高一数学必修一讲义1.1集合
高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

知识点3、集合间的基本关系知识梳理1、子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集图示(1)任何一个集合是它本身的子集,即A⊆A.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.3、真子集的概念(1)A⊂B且B⊂C,则A⊂C;(2)A⊆B且A≠B,则A⊂B常考题型题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}A.1B.2 C.3 D.4①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.判断集合间关系的方法(1)用定义判断.首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断.对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.变式训练能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()A. B. C. D.题型二、有限集合子集的确定例2、(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}⊂≠M⊆{1,2,3,4,5}的集合M有________个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.变式训练非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.变式训练已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.课时小测1、给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有()A.0个B.1个C.2个D.3个2、已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆C C.A⊂≠B⊆C D.A=B⊆C3、已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.4、集合A={x|0≤x<3且x∈N}的真子集的个数为________.5、已知集合A={x|1≤x≤2},B={x|1≤x≤a}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.同步练习一、选择题1.已知集合A,B,若A不是B的子集,则下列命题中正确的是A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∉A2.如果{}|1A x x =>-,那么A .0A ⊆B .{}0A ∈C .A ∅∈D .{}0A ⊆ 3.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)∅⊆{0,1,2}. A .0 B .1 C .2 D .3 4.若集合{}|0A x x =≥,且B A ⊆,则集合B 可能是A .{}1,2B .{}|1x x ≤C .{}1,0,1-D .R 5.若2{|,}x x a a ⊂∅≤∈≠R ,则实数a 的取值范围是A .B .C .D . 6.已知全集U =R ,则正确表示集合{}1,0,1M =-和{}2|0N x x x =+=关系的韦恩(Venn)图是A B C D7.设集合{1,2}M =,2{}N a =,那么 A .若1a =,则N M ⊆B .若N M ⊆,则1a =C .若1a =,则N M ⊆,反之也成立D .1a =和N M ⊆成立没有关系8.已知集合{}4,5,6P =,,定义{},,P Q x x p q p P q Q ⊕==-∈∈,则集合P Q ⊕的所有非空真子集的个数为A .32B .31C .30D .以上都不对二、填空题9.设P ={x |x <4},Q ={x |-2<x <2},则P Q .10.已知集合,,则满足条件的集合C 的个数为_____.三、解答题11.写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集. (0,)+∞[0,)+∞(,0]-∞(,0)-∞{}1,2,3Q =2{|320,}A x x x x =-+=∈R {|05,}B x x x =<<∈N A C B ⊆⊆12.已知集合{}{}2,4,6,8,9,1,2,3,5,8A B ==,又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减去2后,则变为B 的一个子集,求集合C .13.已知集合A ={x|2a −1<x <3a +1},集合B ={x|−1<x <4}.(1)若A ⊆B ,求实数a 的取值范围;(2)是否存在实数a ,使A =B ?若存在,求出a 的值;若不存在,说明理由.知识点4、集合的并集、交集知识梳理1、并集的概念、并集的性质(1)A ∪B =B ∪A ,即两个集合的并集满足交换律.(2)A ∪A =A ,即任何集合与其本身的并集等于这个集合本身. (3)A ∪∅=∅∪A =A ,即任何集合与空集的并集等于这个集合本身.(4)A ⊆(A ∪B),B ⊆ (A ∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A ⊆B ,则A ∪B =B ,反之也成立,即任何集合同它的子集的并集,等于这个集合本身. 3、交集的概念4、交集的性质(1)A∩B=B∩A,即两个集合的交集满足交换律.(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.(3)A∩∅=∅∩A=∅,即任何集合与空集的交集等于空集.(4)A∩B⊆A,A∩B⊆B,即两个集合的交集是其中任一集合的子集.(5)若A⊆B,则A∩B=A,反之也成立,即若A是B的子集,则A,B的公共部分是A.常考题型题型一、并集的运算例1、(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8} C.{3,5,7,8} D.{4,5,6,8} (2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2}变式训练若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个题型二、交集的运算例2、(1)若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B等于()A.