题4.1-4.3 都涉及到关系的表示。
先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的}2,2,1,2,2,1,1,1{},2,2,1,1{><><><><=><><=s s E I};2,2,2,1,1,1{><><><=s I而题4.2中的}.1,4,4,3,1,2,4,1,1,1{><><><><><=R为得到题4.3中的R 须求解方程123=+y x ,最终得到}.1,9,2,6,3,3{><><><=R求R R 有三种方法,即集合表达式、关系矩阵和关系图的主法。
下面由题4.2的关系分别加以说明。
1°集合表达式法将ranR ran domR domR,, 的元素列出来,如图4.3所示。
然后检查R 的每个有序对,若R y x >∈<,,则从domR 中的x 到ranR 中的y 画一个箭头。
若danR 中的x 经过2步有向路径到达ranR 中的y ,则R R y x >∈<,。
由图4.3可知}.1,3,4,2,1,2,4,4,1,44,1,1,1{><><><><>><<><=R R如果求G F ,则将对应于G 中的有序对的箭头画在左边,而将对应于F 中的有序对的箭头画在右边。
对应的三个集合分别为ranF domF ran domG ,, ,然后,同样地寻找domG 到ranF 的2步长的有向路径即可。
离散数学课后习题+答案

离散数学习题答案习题一1. 判断下列句子是否为命题?若是命题说明是真命题还是假命题。
(1)3是正数吗?(2)x+1=0。
(3)请穿上外衣。
(4)2+1=0。
(5)任一个实数的平方都是正实数。
(6)不存在最大素数。
(7)明天我去看电影。
(8)9+5≤12。
(9)实践出真知。
(10)如果我掌握了英语、法语,那么学习其他欧洲语言就容易多了。
解:(1)、(2)、(3)不是命题。
(4)、(8)是假命题。
(5)、(6)、(9)、(10)是真命题。
(7)是命题,只是现在无法确定真值。
2. 设P表示命题“天下雪”,Q表示命题“我将去书店”,R表示命题“我有时间”,以符号形式写出下列命题。
(1)如果天不下雪并且我有时间,那么我将去书店。
(2)我将去书店,仅当我有时间。
(3)天不下雪。
(4)天下雪,我将不去书店。
解:(1)(┐P∧R)→Q。
(2)Q→R。
(3)┐P。
(4)P→┐Q。
3. 将下列命题符号化。
(1)王皓球打得好,歌也唱得好。
(2)我一边看书,一边听音乐。
(3)老张和老李都是球迷。
(4)只要努力学习,成绩会好的。
(5)只有休息好,才能工作好。
(6)如果a和b是偶数,那么a+b也是偶数。
(7)我们不能既游泳又跑步。
(8)我反悔,仅当太阳从西边出来。
(9)如果f(x)在点x0处可导,则f(x)在点x0处可微。
反之亦然。
(10)如果张老师和李老师都不讲这门课,那么王老师就讲这门课。
(11)四边形ABCD是平行四边形,当且仅当ABCD的对边平行。
(12)或者你没有给我写信,或者信在途中丢失了。
解:(1)P:王皓球打得好,Q:王皓歌唱得好。
原命题可符号化:P∧Q。
(2)P:我看书,Q:我听音乐。
原命题可符号化:P∧Q。
(3)P:老张是球迷,Q:老李是球迷。
原命题可符号化:P∧Q。
(4)P:努力学习,Q:成绩会好。
原命题可符号化:P→Q。
(5)P:休息好,Q:工作好。
原命题可符号化:Q→P。
(6)P:a是偶数,Q:b是偶数,R:a+b是偶数。
离散数学(第二版)最全课后习题答案详解

-
(10)
p:天下大雨
q:他乘车上班
-
(11)
p:下雪
q:路滑
r:他迟到了
(12)
p:2 是素数
q:4 是素数
-
(13)
p:2 是素数
q:4 是素数
-
15.设 p:2+3=5. q:大熊猫产在中国. r:太阳从西方升起. 求下列符合命题的真值:
(1)
(2)
(3) (4) 解:p 真值为 1,q 真值为 1,r 真值为 0. (1)0,(2)0,(3)0,(4)1 16.当 p,q 的真值为 0,r,s 的真值为 1 时,求下列各命题公式的真值: (1) (2) (3) (4)
24.已知 的类型.
