交直流电动机的原理、历史、现状及发展趋势要点

合集下载

直流供用电技术的发展现状及前景展望

直流供用电技术的发展现状及前景展望

直流供用电技术的发展现状及前景展望1. 引言1.1 直流供用电技术的重要性直流供用电技术是当今电力系统中的一项重要技术,其在能源转换和传输中具有重要作用。

直流电可在输电线路中减少能量损耗,提高电力传输效率,同时也能满足消费者对电能质量和稳定性的要求。

直流供用电技术还能促进可再生能源的接入和利用,推动能源结构的升级与转型。

在工业领域,直流供用电技术的重要性主要体现在工业控制系统和电动机驱动系统方面。

直流电源技术能够提供稳定的电力输出,确保工业设备的正常运行,提高生产效率和产品质量,从而对工业生产起到至关重要的支持作用。

在建筑领域,直流供用电技术也开始逐渐得到应用。

直流电可以更好地配合建筑节能、智能化的需求,实现建筑能源管理的精细化和高效化。

直流电的安全性和稳定性也更适合于建筑系统的需求,有望成为未来建筑电力系统的发展趋势。

直流供用电技术的重要性不仅在于其能够提高能源利用效率和稳定性,还在于其对能源领域和工业生产的推动作用。

随着技术的不断进步和应用的不断拓展,直流供用电技术将在未来发挥更加重要的作用,推动能源领域和工业生产向更加智能、高效、可持续的方向发展。

1.2 直流供用电技术的发展背景直流供用电技术的发展背景可以追溯到19世纪初,当时直流电首次被用于实际的电力传输和供应。

在那个时候,交流电和直流电的竞争十分激烈,直流电在照明和机器动力方面有着明显的优势。

随着尼古拉·特斯拉(Nikola Tesla)和乔治·韦斯汀豪斯(George Westinghouse)等科学家和工程师的推动,交流电系统逐渐成为主流,直流电系统则逐渐退出了舞台。

尽管如此,直流电仍然具有许多优点,例如传输损耗小、稳定性好、适用于低电压和短距离传输等。

近年来,随着电子技术的发展和智能电网的兴起,直流供用电技术重新引起了人们的关注。

特别是在一些特殊领域,如太阳能发电、风能发电和电动汽车充电等,直流供用电技术被广泛应用,并取得了显著的效果。

2024年直流电动机市场前景分析

2024年直流电动机市场前景分析

2024年直流电动机市场前景分析引言直流电动机是一种广泛应用于各个行业的电动机类型。

随着科技的不断进步和行业的不断发展,直流电动机市场正处于一个快速发展的阶段。

本文将对直流电动机市场的前景进行分析,以期为相关企业和投资者提供有价值的参考和决策依据。

市场规模与趋势直流电动机市场在过去几年呈现出稳步增长的趋势,预计未来几年这种增长态势将继续保持。

根据市场研究和调查机构的数据,直流电动机市场规模在过去五年中以每年10%的速度增长,预计将在未来五年中保持相似的增长率。

直流电动机市场主要受到工业领域需求的推动,包括制造业、输电与配电、交通工具等领域都对直流电动机有着相当大的市场需求。

市场驱动因素直流电动机市场的增长主要受到以下几个因素的驱动:1.工业自动化需求增加:随着制造业的不断发展和现代化进程,工业自动化程度的提高使得直流电动机的需求增加。