{1,2} B.{0,1} C.{0,3} D.{3}(2)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4} D.{x|1≤x≤4}求交集运算应关注两点(1)求交集就是求两集合的所有公共元素形成的集合.(2)利用集合的并、交求参数的值时,要检验集合元素的互异性.变式训练已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.题型三、交集、并集的性质及应用例3、已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.变式训练已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∩B=A,试求k的取值范围.课时小测1、设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2、已知S={(x,y)|y=1,x∈R},T={(x,y)|x=1,y∈R},则S∩T=()A.空集B.{1}C.(1,1) D.{(1,1)}3、若集合A={x|-1<x<5},B={x|x≤-1,或x≥4},则A∪B=________,A∩B=________.4、已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.5、设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.知识点5、补集及综合应用知识梳理1、全集的定义及表示(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2、补集的概念及性质的补集,记作U=∅,U∅U U(U(U U常考题型题型一、补集的运算例1、(1)设全集U=R,集合A={x|2<x≤5},则U A=________.(2)设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则U A=________,U B=________.变式训练设全集U={1,3,5,7,9},A={1,|a-5|,9),U A={5,7},则a的值为________.题型二、集合的交、并、补的综合运算例2、已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(U A)∪B,A∩(U B),U(A∪B).变式训练已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求U(A∪B),U(A∩B),(U A)∩(U B),(U A)∪(U B).题型三、补集的综合应用例3、设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M⊂≠U P,求实数a的取值范围.变式训练已知集合A={x|x<a},B={x<-1,或x>0},若A∩(R B)=∅,求实数a的取值范围.课时小测2、已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1,或x >4},那么集合A ∩(U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3,或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3、已知集合A ={3,4,m },集合B ={3,4},若A B ={5},则实数m =________. 4、已知全集U =R ,M ={x |-1<x <1},U N ={x |0<x <2},那么集合M ∪N =________.5、设U =R ,已知集合A ={x|-5<x<5},B ={x|0≤x<7},求(1)A∩B ;(2)A ∪B ;(3)A ∪(U B);(4)B∩(U A);(5)(U A )∩(U B ).同步练习一、选择题1、已知集合{1,2,3,4,5,6}U =,{1,3,4}A =,则UA =A .{5,6}B .{1,2,3,4}C .{2,5,6}D .{2,3,4,5,6} 2、已知集合{}|1A x x =>,{|1}B x x =≤,则 A .AB ≠∅ B .A B =RC .B A ⊆D .A B ⊆3、若集合{}{}1,2,3,4,2A B x x ==∈≤N ,则AB 中的元素个数是A .4B .6C .2D .34、已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}5、设集合{},A a b =,集合{}1,5B a =+,若{}2A B =,则A B =A .{}1,2B .{}1,5C .{}2,5D .{}1,2,5 6、若集合AB BC =,则集合A,B,C 的关系下列表示正确的是。
高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时PPT课件

3.元素与集合的关系
“属于”和“不属于”分别用“∈”和“”表示.
-5-
4.集合元素的性质 (1)确定性:即任给一个元素和一个集合,那么这 个元素和这个集合的关系只有两种:这个元素要么属 于这个集合,要么不属于这个集合 (2)互异性:一个给定集合的元素是互不相同的, 即集合中的元素是不重复出现的 (3)无序性:集合中的元素是没有顺序的 (4)集合相等:如果两个集合中的元素完全相同 ,那么这两个集合是相等的.
解 : (1) 设 小 于 10 的 所 有 自 然 数 组 成 的 集 合 为 A, 那 么 A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}. (3) 设 由 1~20 以 内 的 所 有 质 数 组 成 的 集 合 为 C, 那 么 C={2,3,5,7,11,13,17给对象不能构成集合的是( ) A.一个平面内的所有点 B.所有大于零的正数 C.某校高一(4)班的高个子学生 D.某一天到商场买过货物的顾客
答案:C
-11-
2.用另一种形式表示下列集合: (1){绝对值不大于3的整数}; (2){所有被3整除的数}; (3){x|x=|x|,x∈Z且x<5}; (4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}; (5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.
-12-
3.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的 取值范围.