解:∵
是重言式,试判断公式
及
是重言式,而要使该式为重言式,其成真赋值只有
11,∴ 25.已知
解:∵
的类型.
都是重言式。
Hale Waihona Puke 是矛盾式,试判断公式及
是矛盾式,而要使该式为矛盾式,其成假赋值
只有 00,∴
都是重言式。
26. 已 知 解:
是重言式, 及
是矛盾式,试判断 的类型.
是矛盾式。
是重言式。
q:老王是河北人
-
(3)
p:天气冷
p:王欢与李乐组成
(4)
一个小组
p:李辛与李末是兄
(5)
弟
q:我穿羽绒服 -
-
p:王欢与李乐组成一个
-
小组
-
p:李辛与李末是兄弟
(6) p:王强学过法语
q:刘威学过法语
-
(7)
p:他吃饭
q:他听音乐
-
离散数学第三版-屈婉玲-课后习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
离散数学(第二版)最全课后习题答案详解
27.设 A、B 都是含命题变量项 p1,p2,…,pn的公式,证明: 重言式.
是重言式当且仅当 A 和 B 都是
解:
A
B
0
0
0
1
1
0
1
1
由真值表可得,当且仅当 A 和 B 都是重言式时,
0 0 0 1 是重言式。
28. 设 A、B 都是含命题变量项 p1,p2,…,pn的公式,已知
,该式为重言式,所以论述为真。
18.在什么情况下,下面一段论述是真的:“说小王不会唱歌或小李不会跳舞是正确的,而说如 果小王会唱歌,小李就会跳舞是不正确的.” 解:p:小王会唱歌。q:小李会跳舞。
真值为 1.
真值为 0.可得,p 真值为 1,q 真值为 0.
所以,小王会唱歌,小李不会跳舞。
19.用真值表判断下列公式的类型:
(2)p: 是无理数.
(7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以 π. (13)p:2008 年元旦下大雪.
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.
(1)5 是有理数.
答:否定式:5 是无理数. p:5 是有理数.q:5 是无理数.其否定式 q 的真值
5.将下列命题符号化,并指出真值. (1)2 或 3 是偶数. (2)2 或 4 是偶数. (3)3 或 5 是偶数. (4)3 不是偶数或 4 不是偶数. (5)3 不是素数或 4 不是偶数.
答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数 (1)符号化: p q∨ ,其真值为 1. (2)符号化:p r∨ ,其真值为 1. (3)符号化:r t∨ ,其真值为 0. (4)符号化:¬ ∨¬q s,其真值为 1. (5)符号化:¬ ∨¬r s,其真值为 0.