直流电动机可以提供高效的动力输出,满足工业生产线的需求。

2.新能源车辆的发展:近年来,新能源车辆的快速发展带动了直流电动机市场的增长。

直流电动机作为新能源车辆的核心动力源之一,具有高效、环保等优势,被广泛应用于电动汽车、混合动力汽车等领域。

3.可再生能源的推广:可再生能源的推广也对直流电动机市场的发展起到积极的促进作用。

直流电动机可以与太阳能电池板、风力发电机等可再生能源设备相结合,提供可靠稳定的动力输出。

市场竞争态势直流电动机市场竞争激烈,主要厂商包括ABB、西门子、英国电气、东芝等。

这些公司拥有较强的技术实力和市场影响力,占据了市场的主要份额。

同时,新兴的本地企业也在逐渐崛起,通过技术创新和产品差异化来拓展市场份额。

市场前景展望直流电动机市场前景仍然广阔。

随着工业自动化水平的提高、新能源车辆和可再生能源的推广,直流电动机的需求将继续增长。

此外,智能制造、智能家居等新兴领域的发展也将为直流电动机市场注入新的增长动力。

然而,直流电动机市场面临着一些挑战,如新技术的涌现、竞争加剧、市场需求的不稳定等。

电机技术的发展趋势与前景展望

电机技术的发展趋势与前景展望

电机技术的发展趋势与前景展望随着科技的不断进步,电机技术也在不断地发展。

电机可以说是现代工业中最重要的一项技术之一。

它在许多领域都有着广泛的应用,比如机械制造、交通运输、电力工业、农业、医疗等。

本文将从电机技术的概念、历史、发展趋势和前景等方面进行探讨。

一、电机技术的概念电机技术是指利用电磁学原理,将电能转化成机械能或者将机械能转化成电能的技术。

它是现代化工业和交通运输领域的重要组成部分。

电机主要由定子、转子、绕组、磁场等零部件组成。

驱动电机的电源可以是直流电源,也可以是交流电源。

电机的分类很多,常见的有直流电机、交流异步电机、交流同步电机、步进电机等。

二、电机技术的发展历史电机技术的发展可以追溯到18世纪末期。

英国发明家法拉第于1821年发明了第一台电动车,而美国人直流电发明者爱迪生则在1879年发明了直流电动机,使用于照明和动力应用。

这也标志着电机技术经历了从直流电机到交流电机的转变。

随着电机技术的发展,电机的机械结构和电气结构也得到了不断改进,同时电子技术、计算机技术的普及和应用,也为电机技术的发展提供了有力的支持。

目前,各类电机技术已经日趋成熟,且在多个领域中应用广泛。

三、电机技术的发展趋势1.小型化和集成化:随着现代化工业的快速发展,许多领域对于设备的体积大小和重量要求越来越高。

因此,在电机技术的发展中,小型化和集成化已成为不可避免的趋势。

目前,许多电机制造商都专注于开发小型、高效、集成的电机,满足市场需求。

2.高效节能:在资源短缺的今天,寻求高效、节能的电机技术是非常重要的。

许多国家已制定出一系列的电机节能标准。

而在实际应用中,新型电机技术的应用也可以大大降低能源消耗和污染排放。

3.智能化:计算机技术、传感器技术等的快速发展,为电机技术的智能化和智能控制打开了新的大门。

现代电机技术不仅可以进行自动化控制,还可以实现自我诊断和修复功能,使其更加智能和高效。

四、电机技术的前景展望当前我国电机技术的发展正处于快速的时期。

交直流电机调速技术历史、现状与发展趋势

交直流电机调速技术历史、现状与发展趋势

交直流电机调速技术历史、现状及发展趋势xxx(中国矿业大学信息与电气工程学院,江苏徐州 221116 )摘要:本文摘录了交直流电动机的原理以及调速技术历史发展的状况,并整理了一些目前较为常用的交直流调速技术,结合所学知识以及查阅相关资料,对交直流调速技术的发展趋势作了一定的分析, 最后对交直流调速系统作了总结。

关键词:直流电动机、交流电动机、原理、调速技术、历史、现状、发展趋势History, Current Situation and Development Trend of AC and DC motor Speed Control Technologyxxx(School of information and electrical engineering, China University of Mining and Technology, Xuzhou221116,Jiangsu,China)Abstract:This paper summarizes the principle of AC / DC motor speed control technology and the history ofthe development , and to sort out some of the more commonly used AC and DC speed control technology, combined with the knowledge and access to relevant data, the development trend of AC and DC speed control technologyare analyzed. Finally the AC and DC speed control system is summarized.Key words:DC motor, AC motor, principle, control technology, history, present situation, development trend1引言那样通过电枢电流施行灵活的实时控制。