解:当 a=0 时,原方程为-3x+2=0 x= 2 ,符合题意; 3
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
高中数学必修一1.1 集合与集合的表示方法

0, a, a 2 3a 2 2. 已知2是集合M={ 实数 为( )
a }中的元素,则
(D)0,2,3均可
(A) 2
(B)0或3
(C) 3
3.下列四个集合中,不同于另外三个的是: A.﹛y︱y=2﹜ B. ﹛x=2﹜ C. ﹛2﹜ D. ﹛x︱x2-4x+4=0﹜
4.方程组
x y 2 x y 5
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3的解的 集合…
点集 圆(到一个定点的距离等于定长的点的集合)
线段的垂直平分线(到一条线段的两个端点的距离相等的
点的集合),等等.
班里所有的女生能不能构成一个集合? “我们班身高在1.70米的男生”,他们能不能构成一个集合?
{太平洋,大西洋,印度洋,北冰洋}
(注意:元素与元素之间用逗号隔开)
{1,-2}
例3 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x
2
x
的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合.
解:(1)A={0,1,2,3,4,5,6,7,8,9}.
(2)B={0,1}.
在整数和实数两个不同的无穷集合之外,是否还有更大的无穷?从1874年初起, 康托尔开始考虑面上的点集和线上的点集有无一一对应。经过三年多的探索, 1877
说,“我见到了,但我不相信。”这似乎抹煞了维数的区别。论文于1878年 发表后引起了很大的怀疑。P.D.G.杜布瓦-雷蒙和克罗内克都反对,而戴德金早在 1877年7月就看到,不同维数空间的点可以建立不连续的一一对应关系,而不能有 连续的一一对应。此问题直到1910年才由L.E.J.布劳威尔给出证明。 康托尔在1878年这篇论文里已明确提出“势”的概念(又称为基数)并且用“与自身 的真子集有一一对应”作为无穷集的特征。 康托尔认为,建立集合论重要的是把数的概念从有穷数扩充到无穷数。他在 1879~1884年发表的题为《关于无穷线性点集》论文6篇,其中5篇的内容大部分 为点集论,而第5篇很长,此篇论述序关系,提出了良序集、序数及数类的概念。 他定义了一个比一个大的超穷序数和超穷基数的无穷序列,并对无穷问题作了不少 的哲学讨论。在此文中他还提出了良序定理(每一集合都能被良序),但未给出证 明。 在1891年发表的《集合论的一个根本问题》里,他证明了一集合的幂集的基 数较原集合的基数大,由此可知,没有包含一切集合的集合。他在1878年论文中 曾将连续统假设作为一个估计提出,其后在1883年论文里说即将有一严格证明, 但他始终未能给出。
1.1 集合的概念及表示-【新教材】人教A版(2019)高中数学必修一同步讲义

人教版(A 版)新高一 集合的概念及表示审核人签字: 审核时间:学员编号: 年 级:高一 课时数:3 学员姓名: 辅导科目:数学 学科教师:边德龙授课类型T-集合的概念及表示★★★授课日期及时段2020.07. 00:00-0:00教学目标1、理解集合中元素的性质2、掌握元素与集合的关系3、理解集合的表示法 重点难点1、集合中元素的性质2、集合的表示教学内容1、集合的概念:一般的我们把研究对象统称为 ,把一些元素组成的总体叫做 。
2、集合的3个性质:⎪⎩⎪⎨⎧的元素顺序无关无序性:集合与组成它元素是互不相同的互异性:集合中任两个必须是确定的确定性:集合中的元素3、元素与集合的表示:我们通常用 来表示集合,用 来表示元素。
4、元素与集合的关系:①如果a 是集合A 的元素,就说a A ,记作:A a ∈②如果a 不是集合A 的元素,就说a 不属于A ,记作:注意:属于或不属于(∉∈,)一定是用在表示元素与集合间的关系上。
5、集合的分类: (集合含有有限个元素);无限集(集合含有 个元素);空集(不含任何元素的集合,用记号 表示)。
6、常用集合的表示:自然数集(非负整数集)记作N ; 正整数集记作()+N N *;T-集合的概念及表示知识梳理整数集记作Z ; 有理数集记作Q ; 实数集记作R 。
注意:(这些特定集合外面不用加{})7、集合的表示:(1) :把集合中的元素一一列举出来,并用花括号“{}”括起来的表示方法。
注意:一般用列举法,元素是有限的,在不产生歧义的情况下,无限集合也可以用列举法,例:正整数集合{1,2,3,4,…}.(2) :在花括号内先写上表示这个集合一般元素的符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
例:{}4>=x x B (如果元素的取值范围是全体实数,范围可省略不写)。
(3) :用平面内一条封闭曲线的内部表示一个集合。
题型一 基本概念例1 下列各组对象中能构成集合的是( ) A .充分接近3的实数的全体 B .数学成绩比较好的同学 C .小于20的所有自然数 D .未来世界的高科技产品【答案】C1、判断下面例子能否组成集合?(1)大于3小于12的所有偶数; (2)我国的小河流。
1.1-集合的概念-高一上学期数学人教A版(2019)必修第一册

2. 集合元素的特性 (1) 确定性: 给定的集合,它的元素必须是确定的,也就是说给定一个集合,那么 任何一个元素在不在这个集合中就确定了. (2) 互异性: 一个给定的集合中的元素是互不相同的,即集合中的元素不能相同. (3) 无序性: 集合中的元素是无先后顺序的,即集合里的任何两个元素可以交换位置.