《离散数学》课后习题答案
1-1,1-2(1)解:a)是命题,真值为T。
b)不是命题。
c)是命题,真值要根据具体情况确定。
d)不是命题。
e)是命题,真值为T。
f)是命题,真值为T。
g)是命题,真值为F。
h)不是命题。
i)不是命题。
(2)解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a)设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)设P:小李看书。
Q:小李听音乐。
P∧Qc)设P:气候很好。
Q:气候很热。
P∨Qd)设P: a和b是偶数。
Q:a+b是偶数。
P→Qe)设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
P Qf)设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a)P:天气炎热。
Q:正在下雨。
P∧Qb)P:天气炎热。
R:湿度较低。
P∧Rc)R:天正在下雨。
S:湿度很高。
R∨Sd)A:刘英上山。
B:李进上山。
A∧Be)M:老王是革新者。
N:小李是革新者。
M∨Nf)L:你看电影。
M:我看电影。
┓L→┓Mg)P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh)P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。
(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。
离散数学(第二版)课后习题答案详解(完整版)
习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为 1.(2)5 是无理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p: 是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008 年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是无理数. p:5 是有理数.q:5 是无理数.其否定式q 的真值为1.(2)25 不是无理数.答:否定式:25 是有理数. p:25 不是无理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是自然数.答:否定式:2.5 不是自然数. p:2.5 是自然数. q:2.5 不是自然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧ ,其真值为 1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p:π 是无理数,q:自然对数的底e 是无理数,符号化为p q∧ ,其真值为1.(3)虽然2 是最小的素数,但2 不是最小的自然数.答:p:2 是最小的素数,q:2 是最小的自然数,符号化为p q∧¬ ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧ ,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为¬ ∧¬p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨ ,其真值为1.(2)符号化:p r∨ ,其真值为1.(3)符号化:r t∨ ,其真值为0.(4)符号化:¬ ∨¬q s,其真值为1.(5)符号化:¬ ∨¬r s,其真值为0.6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ .(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p:刘晓月选学英语,q:刘晓月选学日语,符号化为: (¬ ∧ ∨ ∧¬p q)(p q) .7.设p:王冬生于1971 年,q:王冬生于1972 年,说明命题“王冬生于1971 年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p 与q 同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;(2)如果, 才有;(3)只有, 才有;(4)除非, 否则;(5)除非(6)仅当.答:设p: , 则: ; 设q: , 则: .符号化真值(1) 1(2) 1(3)0(4)0(5)0(6) 1 :俄罗斯位于南半球,q:亚洲人口最多,将下面命题用自然语言表述(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.