电动机论文

电动机论文

电动机论文摘要本文介绍了电动机的原理、分类、工作原理、应用领域以及未来发展趋势。

首先,我们介绍了电动机的基本原理,包括电动机的组成部分和工作原理。

之后,我们介绍了电动机的分类,主要包括直流电动机和交流电动机。

对于每种类型的电动机,我们讨论了其优缺点和适用范围。

然后,我们介绍了电动机的工作原理,包括电动机的输入和输出功率之间的转换。

接着,我们列举了电动机在各个领域的应用,包括工业制造、交通运输和家庭电器等。

最后,我们讨论了电动机的未来发展趋势,包括提高效率、减少能耗和环境友好等方面的改进。

1. 引言电动机是一种将电能转换为机械能的设备,它在现代社会的各个方面发挥着重要的作用。

电动机广泛应用于工业制造、交通运输、家庭电器等领域。

本文将介绍电动机的原理、分类、工作原理、应用领域以及未来发展趋势。

2. 电动机的原理电动机由定子和转子组成。

定子是固定的部分,包含绕组和磁铁。

转子是旋转的部分,也包含绕组和磁铁。

当通过定子绕组通电时,产生的磁场会与转子磁铁相互作用,使转子受到力矩的作用而旋转。

电动机可以根据其工作原理和结构分类。

主要的分类方法包括直流电动机和交流电动机。

3.1 直流电动机直流电动机是最早被广泛应用的电动机之一。

它的工作原理是通过直流电流在定子和转子之间产生磁场,使转子旋转。

直流电动机具有转速范围广、转速可调、启动转矩大等优点,常用于需要高启动转矩和可调速运行的场合。

3.2 交流电动机交流电动机是目前应用最广泛的电动机之一。

它的工作原理是通过交流电流在定子和转子之间产生磁场,使转子旋转。

交流电动机具有结构简单、体积小、成本低等优点,广泛应用于工业制造、交通运输和家庭电器等领域。

4. 电动机的工作原理电动机的工作原理是输入功率转化为输出功率。

输入功率由电源提供,经过电动机的变换和传递,最终转化为机械功。

电动机的工作原理可以用下式表示:$$ P_{\\text{输入}} = P_{\\text{输出}} + P_{\\text{损耗}} $$其中,$P_{\\text{输入}}$为电动机的输入功率,$P_{\\text{输出}}$为电动机的输出功率,$P_{\\text{损耗}}$为电动机的损耗功率。

直流电机调速电路发展、现状以及前景综述

直流电机调速电路发展、现状以及前景综述

直流电机调速电路发展、现状以及前景综述摘要:在现代化的工业生产过程中,几乎无处不使用电力传动装置,生产工艺、产品质量的要求不断提高和产量的增长,使得越来越多的生产机械要求能实现自动调速。

对可调速的电气传动系统,可分为直流调速和交流调速。

直流电动机具有优良的调速特性,调速平滑、方便,易于在大X围内平滑调速,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起制动和反转,能满足生产过程自动化系统中各种不同的特殊运行要求,至今在金属切削机床、造纸机等需要高性能可控电力拖动的领域仍有广泛的应用,所以直流调速系统至今仍然被广泛地应用于自动控制要求较高的各种生产部门,是截止到目前为止调速系统的主要形式。

关键词:直流电机;调速系统;直流电机应用;自动控制直流电机发展状况:直流电动机分为有换向器和无换向器两大类。

无刷直流电机是在有刷直流电机的基础上发展起来的。

1831年法拉第发现了电磁感应现象,奠定了现代电机的理论基础。

十九世纪四十年代研制成功了第一台直流电机,经过约七十年,直流电机才趋于成熟阶段。

随着用途的扩大,对直流电机的要求也越来越高,显然,有接触的换向装置限制了有刷直流电机在许多场合的应用,为了取代有刷直流电机的那种电刷——换向器结构的机械接触装置,人们曾经对此做过长期的探索。

早在1915年,美国人Langmil发明了控制栅极的水银整流器,制成了由直流变交流的逆变装置;20世纪30年代,有人提出用离子装置实现电机的定子绕组按转子位置换接的所谓整流子电机,此种电机由于可靠性差、效率低、整个装置笨重而又复杂,故无实际意义。

科学技术的迅猛发展,带来了半导体技术的飞跃。

开关型晶体管的研制成功,为创造新型电机——无刷直流电机带来了生机。

1955年美国D.Harrison等人首次申请用晶体管换向线路代替电机电刷接触的专利,这就是无刷直流电机的雏形,它由功率放大部分、信号检测部分、磁极体和晶体管开关电路等所组成。

什么是直流电动机?