例(1)中,我们把1~10之间的每一个偶数作为元素,这些元素的全体就是一个 集合;同样地,例(2)中,把立德中学今年人学的每一位高一学生作为元素,这些 元素的全体也是一个集合.
思考 上面的例(3) 到例(6)也都能组成集合吗? 它们的元素分别是什么?
1. 集合的含义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集
(2) 用描述法 B={x∈Z|10<x<20}. 用列举法 B={11, 12, 13, 14, 15, 16, 17, 18, 19}.
思考 举例说明,用自然语言、列举法和描述法表示集合时各自的特点. 1. 自然语言:用文字叙述的形式式描述集合. 特点:通俗易懂,但不常用. 适用对象:具有某种特定性质的具体的或抽象的对象汇总而成的集体. 2. 列举法:元素个数为有限个时,将集合的元素逐一列举出来;元素个数 为无限个时,将它们的变化规律表示出来. 特点:直观,明确,详细,通俗易懂. 适用对象:元素个数较少或者元素个数较多,元素之间有明显规律的集合.
3. 集合与元素的关系 (1) 如果a是集合A的元素,就说a属于集合A,记作a∈A. (2) 如果a不是集合A的元素,就说a不属于集合A,记作aA.
数学中一些常用的数集及其记法:
(1) 全体非负整数组成的集合称为非负整数集(即自然数集),记作:N (2) 全体正整数组成的集合称为正整数集,记作:N﹡或N+ (3) 全体整数组成的集合称为整数集,记作:Z (4) 全体有理数组成的集合称为有理数集,记作:Q (5) 全体实数组成的集合称为实数集,记作:R
高一数学必修1 数学 第一章 完整知识点梳理大全(最全)

【1.1.1】集合的含义与表示1、集合的概念集合中的元素具有确定性、互异性和无序性. 2、常用数集及其记法N ——自然数集,N *或N +——正整数集,Z ——整数集,Q ——有理数集,R ——实数集.集合与函数概念3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集,记为∅.【1.1.2】集合间的基本关系6、子集、真子集、集合相等7、已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算8、交集、并集、补集)【补充知识】含绝对值的不等式与一元二次不等式的解法1、含绝对值的不等式的解法0)〖1.2〗函数及其表示【1.2.1】函数的概念1、函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 2、区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a ≥b ,而后者必须a b <.3、求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.(暂不讲)⑤tan y x =中,()2x k k Z ππ≠+∈.(暂不讲)⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 4、求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的. 事实上,如果在函数的值域中存在一个最小(大)数,这个数就是 函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6、映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元a Ab B素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值1、函数的单调性①定义及判定方法yxo②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.简称:同增异减。
高一数学必修一课件1.1.1集合的含义与表示

教材习题答案
1.(1) ,,,;(2) ; (3) ;(4) ,; 2.(1){-3, 3};(2){2, 3, 5, 7}; (3){(1, 4)};(4){x x < 2}.
注意
例7中的集都不 ( 1 )在不致混淆的情况下,可以省去竖线及 可以用列表法吗? 左边部分. 显然不是,那么何 如:{直角三角形 }、{大于104的实数}. 时用列举法,何时 用描述法更容易一 (2)错误表示法:{实数集}、{全体实数}. 些呢?
