北师大版九年级数学下册圆的对称性2导学案
北师版九年级数学下册《圆的对称性》导学案

3.2 圆的对称性学习目标:1.了解圆的定义,理解弧、弦、半圆、直径等有关圆的概念.2.从感受圆在生活中大量存在到圆形及圆的形成过程,探索圆的有关概念.重点、难点1、重点:圆的相关概念2、难点:理解圆的相关概念导学过程:阅读教材, 完成课前预习【课前预习】1:知识准备Array(1)举出生活中的圆的例子.(2)圆既是对称图形,又是对称图形。
(3)圆的周长公式C=圆的面积公式S=2:探究(1)圆的定义○1:在一个平面内,线段OA绕它固定的一个端点O旋转,另一个端点所形成的图形叫做.固定的端点O叫做,线段OA叫做.以点O为圆心的圆,记作“”,读作“”决定圆的位置,决定圆的大小。
圆的定义○2:到的距离等于的点的集合.(2)弦:连接圆上任意两点的叫做弦直径:经过圆心的叫做直径(3)弧:任意两点间的部分叫做圆弧,简称弧半圆:圆的任意一条的两个端点把圆分成两条弧,每一条都叫做半圆优弧:半圆的弧叫做优弧。
用个点表示,如图中叫做优弧劣弧:半圆的弧叫做劣弧。
用个点表示,如图中叫做劣弧等圆:能够的两个圆叫做等圆等弧:能够的弧叫做等弧【课堂活动】活动1:预习反馈活动2:典型例题例1 如果四边形ABCD是矩形,它的四个顶点在同一个圆上吗?如果在,这个圆的圆心在哪里?AD//.例2 已知:如图,在⊙O中,AB,CD为直径.求证:BC Array活动3:随堂训练1、如何在操场上画一个半径是5m的圆?说出你的理由。
2、你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年轮。
把树木的年轮看成是圆形的,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径平均每年增加多少?活动4:课堂小结圆的相关概念:【课后巩固】一.选择题:1.以点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.确定一个圆的条件为()A.圆心B.半径C.圆心和半径D.以上都不对.3.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB 、CD 的延长线交于点E ,已知DE AB 2=,若COD ∆为直角三角形,则E ∠的度数为( )A .︒5.22B .︒30C .︒45D .︒15二.解答题:4.如图,OA 、OB 为⊙O 的半径,C 、D 为OA 、OB 上两点,且BD AC = 求证:BC AD =5.如图,四边形ABCD 是正方形,对角线AC 、BD 交于点O . 求证:点A 、B 、C 、D 在以O 为圆心的圆上.6.如图,在矩形ABCD 中,点E 、F 、G 、H 分别为OA 、OB 、OC 、OD 的中点. 求证:点E 、F 、G 、H 四点在同一个圆上.。
北师大版数学九年级下册《2 圆的对称性》教案

北师大版数学九年级下册《2 圆的对称性》教案一. 教材分析《2 圆的对称性》这一节的内容,主要让学生理解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
同时,让学生会利用圆的对称性解决一些实际问题。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。
但是,对于圆的对称性的理解还需要进一步的引导和讲解。
三. 教学目标1.让学生理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
2.让学生能够利用圆的对称性解决一些实际问题。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.圆的对称性的理解。
2.如何利用圆的对称性解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生观察、思考、讨论,培养学生的几何思维。
六. 教学准备1.准备一些有关圆的对称性的图片和案例。
2.准备一些实际的数学问题,让学生解决。
七. 教学过程1.导入(5分钟)a.引导学生回顾轴对称图形和中心对称图形的概念。
b.提问:圆是轴对称图形吗?圆有几条对称轴?2.呈现(10分钟)a.展示一些圆的对称性的图片,让学生观察。
b.引导学生发现圆的对称性,总结出圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
3.操练(10分钟)a.让学生分组讨论,找出一些实际的数学问题,利用圆的对称性解决。
b.每组选取一个问题,进行展示和讲解。
4.巩固(10分钟)a.让学生独立完成一些有关圆的对称性的练习题。
b.讲解答案,分析错误的原因。
5.拓展(10分钟)a.引导学生思考:圆的对称性在实际生活中有哪些应用?b.让学生举例说明,进行分享和讨论。
6.小结(5分钟)a.回顾本节课所学的内容,总结圆的对称性的重要性和应用。
b.强调圆的对称性的理解和运用。
7.家庭作业(5分钟)a.布置一些有关圆的对称性的练习题,让学生独立完成。
5.2圆的对称性(2) 导学案