自然语言真值(1)只要俄罗斯位于南半球,亚洲人口就最多 1 (2)只要亚洲人口最多,俄罗斯就位于南半球0 (3)只要俄罗斯不位于南半球,亚洲人口就最多 1 (4)只要俄罗斯位于南半球,亚洲人口就不是最多 1 (5)只要亚洲人口不是最多,俄罗斯就位于南半球 1 (6)只要俄罗斯不位于南半球,亚洲人口就不是最多0 (7)只要亚洲人口不是最多,俄罗斯就不位于南半球 1(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.自然语言真值(1)9 是 3 的倍数当且仅当英语与土耳其相邻0 (2)9 是 3 的倍数当且仅当英语与土耳其不相邻 1 (3)9 不是3 的倍数当且仅当英语与土耳其相邻 1(4) 9 不是 3 的倍数当且仅当英语与土耳其不相邻11. 将下列命题符号化,并给出各命题的真值: (1) 若 2+2=4,则地球是静止不动的; (2) 若 2+2=4,则地球是运动不止的; (3) 若地球上没有树木,则人类不能生存;(4) 若地球上没有水,则 是无理数.12. (1)2+2=4 当且仅当 3+3=6;(2)2+2=4 的充要条件是 3+3 6;(3)2+2 4 与 3+3=6 互为充要条件;(4)若 2+2 4,则 3+3 6,反之亦然.答:设 p:2+2=4,q:3+3=6.符号化真值 (1)1(2)(3)(4)113. 将下列命题符号化,并讨论各命题的真值: (1) 若今天是星期一,则明天是星期二; (2) 只有今天是星期一,明天才是星期二;命题 1命题 2 符号化 真值 (1) p:2+2=4 q:地球是静止不动的(2) p:2+2=4 q:地球是静止不动的1 (3) p:地球上有树木 q:人类能生存1(4)p:地球上有树木q:人类能生存1(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:(6) p:王强学过法语q:刘威学过法语-(7) p:他吃饭q:他听音乐-(8) p:天下大雨q:他乘车上班-(9) p:天下大雨q:他乘车上班-(10) p:天下大雨q:他乘车上班-(11) p:下雪q:路滑r:他迟到了(12) p:2 是素数q:4 是素数-(13) p:2 是素数q:4 是素数-15.设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“ 是无理数.并且,如果3 是无理数,则也是无理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是无理数q: 3 是无理数r:是无理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重言式,所以论述为真。
自考2324离散数学第四章课后答案
自考2324离散数学课后答案4.1习题参考答案--------------------------------------------------------------------------------1、在自然数集N中,下列哪种运算是可结合的( )。
a)、a*b=a-b b) a*b=max(a,b)c)、a*b=a+2b d) a*b=|a-b|根据结合律的定义在自然数集N中任取a,b,c 三数,察看(a。
b)。
c=a。
(b。
c) 是否成立?可以发现只有b、c 满足结合律。
晓津观点:b)满足结合律,分析如下:a) 若有a,b,c∈N,则(a*b)*c =(a-b)-ca*(b*c) =a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。
b)同上,(a*b)*c=max(max(a,b),c) 即得到a,b,c中最大的数。
a*(b*c)=max(a,max(b,c))仍是得到a,b,c中最大的数。
此运算是可结合的。
c)同上,(a*b)*c=(a+2b)+2c 而a*(b*c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。
d)运用同样的分析可知其不是可结合的。
--------------------------------------------------------------------------------2、设集合A={1,2,3,4,...,10},下面定义的哪种运算,关于集合A是不封闭的?a) x*y=max(x,y)b) x*y=min(x,y);c) x*y=GCD(x,y),即x,y最大公约数;d) x*y=LCM(x,y) 即x,y最小公倍数;d)是不封闭的。