什么是直流电动机?

什么是直流电动机?一、直流电动机的概念及原理直流电动机是一种将电能转化为机械能的装置。

它利用直流电流通过绕组时产生的磁场与永磁场之间的力作用,使电动机转动。

直流电动机的原理是通过将电流经过电刷和电枢绕组,产生磁场并将磁场作用于转子,从而实现电能到机械能的转换。

直流电动机的结构主要由电枢、磁极、电刷和转子等部件组成。

其中,电枢是通过电流在绕组中产生的磁场将转动力传递给其他部件,磁极则是提供永久磁场的构件,电刷起到连接电源和电枢的作用,而转子则是通过受力扭转,驱动整个电动机运转。

二、直流电动机的应用领域直流电动机具有结构简单、运行可靠、输出扭矩大等优点,广泛应用于各个领域。

下面将详细介绍直流电动机在工业、交通和家用电器等领域的应用。

1. 工业领域直流电动机被广泛应用于工业生产中的各个环节。

例如,在制造业中,直流电动机可用来驱动各种机械设备,如卷绕机、切割机和立式锯等。

此外,在输送带、风机和泵等设备中,直流电动机也是关键的动力源。

通过使用直流电动机,工业生产可以实现自动化、高效化和精确控制。

2. 交通领域直流电动机在交通工具中的应用也非常广泛。

其中,最典型的就是电动汽车。

以电动汽车为例,直流电动机是其驱动装置之一,可以将电能转化为机械能,从而驱动车辆行驶。

与传统内燃机相比,电动汽车具有零排放、低噪音和高效能等优势,成为了未来交通发展的热门选择。

3. 家用电器直流电动机也在家用电器中发挥着重要的作用。

例如,直流电动机可以嵌入到各类家电产品中,如洗衣机、热水器和空调等。

通过使用直流电动机,家用电器可以实现更精确的能量控制,提高用户体验。

三、直流电动机的发展趋势随着科技的不断进步,直流电动机在各行各业中的应用也在不断创新和发展。

下面将介绍几个直流电动机未来发展的趋势。

1. 高效能直流电动机的高效能是其发展的一大趋势。

通过减少能量的损耗,提高电动机的效率,可以实现更为可持续和环保的电动机应用。

2. 智能化直流电动机在智能化方面的发展也是一个突出的趋势。

直流电网及其运行控制策略发展趋势

直流电网及其运行控制策略发展趋势

直流电网及其运行控制策略发展趋势一、直流电网技术的发展历程自从19世纪末期,直流电网技术就开始逐渐发展。

最早的直流电网系统可以追溯到1870年代的美国纽约市,当时电力公司开始使用直流输电技术将电力从发电厂传输到用户。

由于当时的材料和设备限制,直流电网系统的运行效率较低,且存在许多问题,如电磁干扰、电阻损耗等。

20世纪初,随着电力系统的规模扩大和技术进步,直流电网技术得到了进一步的发展。

在德国、瑞士等国家,研究人员开始研究直流电网的控制方法和运行策略,以提高系统的运行效率和可靠性。

随着半导体器件的发展,直流电网系统中的电子设备得到了显著的改进,为系统的运行提供了更稳定的支持。

20世纪50年代至60年代,随着电力系统的全球化和跨国交流的需求增加,直流电网技术得到了更广泛的应用。

在这个时期,许多国家纷纷建立了自己的大型直流电网系统,如欧洲的“欧洲电力系统”和北美的“北美电力系统”。

这些系统不仅提高了电力传输的效率,还为后来的直流电网技术发展奠定了基础。

20世纪70年代至80年代,随着电力电子技术和计算机技术的发展,直流电网系统的运行控制策略得到了重大突破。