2013—2014学年度第一学期沭阳县修远中学初三数学导学案 班级 姓名 学号 课 题5.2圆的对称性(2) 课型 新授 主 备丁海林 审核 伏长春 学习目标 1.经历探索圆的轴对称性及有关性质的过程.2.掌握垂径定理.3.会运用垂径定理解决有关问题.学习重点 垂径定理的探索及应用.学习难点垂径定理的应用.学 习 过 程 分析指导 一、自主学习 阅读课本P113到P114的内容,回答下列问题.1.同学们!还记得什么是轴对称图形吗?圆是轴对称图形吗?我们采用什么方法研究轴对称图形呢?2.按照下列步骤进行小组活动:(动动手!动动脑!相信自己能行!)⑴如图,CD 是⊙O 的弦,画直径AB ⊥CD ,垂足为P ,将圆形纸片沿AB 对折,你发现了什么?⑵你能给出几何证明吗?(写出已知、求证并证明)⑶得出垂径定理:3.注意:①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧.4.用几何语言描述垂径定理为:二、合作交流5.如图,以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D ,AC 与BD 相等吗?为什么?D C OA B三、成果展示6.判断下列图形是否具有对称性?如果是中心对称图形,指出它的对称中心; 如果是轴对称图形,指出它的对称轴。
7.如图,在⊙O 中,直径CD 弦AB ,AB =40,则AE =______ ,弧AD=______ ,弧BC=______ .8.如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3.则⊙O 的半径为=______.9.如图,⊙O 的弦 AB 为5cm ,所对的圆心角为120°,求圆心O 到弦AB 的距离.四、拓展延伸动动脑!考考你的灵活运用能力!10.如何确定圆形纸片的圆心?写出你的方法.11.如图,∠C=90°,⊙C 与AB 相交于点D ,AC=5,CB=12,求AD 的长度.学生小结O B A C O B AC D O O B A C D O BC D A OB A CD E 第7题第8题 第9题 D。
北师大版九年级数学下册3.2《圆的对称性》【教案】

《圆的对称性》教学设计圆的对称性是义务教育课程标准实验教科书(北师版)《数学》九年级下册第三章第二节内容,本章主要研究圆的性质及与圆有的关的应用;本节要求.理解圆的轴对称性及其相关性质;利用圆的轴对称性研究垂径定理及其逆定理。
圆是一种特殊图形,它既是轴对称图形,又是中心对称图形。
该节内容分为2课时。
本节课是第1课时,学生通过前面的学习,能用折叠的方法得到圆是一个轴对称图形。
其对称轴是任一条过圆心的直线。
【知识与能力目标】1.理解圆的轴对称性及其相关性质;2.利用圆的轴对称性研究垂径定理及其逆定理.【过程与方法目标】经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。
【情感态度价值观目标】培养学生独立探索,相互合作交流的精神。
通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。
【教学重点】利用圆的轴对称性研究垂径定理及其逆定理.【教学难点】和圆有关的相关概念的辨析理解。
多媒体课件第一环节课前准备活动内容:(提前一天布置)1.每人制作两张圆纸片(最好用16K打印纸)2.预习课本P88~P92内容活动目的:通过第1个活动,希望学生能利用身边的工具去画图,并制作图纸片,培养学生的动手能力;在第2个活动中,主要指导学生开展自学,培养良好的学习习惯。
实际教学效果:1.学生在制作图纸片时,有时可能没有将圆心标出来,老师要对其进行启发引导,找出圆心。
2.预习提纲,要简明扼要,学生基本上能通过阅读教材就能较好完成。
第二环节创设问题情境,引入新课活动内容:教师提出问题:轴对称图形的定义是什么?我们是用什么方法研究了轴对称图形?学生回忆并回答。
活动目的:通过教师与学生的互动,一方面使学生能较快进入新课的学习状态,另一方面也提高学生的学习的兴趣,让他们带着问题去学习,揭开了探究该节课内容的序幕。
实际教学效果:1.由于学生在七年级学习了轴对称图形的内容。
(北师大版)九年级数学下册 (导学案)3.2圆的对称性

3.2圆的对称性【教学内容】圆的对称性(一)【教学目标】知识与技能理解圆是轴对称图形和中心对称图形,从圆具有旋转不变性,深入领会同圆或等圆中,相等的圆心角、弧、弦之间的对应关系。
过程与方法经历圆是轴对称图形和中心对称图形的探索,学会运用同圆或等圆中,相等的圆心角、弧、弦之间的对应关系来解决数学问题。
情感、态度与价值观引导学生对圆的对称性观察认识,激发学生的探究兴趣,并在运用数学知识解答问题活动中获取成功的体验,建立学习的自信心。
【教学重难点】重点:圆心角、弧、弦之间关系定理的证明和应用.难点:“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明.【导学过程】【知识回顾】什么叫做圆?圆是轴对称图形吗?它的对称轴是什么?【情景导入】对折一张圆形的纸片,可以看到圆是轴对称图形,它的对称轴是直径所在的直线。
【新知探究】探究一、圆是轴对称图形,它的对称轴有无数条。
任意一条过圆心的直线都是它的对称轴。
探究二、圆也是中心对称图形,圆绕着它的圆心旋转180°能够与它自身重合,对称中心是圆心。