--------------------------------------------------------------------------------3、设S是非空有限集,代数系统<(s),∪,∩>中,(s)上,对∪的幺元为___φ___,零元为___S____,(s)上对∩的幺元为___S_____零元___φ____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运关运关n第十章部分课后习题参考答案4.判断下列集合对所给的二元运算是否封闭:(1)整数集合Z和普通的减法运算。
封闭,不满足交换律和结合律,无零元和单位元(2)非零整数集合普通的除法运算。
不封闭(3)全体n n 实矩阵集合(R)和矩阵加法及乘法运算,其中n2。
封闭均满足交换律,结合律,乘法对加法满足分配律;加法单位元是零矩阵,无零元;乘法单位元是单位矩阵,零元是零矩阵;(4)全体n n实可逆矩阵集合关于矩阵加法及乘法运算,其中n2。
不封闭(5)正实数集合和算,其中运算定义为:不封闭因为 1 �1 1 1 − 1 − 1 −1∉R(6)n于普通的加法和乘法运算。
封闭,均满足交换律,结合律,乘法对加法满足分配律加法单位元是0,无零元;乘法无单位元(1),零元是0;1单位元是1n(7)A = { a, a,⋯,a}n 算定义如下:封闭不满足交换律,满足结合律,(8)S = 于普通的加法和乘法运算。
封闭均满足交换律,结合律,乘法对加法满足分配律(9)S = {0,1},S 是关于普通的加法和乘法运算。
加法不封闭,乘法封闭;乘法满足交换律,结合律(10)S = ,S 关于普通的加法和乘法运算。
加法不封闭,乘法封闭,乘法满足交换律,结合律5.对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律。
见上题1<>> >>7.设 * 为 Z 上的二元运算∀,xy ∈Z ,X * Y = min ( x ,y ),即 x 和 y 之中较小的数.(1)求 4 * 6,7 * 3。
4, 3(2)* 在 Z 上是否适合交换律,结合律,和幂等律满足交换律,结合律,和幂等律(3)求*运算的单位元,零元及 Z中所有可逆元素的逆元。
单位元无,零元 1, 所有元素无逆元8. SQ Q为有理数集,*为 S 上的二元运算, a,b>,<x,y > S 有Q < a ,b >*<x ,y> = <ax ,ay + b>(1)*运算在 S 上是否可交换,可结合是否为幂等的不可交换:<x,y>*<a,b >= <xa ,xb +y> ≠< a ,b >*<x ,y>可结合:(<a,b >*<x,y>)*<c,d>=<ax ,ay + b>*<c,d>=<axc ,axd +(ay+b) > <a,b >*(<x,y>*<c,d>)=<a, b>*<xc,xd+y>=<axc ,a(xd +y)+b >(<a,b >*<x,y>)*<c,d>=<a,b >*(<x,y>*<c,d>) 不是幂等的(2)*运算是否有单位元,零元 如果有请指出,并求 S 中所有可逆元素的逆元。
设<a,b>是单位元,<x,y >S ,<a,b >*<x,y>= <x,y>*<a,b >=<x,y> 则<ax,ay+b>=<xa,xb+y>=<x,y>,解的<a,b>=<1,0>,即为单位。
设<a,b>是零元,<x,y >S ,<a,b >*<x,y>= <x,y>*<a,b >=<a,b>则<ax,ay+b>=<xa,xb+y>=<a,b>,无解。
即无零元。
<x,y >S ,设<a,b>是它的逆元<a,b >*<x,y>= <x,y>*<a,b >=<1,0>分<ax,ay+b>=<xa,xb+y>=<1,0>a=1/x,b=-y/x所以当 x ≠0 时,,xy1 ,−y x x10.令 S ={a ,b},S 上有四个运算:*,别有表 确定。
2(((a) (b) (c) (d)(1)这4个运算中哪些运算满足交换律,结合律,幂等律(a) 交换律,结合律,幂等律都满足,零元为a,没有单位元;(b)满足交换律和结合律,不满足幂等律,单位元为a,没有零元a a,b b(c)满足交换律,不满足幂等律,不满足结合律a�b�b ) a�a b,a�b�b) ≠(a�b) �b(a�b) �b a�b a没有单位元, 没有零元(d) 不满足交换律,满足结合律和幂等律没有单位元, 没有零元(2)求每个运算的单位元,零元以及每一个可逆元素的逆元。
见上16.设V=〈 N,+,〉,其中+,分别代表普通加法与乘法,对下面给定的每个集合确定它是否构成V的子代数,为什么(1)S1=是(2)S2=不是加法不封闭(3)S3= {-1,0,1} 不是,加法不封闭第十一章部分课后习题参考答案8.设S={0,1,2,3},模4乘法,即为〉y y" ∀x,y ∈S,x y=(xy)mod 4问〈S ,是否构成群为什么解:(1) ∀x,y ∈S, x =(xy)mod 4∈S , 是 S 上的代数运算。