研究人员开始采用先进的控制方法和算法,如模型预测控制(MPC)、自适应控制等,以实现对直流电网系统的精确控制。

为了解决直流电网中的电磁干扰问题,研究人员还开发了多种滤波器和隔离装置。

21世纪以来,随着新能源的快速发展和智能电网技术的推广,直流电网技术进入了一个新的发展阶段。

许多国家开始建设大规模的清洁能源直流输电项目,如中国的“南网”、“北网”等。

基于大数据、人工智能等先进技术的应用,直流电网系统的运行控制策略得到了更为精确和高效的实现。

随着科技的不断进步,直流电网技术将继续发展壮大,为全球能源互联网的建设提供有力支持。

1. 直流电网的起源和发展直流电网作为一种新型的电力系统,其起源可以追溯到20世纪初。

随着电力工业的发展和对电力系统的不断优化,直流电网逐渐成为电力系统的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力拖动自动控制系统课程综合训练——交、直流电动机调速技术历史、现状及发展趋势:王家琪16115746班级:越崎学院11-3班交直流电机调速技术历史、现状及发展趋势王家琪(中国矿业大学信息与电气工程学院,)摘要:本文摘录了国外相关文献对电机调速技术发展的资料,并结合作者本人的本科学习经验整理收录,对于交直流电机调速技术的发展作了扼要的介绍,对于本科阶段理解与掌握电机拖动调速技术有着一定的帮助。

关键词:直流电机、交流电机、原理、调速技术、历史、现状、发展趋势引言:人类社会发展的历史进程中,能源永远是人类赖以生存的物质基础,科学技术的进步更是和能源的获取变换利用紧密联系在一起。

由于电能的生产和利用更涉及机械能与电能两种形态能量之间的转换,电机作为机电能量转换的设备所处位置关键,使得电机技术的发展直接关系到能源的有效变换和利用以及能源的开发和节约。

而电机调速技术正是实现电机在工农业生产各领域展拳脚的前提保证。

现代工业生产中有两种情况需要实现电机的速度控制:(1)满足运动及生产工艺要求。

如对于电动车辆则要求低速恒转矩,高速恒功率;对于电梯机床纺织造纸等传动,特别是轧钢设备则要求正转反转电动制动四象限运行。

这是高性能调速技术的应用场合。

(2)实现调速节能。

主要针对拖动风机水泵的电机,过去电机恒速运行,依靠挡板或阀门调节风量或流量,致使大量能量耗费在挡板阀门上。

采用调节速度方式调节流量时,电机输入功率大大减少,产生高达20%-30% 的节能效果。

这是一般性能调速技术的重要应用场合。

一、直流电机调速技术1.简介按照电机类型的不同,电机的速度控制可区分为直流调速和交流调速。

直流调速即对直流电动机的速度控制。

由于直流电动机中产生转矩的两个要素-电枢电流和励磁磁通相互间没有耦合,并可通过相应电流分别控制,因此直流电动机调速时易获得良好的控制性能及快速的动态响应,在变速传动领域中过去一直占据主导地位。

然而由于直流电机需要设置机械换向器和电刷,因此直流调速存在固有的结构性缺陷:机械换向器结构复杂,成本增加,同时机械强度低,电刷容易磨损,需要经常维护,影响运行可靠性。

由于运行中电刷易产生火花,限制了使用场合,不能用于化工矿山炼油厂等有粉尘腐蚀易燃易爆物质或气体的恶劣环境。

由于存在换向问题,难于制造大容量高转速及高电压直流电机,其极限容量与转速乘积被限制在1000000kw.r/min,使得目前3000r/min左右的高速直流电动机。