实际上,圆绕它的圆心旋转任意一个角度都能与它自身重合。
圆心角:顶点在圆心的角。
学生作出几个圆心角,体会它的特征。
探究三、在等圆⊙O和⊙Oˊ中,分别作相等的圆心角∠AOB和∠AˊOBˊ固定圆心,将其中一个圆旋转任一角度,使得OA与OˊAˊ重合,你能发现哪些等量关系?归纳你发现的结论:【知识梳理】本节课我们学习圆是轴对称图形和中心对称图形,并学习同圆或等圆中,圆心角、弧、弦之间的关系定理。
【随堂练习】1、已知A,B是⊙O上的两点,∠AOB=1200,C是的中点,试确定四边形OACB的形状,并说明理由.2、如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?3、如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:,使∠1=∠2.4、判断题(1)相等的圆心角所对弦相等()(2)相等的弦所对的弧相等()5、填空题⊙O中,弦AB的长恰等于半径,则弦AB所对圆心角是________度.6、选择题如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,若AC=2.5 cm,ED=1.5 cm,OA=5 cm,则AB长度是___________.A、6 cmB、8 cmC、7 cmD、7.5 cm7、选择填空题如图2,过⊙O内一点P引两条弦AB、CD,使AB=CD,求证:OP平分∠BPD.证明:过O作OM⊥AB于M,ON⊥CD于N.A OM⊥PB B OM⊥ABC ON⊥CD D ON⊥PD。
数学北师大版九年级下册导学案.2 圆的对称性(导学案)

3.2圆的对称性导学案(丰顺中学简光程)班级姓名座号一、回顾与准备1.什么是弦呢?什么样的弦是直径呢?什么是弧呢?什么是半圆呢?2.什么是等弧呢?什么是等圆呢?什么叫做圆心角?3. 用卡纸制作一个直径为20cm的⊙O,并在圆上画一个60°的圆心角∠AOB。
与同桌制作的圆心角比较,你发现了什么?二、探索新知1、圆是轴对称图形吗?是中心对称图形吗?你是怎样得出你的结论?答:圆____轴对称图形,其对称轴是_______________;有_____条,用________验证。
圆_____中心对称图形,其对称中心为______。
通过旋转的方法我们知道:圆具有旋转不变性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合。
圆的___________性是其旋转不变性的特例,用________验证。
2、通过圆的旋转不变性,你能说出圆的弧、弦、圆心角之间存在的相等关系吗?3、例: AB,DE是⊙O的直径,C是⊙O的一点,且AD = CE,BE与CE的大小有什么关系?为什么?4、在得出本节结论中,你用到了什么方法?与同学交流。
三、练习1、如图,在⊙O 中, AB=AC ,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.2、如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?作业:1.如图,AB 是⊙O 的直径, ∠COD=35°, 求∠AOE 的度数.2.如图点A 、B 、C 在⊙O 上,AB=BC,且∠AOC=120°. 试确定四边形AOCB 的形状,并说明理由。
=DE CD =BC A D。
九年级数学下册 3.2.1 圆的对称性教案 北师大版

3.2.1圆的对称性教案教学目标1.圆的轴对称性.2.垂径定理及其逆定理.3.运用垂径定理及其逆定理进行有关的计算和证明.教学重点与难点重点:垂径定理及其逆定理.难点:运用垂径定理及其逆定理进行有关的计算和证明.教法与学法指导:指导探索法.在老师的启发引导下,学生经过观察、操作、猜测、推理论证、发现、归纳等方法探究出新知.通过对圆的图形的认识,使学生认识新的几何图形的对称美,体会所体现出的完美性,培养学生美的感受,激发学习兴趣.教学准备:多媒体课件教学过程一、创设情境,引入新课[师]前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?[生]如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.[师]我们是用什么方法研究了轴对称图形?[生]折叠.[师]今天我们继续用前面的方法来研究圆的对称性.设计意图:说明:由学生熟悉的知识,以问题形式引出课题,回顾旧知的同时明确新知,激发学生的学习热情,引导学生充分体会新旧知识间的联系.二、师生合作,探究新知[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?[生]圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.[师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下.[生]我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.[师]很好.教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线.