(2) ∀x,y,z ∈S,设 xy=4k+r 0 ≤r ≤3(x)z =((xy)mod 4)z=rz=(rz)mod 4=(4kz+rz)mod 4=((4k+r)z)mod 4 =(xyz)mod 43( y ( x〉1 ⎠(3)同理 xy z) =(xyz)mod 4所以,(x)z = xy z),结合律成立。
∀x ∈S, (x 1)=(1 )=x,,所以 1 是单位元。
(4)11, 33, 0 和 2 没有逆元所以,〈S , 不构成群9.设 Z 为整数集合,在 Z 上定义二元运算。
如下:" ∀x,y ∈Z,xoy= x+y-2问 Z 关于 o 运算能否构成群为什么解:(1) ∀x,y ∈Z, xoy= x+y-2∈Z,o 是 Z 上的代数运算。
(2) ∀x,y,z ∈Z,(xoy) oz =(x+y-2)oz=(x+y-2)+z-2=x+y+z-4 同理(xoy)oz= xo(yoz),结合律成立。
(3)设 e 是单位元, ∀x ∈Z, xo e=ox=x,即 x + -2= e e +x-2=x, e=2e(4) ∀x ∈Z , 设 x 的逆元是 y , xoy= yox= e , 即 x +y-2=y+x-2=2,所以, xy4 −x所以〈Z ,o 〉构成群⎠⎠1 0 ⎠⎠10 ⎠⎠−1 0 ⎠⎠−1 0 ⎠⎠11.设 G = ⎠⎠⎠, ⎠ ⎠, ⎠⎠, ⎠ ⎠⎠,证明 G 关于矩阵乘法构成一个群. ⎠⎠0 ⎠⎠0⎠−1⎠⎠0 1 ⎠⎠−1⎠⎠解:(1) ∀x,y ∈G, 易知 x y ∈G,乘法是 Z 上的代数运算。
(2) 矩阵乘法满足结合律(3)设 ⎠1⎠00 ⎠⎠是单位元, 1 ⎠(4)每个矩阵的逆元都是自己。
所以 G 关于矩阵乘法构成一个群.14.设 G 为群,且存在 a ∈G,使得 G={a k ∣k ∈Z}证明:G 是交换群。
4e a a abc证明: ∀x,y ∈G ,设 x a ,y a ,则xya aaaa ay x所以,G 是交换群17.设 G 为群,证明 e 为 G 中唯一的幂等元。
证明:设e ∈G也是幂等元,则e,即,由消去律知eeee ee18.设 G 为群,a,b,c ∈G,证明∣abc ∣=∣bca ∣=∣cab ∣证明:先证设 ( a bc ) e ⇔(bca )e设 (abc ) , 则 (abc )(abc )(abc )⋯(abc )e ,即( )( ( ⋯a bcabca ) bca ) (bca )a e左边同乘 ,右边同乘 得aa( )( )( bc bc bc )⋯( a ) (bac )e aaeaeae 反过来,设 ( bac), 则 (abc ) .由元素阶的定义知,∣abc ∣=∣bca ∣,同理∣bca ∣=∣cab ∣19.证明:偶数阶群 G 必含 2 阶元。
证明:设群 G 不含 2 阶元, ∀ a ∈G ,当e 时, a 是一阶元,当 a ≠e 时, a 至少是 3阶元,因为群 G 时有限阶的,所以 是有限阶的,设 是 k 阶的,则a a也是 k 阶的,所以a高于 3 阶的元成对出现的,G 不含 2 阶元,G 含唯一的 1 阶元 ,这与群 G 是偶数阶的矛e盾。
所以,偶数阶群 G 必含 2 阶元20.设 G 为非 A bel 群,证明 G 中存在非单位元 a 和 b ,a ≠b,且 a b=ba. 证明:先证明 G 含至少含 3 阶元。
若 G 只含 1 阶元,则 G ={e},G 为 A bel 群矛盾;若 G 除了 1 阶元 e 外,其余元 均为 2 阶元,则 aa,e a a∀, ∈,, ,() , 所以,a b G aa bb ab abab a b(ba ) ba与 G 为 A bel 群矛盾;所以,G 含至少含一个 3 阶元,设为 a ,则≠a,且aa aa 。
5eN令的证。
b a21.设 G 是 M n (R)上的加法群,n ≥2,判断下述子集是否构成子群。
(1)全体对称矩阵 是子群 (2)全体对角矩阵是子群(3)全体行列式大于等于 0 的矩阵. 不是子群 (4)全体上(下)三角矩阵。
是子群22.设 G 为群,a 是 G 中给定元素,a 的正规化子 N (a )表示 G 中与 a 可交换的元素构成 的集合,即N (a )={x ∣x ∈G ∧xa=ax}证明 N (a )构成 G 的子群。
证明:ea=ae, ∈N (a ) ≠∀, ( ), 则,x y∈N aaxxa ay yaa ( x y) (ax )y( xa ) yx (ay ) x ( y a) (xy )a,所以 ∈ ( ) xy由 axxa ,得x axxx xax , x ae eax,即 ,所以 x a ax x ∈N (a )所以 N (a )构成 G 的子群31.设 1 是群 G 1 到 G 2 的同态, 2 是 G 2 到 G 3 的同态,证明 1 � ϕ ϕ ϕ ϕ2是 G 1 到 G 3 的同态。
证明:有已知 1 是 G 1 到 G 2 的函数, 2是 G 2 到 G 3 的函数,则 1·2 是 G 1 到 G 3 的函数 。