最大容量只能达到(400-500)kw;低速直流电动机也只能到几千千瓦,远远不能适应现代工业生产向高速大容量化发展的需要。

直流电动机一般可分为电磁式和永磁式,电磁式电动机除了必须给电枢绕组外接直流电源外,还要给励磁绕组通以直流电流用以建立磁场。

电枢绕组和励磁绕组可以用两个电源单独供电,也可以由一个公共电源供电。

按励磁方式的不同,直流电动机可以分为他励﹑并励、串励﹑和复励等形式。

由于励磁方式不同,它们的特性也不同。

(1)他励电动机他励电动机的励磁绕组和电枢绕组分别由两个电源供电,如图1所示。

他励电动机由于采用单独的励磁电源,设备较复杂。

但这种电动机调速围很宽,多用于主机拖动中。

(2)并励电动机并励电动机的励磁绕组是和电枢绕组并联后由同一个直流电源供电,如图2所示,这时电源提供的电流I等于电枢电流Ia和励磁电流If之和,即I=Ia+If。

并励电动机励磁绕组的特点是导线细、匝数多、电阻大、电流小。

这是因为励磁绕组的电压就是电枢绕组的端电压,这个电压通常较高。

励磁绕电阻大,可使If减小,从而减小损耗。

由于If较小,为了产生足够的主磁通,就应增加绕组的匝数。

由于If较小,可近似为I=Ia。

并励直流电动机的机械特性较好,在负载变时,转速变化很小,并且转速调节方便,调节围大,启动转矩较大。

因此应用广泛。

(3)串励电动机串励电动机的励磁绕组与电枢绕组串联之后接直流电源,如图3所示。

串励电动机励磁绕组的特点是其励磁电流If就是电枢电流Ia,这个电流一般比较大,所以励磁绕组导线粗、匝数少,它的电阻也较小。

串励电动机多于负载在较大围变化的和要求有较大起动转矩的设备中。

(4)复励电动机这种直流电动机的主磁极上装有两个励磁绕组,一个与电枢绕组串联,另一个与电枢绕组并联,如图4所示,所以复励电动机的特性兼有串励电动机和并励电动机的特点,所以也被广泛应用。

(5)永磁电动机这种直流电动机沒有励磁绕组﹐直接以永久磁铁建立磁场來使转子转动。

这种电动机在许多小型电子产品上得到了广泛应用。

在以上几种类型的直流电动机中,以并励直流电动机和他励直流电动机应用最为广泛。

2.原理直流电动机的等效电路如图5所示。

La图5 直流电动机等效图电路的电压平衡方程和力矩平衡方程为:E I L I R U a aa a a a dt d ++= (1- 2)Ω--=ΩK T T D l e dt d J (1 - 3)式中 Ua 电源电压;Ia-电枢电流 ;Ra-电枢电阻(包括电刷、换向器以及两者之间的电阻);La-电枢电感;Ea-电枢反电动势;J-转动惯量;Ω-转动的角速度;Te-电磁转距;Tl-负载转距;K D -转动部分的阻尼系数.永磁直流电动机的电枢反电动势可表示为:Ea=Ke*Ω(1 - 4) 式中 Ke-反电动势常数.电磁转矩为: Te=K T *Ia(1 - 5) 式中K T -磁转矩常数。

动态工作特性是指实际的动作与相应的动作命令之间的响应关系。

将式 (1-2)、式(1-3)、式(1-4)和式(1-5)作拉氏变换,得到如下函数:Ua(s )=RaIa(s)+ LaSIa(s)+ Ea(s)JS Ω(s)=Te(s)一Tl(s)一K D S Ω(s)Ea(s)= Ke Ω(s)Te(s)=K T Ia(s)上面的式子可以用下面的方框图表示。

图6 直流电机系统方框图直流电机转速n 的表达式为:Φ-=K IR U n (1 - 1)式中:U-电枢端电压I-电枢电流R-电枢电路总电阻Φ-每极磁通量K-与电机结构有关的常数由上式可知,直流电机转速n 的控制方法有三种:(1)调节电枢电压U 。