知识要 点
有些集合的公共属性不明显,难以概 括,不便用描述法表示,只能用列举法. 有些集合的元素不能无遗漏地一一列 举出来,或者不便于、不需要一一列举出 来,常用描述法.
(2)设不超过30的非负偶数为x,且满足
x 2n且0 x 30 用描述法表示为
A = {x x = 2n且0 x 30,n Z}.
(3)设方程 2x +1 = 9 的实数根为x,且满 足条件 2x2 +1 = 9,用描述法表示为
2
A = {x R 2x + 1 = 9}.
课堂练习
1.用符号“∊”或∉Байду номын сангаас填空:
(1)设 A为所有亚洲国家组成的集合,则中国 __ A. ∊ A;英国__ ∊ A;美国__ ∉A;印度__ ∉ (2)若A={方程x² =1的解}则 1__A ∊ ; (3)若B={方程x² +x-6=0的解}则2__B ∊ ; (4)若C={满足1≤x≤10的自然数}则8 __ ∊ C; 9.5 __ ∉ C.
4.{(x, y) | x + y = 6, x N, y N}
用列举法表示为
{(0,6),(1,5),(2,4),(3,3),(6,0),(5,1),(4,2)}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲主要学习集合含义与表示,集合基本关系,集合基本运算三个方面,集合表示法一般含有_______和_______两种,通过学习要了解这两种方法的区别与联系,在此之外还学习了集合间的包含关系与相等关系,以及集合间的并集、交集、补集的含义,通过本部分的学习,同学们要了解集合的含义,能用Venn图表示集合的关系及运算。
一、重难点知识归纳
(一)元素与集合的含义
元素: 研究的对象
集合概念: 一些________组成的总体(简称集)
属于: 如果a是集合A的元素,就说a________集合A,记作________;如果a不是集合A中的元素,就说a_______集合A,记作________。
(二)列举法与描述法
列举法: 把集合的元素一一列举出来,并用_______括起来表示集合的方法叫做列举法.
描述法: 用集合所含元素的_________表示集合的方法称为描述法.
在学习过程中,我们要学会如何选择表示法表示集合,列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法。
一般情况下,对有限集,在元素不太多的情况下,宜采用_________,它具有直观明了的特点;对无限集,一般采用_________表示。
(三)子集、真子集、空集
子集: 一般地,对于两个集合A,B,如果集合A中的_______元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A 为集合B的________,记作________,读做“A包含于B”(或“__________”).
真子集: 如果集合,但存在元素,且,我们称集合A是集合B的_________,记作____________
空集:_________的集合叫做空集,记作________,并规定:空集是任何集合的___________
Venn图: 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图.
学习这几个概念时,应注意一下几点:
①若集合A是集合B的真子集,那么集合A必是集合B的_________,反之则不一定。
②若集合A与集合B中的元素是一样的,则集合A与集合B________。
③元素与集合之间是__________关系,而集合与集合之间则是___________关系,如设A={a},B={a,b},则有a____B,A_____B
④集合中元素的特征:_________;_________;_________
5、如果集合A中有n个元素,则A的子集个数是__________,真子集个数是___________。
(四)并集、交集、补集
三、典型例题讲解
例1、具有下列性质的对象能否构成集合,若能构成集合,用适当的方法表示出来。
(1)10以内的质数;
(2)x轴附近的点;
(3)不等式3x+2<4x–1的解;
(4)比3大于1的负数;
(5)方程2x+y=8与方程x–y=1的公共解。
例2、写出{a,b,c,d}的所有子集,并指出哪些是真子集。
例3、设集合A={1,4,x},B={1,},且={1,4,x},则满足条件的实数的个数是()
A.1个B.2个C.3个D.4个
例4、设,,已知,则实数_________。
例5、设A=,B=
(1)若A B=B,求的值;
(2)若A B=B,求的值.
例6、设,若,求实数的取值范围。
例7、已知全集U={1,2,3,4,5},A={x∈U|x2-5qx+4=0};(1)若,求实数q的取值范围;
(2)若中有四个元素,求及实数q的值;
(3)若A中有且仅有两个元素,求及实数q的值.。