下面我们来认识一下弧、弦、直径这些与圆有关的概念.1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).2.弦:连接圆上任意两点的线段叫做弦(chord).3.直径:经过圆心的弦叫直径(diameter).如下图,以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”;线段AB是⊙O 的一条弦,弧CD是⊙O的一条直径.注意:1.弧包括优弧(major arc)和劣弧(minor arc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作),劣弧ABD(记作).半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.2.直径是弦,但弦不一定是直径.下面我们一起来做一做:(出示投影片§3.2.1A)按下面的步骤做一做:1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD.3.在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M 是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B,如上图.[师]老师和大家一起动手.(教师叙述步骤,师生共同操作)[师]通过第一步,我们可以得到什么?[生齐声]可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.[师]很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?[生]我发现了,AM=BM,,.[师]为什么呢?[生]因为折痕AM与BM互相重合,A点与B点重合.[师]还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?[师生共析]如下图示,连接OA、OB得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是R t△,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A 与点B重合,与重合,与重合.因此AM=BM, =, =.[师]在上述操作过程中,你会得出什么结论?[生]垂直于弦的直径平分这条弦,并且平分弦所对的弧.[师]同学们总结得很好.这就是利用圆的轴对称性得到的与圆相关的一个重要性质——垂径定理.在这里注意;①条件中的“弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.下面,我们一起看一下定理的证明:(教师边板书,边叙述)如上图,连结OA、OB,则OA=OB.在R t△OAM和R t△OBM中,∵OA=OB,OM=OM,∴R t△OAM≌R t△OBM,∴AM=BM.∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,与重合,与重合.∴=, =.[师]为了运用的方便,不易出现错误,易于记忆,可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分弦,②平分弦所对的优弧,③平分弦所对的劣弧.即垂径定理的条件有两项,结论有三项.用符号语言可表述为:如图3-7,在⊙O中,下面,我们通过求解例1,来熟悉垂径定理:[例1]如下图所示,一条公路的转弯处是一段圆弧(即图中,点O是的圆心),其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.[师生共析]要求弯路的半径,连结OC,只要求出OC的长便可以了.因为已知OE⊥CD,所以CF=CD=300cm,OF=OE-EF,此时就得到了一个R t△CFO,哪位同学能口述一下如何求解?[生]连结OC,设弯路的半径为R m,则OF=(R-90)m,∵OE⊥CD,∴CF=CD=×600=300(m).据勾股定理,得OC2=CF2+OF2,即R2=3002+(R-90)2解这个方程,得R=545.∴这段弯路的半径为545m.[师]在上述解题过程中使用了列方程的方法,用代数方法解决几何问题,这种思想应在今后的解题过程中注意运用.随堂练习:P92.1.略下面我们来想一想(出示投影片§3.2.1B)如下图示,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.[师]上图是轴对称图形吗?如果是,其对称轴是什么?[生]它是轴对称图形,其对称轴是直径CD所在的直线.[师]很好.你是用什么方法验证上述结论的?大家互相交流讨论一下,你还有什么发现?[生]通过折叠的方法,与刚才垂径定理的探索方法类似,在一张纸上画一个⊙O,作一条不是直径的弦AB,将圆对折,使点A与点B重合,便得到一条折痕CD与弦AB 交于点M.CD就是⊙O的对称轴,A点、B点关于直径CD对称.由轴对称可知,AB⊥CD, =, =.[师]大家想想还有别的方法吗?互相讨论一下.[生]如上图.