改变电枢电压从而改变转速,属恒转矩调速方法,动态响应快,适用于要求大围无级平滑调速的系统;(2)改变电机主磁通。

只能减弱磁通,使电动机从额定转速向上变速,属恒功率调速方法,动态响应较慢,虽能无级平滑调速,但调速围小;(3)改变电枢电路电阻R 。

在电动机电枢外串电阻进行调速,只能有级调速,平滑性差、机械特性软、效率低。

改变电枢电路电阻的方法缺点很多,目前很少采用:弱磁调速围不大,往往与调压调速配合使用;因此,自动调速系统以调压调速为主。

2.发展(历史、现状、趋势)直流电机原理较为简单,调速技术也较为单一,自发明以来,调速技术的突破主要在于电枢直流电压源的发展与应用,而变电枢电压技术的发展主要经历了三个阶段:旋转变流机组、静止变流装置、脉宽调制(PWM)变换器(或称直流斩波器)。

(l)旋转变流机组用交流电动机和直流发电机组成机组以获得可调直流电压,简称G-M 系统,国际上统称Ward-Leonard系统,这是最早的调压调速系统。

G-M系统具有很好的调速性能,但系统复杂、体积大、效率低、运行有噪音、维护不方便。

(2)20世纪50年代,开始用汞弧整流器和闸流管组成的静止变流装置取代旋转变流机组,但到50年代后期又很快让位于更为经济可靠的晶闸管变流装置。

采用晶闸管变流装置供电的直流调速系统简称V-M系统,又称静止的Ward-Leonard系统,通过控制电压的改变来改变晶闸管触发控制角α。

进而改变整流电压Ud的大小,达到调节直流电动机转速的目的。

V-M在调速性能、可靠性、经济性上都具有优越性,成为直流调速系统的主要形式。

(3) 脉宽调制(PWM)变换器又称直流斩波器,是利用功率开关器件通断实现控制,调节通断时间比例,将固定的直流电源电压变成平均值可调的直流电压,亦称DC-DC变换器。

现如今,绝大多数直流电动机采用开关驱动方式。

开关驱动方式是使半导体功率器件工作在开关状态,通过脉宽调制PWM来控制电动机电枢电压,实现调速。

二、交流电机调速技术1.简介交流调速即对交流电动机的速度控制。

交流电机,尤其是笼型异步电动机,由于结构简单,制造方便,造价低廉,坚固耐用,无需维护,运行可靠,更可用于恶劣的环境之中,特别是能做成高速大容量,因此在工农业生产中得到了极为广泛的应用。

但是交流电动机调速,控制比较困难,这是由于同步电动机的气隙磁场有电枢电流和励磁电流共同产生,其磁通值不仅决定于这两个电流的大小,还与工作状态有关;异步电动机则电枢与励磁同在一个绕组,两者间存在强烈的耦合,不能简单地通过控制电枢电压或电流来准确控制气隙磁通进而控制电磁转矩,因而不能有效地实现电机的运动控制。

由于交流电机种类繁多,但日常使用的交流电机多以异步电机为主,故本文将着重介绍交流异步电机的原理及发展。

2.原理(1)异步电动机旋转原理1)磁场以n 0转速顺时针旋转,转子绕组切割磁力线,产生转子电流2)通电的转子绕组相对磁场运动,产生电磁力3)电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同。

(2)旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。

这三个交变磁场应满足:1)在空间位置上互差2π/3 rad电度角。

这一点,由定子三相绕组的布置来保证2)在时间上互差2π/3 rad相位角(或1/3周期)。

这一点,由通入的三相交变电流来保证。

(3)电动机转速产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。

因此,转子的转速n必须低于定子磁场的转速n 0,两者之差称为转差:Δn=n 0-n转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n 0同步转速n 0由下式决定:n 0=60 f / p式中,f为输入电流的频率,p为旋转磁场的极对数。

由此可得转子的转速:n=60 f(1-s)/ p(4)异步电动机调速由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法:1)改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。

所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。

通常一套绕组只能换接成两种磁极对数。

变极调速的主要优点是设备简单、操作方便、机械特性较硬、效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。

2)改变转差率s (变转差率调速)以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。

(i)定子调压调速当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电流也可产生旋转磁场。

相关文档
最新文档