连接OA、OB便可得到一个等腰△OAB,即OA=OB,又AM=MB,即M点为等腰△OAB底边上的中线.由等腰三角形三线合一的性质可知CD⊥AB,又CD 是⊙O的对称轴,当圆沿CD对折时,点A与点B重合,与重合,与重合.[师]在上述的探讨中,你会得出什么结论?[生]平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.[师]为什么上述条件要强调“弦不是直径”?[生]因为圆的任意两条直径互相平分,但是它们不一定是互相垂直的.[师]我们把上述结论称为垂径定理的一个逆定理.[师]同学们,你能写出它的证明过程吗?[生]如上图,连结OA、OB,则OA=OB.在等腰△OAB中,∵AM=MB,∴CD⊥AB(等腰三角形的三线合一).∵⊙O关于直径CD对称.∴当圆沿着直径CD对折时,点A与点B重合,与重合,与重合.∴=, =.设计意图:通过这一过程培养学生思维的灵活,从而达到巩固双基,举一反三的目的。
北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。
本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
通过学习,使学生能运用圆的对称性解决一些实际问题。
二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。
但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。
三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。
2.难点:理解圆的对称性与轴对称图形的关系。
五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。
2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。
3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。
六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。
2.教学环境:教室布置成有利于学生思考和交流的环境。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。
提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。
2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。
呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。
同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。
3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0’ O 年级 九 班级
学科 数学 课题
3.2圆的对称性2
第 课时总
编制人
审核人
使用时间 第 周星期 使用者
课堂 流程 环节 具 体 内 容 学法 指导
学 习 目 标
学啥
我知情 重点 难点
我知晓
1、圆的旋转不变性,圆心角、弧、弦之间相等关系定理.
2、重点:利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理.
3、难点:理解相关定理中“同圆”或“等圆”的前提条件.
请把关键词标出来
自 主 学 习
温 故 能 知 新
一、 旧知回顾
1、圆的轴对称性:圆是___________________,对称轴是
_________________________。
2、垂径定理:____________________________________。
3、垂径定理的逆定理:__________________________________。
二、新知学习: 探究一
如下图,有两个半径相同的圆,请问:它们能重合吗?如果能重合,请将它们的圆心固定在一起。
然后将其中一个圆旋
转任意一个角度,这时两个圆还重合吗 ?
利用旋转的方法我们得到:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合。
结论:圆是______________,
对称中心是_________。
要善于从学过的知识中找到新知识学习的根据和基础
神 木 县 第 五 中 学 导 学 案
A
B
C
D
O
E
课 堂 练 习
课 堂 练 习 堂 堂 清
四、当堂检测:
1、1.下列命题中,正确的有( )
A .圆只有一条对称轴
B .圆的对称轴不止一条,但只有有限条
C .圆有无数条对称轴,每条直径都是它的对称轴
D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴
2、如图,AB 、DE 是⊙O 的直径,弦AC ∥DE ,请指出图中相等的弧和相等的弦
3、如图,AB 、CD 、EF 都是⊙O 的直径,且∠1=∠2=∠3,弦AC 、EB 、DF 是否相等?为什么?
课堂评价 及教后反思。