风力发电机组的加速度振动传感器
振动传感器的应用场景

振动传感器的应用场景振动传感器是一种测量物体振动特性的传感器。
它可以将物体的振动信号转换成电信号,从而实现对物体振动特性的监测和分析。
振动传感器广泛应用于机械制造、航空航天、电力、交通运输等领域。
下面我们来详细了解振动传感器的应用场景。
一、机械制造领域1.机床:在机床上安装振动传感器可以实时监测机床的运行状态,包括转速、加速度、位移等参数,从而及时发现机床故障,保证生产效率和质量。
2.轴承:在轴承上安装振动传感器可以实时监测轴承的运行状态,包括转速、加速度、位移等参数,从而及时发现轴承故障,避免设备损坏和生产事故。
3.风力发电机:在风力发电机上安装振动传感器可以实时监测叶片的运行状态,包括转速、加速度、位移等参数,从而及时发现叶片故障,避免设备损坏和生产事故。
二、航空航天领域1.飞机:在飞机上安装振动传感器可以实时监测飞机的振动状态,包括飞行姿态、加速度、位移等参数,从而及时发现飞机故障,保证飞行安全。
2.火箭:在火箭上安装振动传感器可以实时监测火箭的振动状态,包括加速度、位移等参数,从而及时发现火箭故障,保证发射成功。
三、电力领域1.变压器:在变压器上安装振动传感器可以实时监测变压器的运行状态,包括转速、加速度、位移等参数,从而及时发现变压器故障,避免设备损坏和生产事故。
2.发电机:在发电机上安装振动传感器可以实时监测发电机的运行状态,包括转速、加速度、位移等参数,从而及时发现发电机故障,避免设备损坏和生产事故。
四、交通运输领域1.汽车:在汽车上安装振动传感器可以实时监测汽车的振动状态,包括车身姿态、加速度、位移等参数,从而及时发现汽车故障,保证行车安全。
2.火车:在火车上安装振动传感器可以实时监测火车的振动状态,包括车身姿态、加速度、位移等参数,从而及时发现火车故障,保证行车安全。
以上是振动传感器的应用场景。
由于振动传感器具有高精度、高灵敏度、高可靠性等特点,因此在各个领域都得到了广泛的应用。
风力发电机传感器介绍

• 风向标的N指向机尾
• 偏航取一分钟平均风向
办公地点:保定市风能街88号
21
风力发电机传感器介绍
震动传感器
• 原理 • 振动传感器在测试技术中是关键部件之一,它的作用主要 是将机械量接受下来,并转换为与之成比例的电量。由于 它也是一种机电转换装置,所以我们有时也称它为换能器 或拾振器。 • 振动传感器并不是直接将原始要测量的机械量转变为电量 ,而是将原始要测的机械量做为振动传感器的输入量,然 后有机械接收部分加以接受,形成另外一个适合于变换的 机械量,然后由机电变换部分再将其变换为电量。因此一 个传感器的工作性能是有机械接受部分和机电变换部分的 工作性能来决定的。
办公地点:保定市风能街88号
8
风力发电机传感器介绍
编码器基本原理
• 概述 • 将机械转动的模拟量(位移)转换成以数字代码形式表示 的电信号,这类传感器称为编码器又称数字编码器 。 • 编码器以其高精度、高分辨率和高可靠性而广泛用于各 种位移测量。 • 编码器的种类很多。按其结构形式有直线式编码器和旋 转式编码器。由于许多直线位移是通过转轴的运动产生的 ,因此旋转式编码器应用更为广泛。
办公地点:保定市风能街88号
9
风力发电机传感器介绍
• 旋转式编码器又分为增量式编码器 和绝对式编码器。 • 增量式编码器的输出是一系 列脉冲,需要一个计数系统对脉冲 进行累计计数,一般还需要基准数 据即零位基准才能完成角位移测量 。 • 绝对式编码器不需要基准数 据及计数系统,它在任意位置都可 给出与位置相对应的固定数字码输 出。
办公地点:保定市风能街88号
17
风力发电机传感器介绍
• 从增量式编码器到绝对式编码器
– 增量值旋转编码器,也叫圆光栅、 脉冲码盘,从这些名称可以知道, 它是圆形的光栅刻线码盘,旋转后 通过光通量的明暗变化,产生脉冲 ,通过外部设备的计数脉冲,来增 量地加(或减)脉冲数而测得旋转 的角度。例如,圆光栅每周刻有360 条刻线,每个刻线产生的一个脉冲 就相当于1度,测得脉冲累计增加30 个,就是正向选转了30度。
风力发电机的风速传感器说明书

风力发电机的风速传感器说明书感谢您购买我们的风力发电机风速传感器。
此说明书将为您提供有关传感器原理、安装及使用的详细信息。
在使用前,请仔细阅读本说明书。
若有任何疑问,请随时联系我们的技术支持部门。
一、传感器原理本传感器采用了先进的超声波技术来测量风速。
传感器内部的超声波发射器将信号发送到空气中。
超声波信号会撞击空气中的颗粒,并被反射回传感器内部的接收器。
通过测量超声波信号发送和接收之间的时间差,我们可以计算出空气中的风速。
二、安装为了确保传感器的测量结果准确,我们需要在安装传感器时注意以下事项:1.传感器应该安装在风力发电机的传动轴上方,并且距离传动轴至少50公分的位置。
这样可以避免传感器被风力发电机直接影响,从而影响测量结果。
2.传感器应该安装在离地面50公分的高度处,这样可以避免地面风向等因素对传感器的影响。
3.在安装传感器之前,请确保传感器配件齐备。
如有任何配件缺失或者损坏,请联系我们的客服部门。
三、使用本传感器具有自动校准功能,不需要手动校准。
在每次使用之前,请先进行一次预热。
预热时间约为30秒钟。
在使用时,请注意以下事项:1.传感器应该朝向风向。
如果传感器朝向错误,测量结果将会产生误差。
2.请勿将传感器安装在垂直风速较大的区域。
在一些气象条件下,会有上下行程的风,导致该区域的风速波动较大,从而影响测量结果。
3.传感器不能直接暴露在太阳下,必须加装遮阳罩,以确保测量结果的准确性。
四、维护本传感器无需特别维护。
如出现故障,请联系我们的客服部门进行维修。
五、注意事项1.请勿将传感器强行拆卸或修理。
如需进行维修,请联系我们的技术支持部门。
2.如使用过程中出现异常,请停止使用传感器并联系我们的客服部门。
3.请勿将传感器暴露在极端条件下。
如极端温度或湿度环境下使用传感器,可能会导致传感器出现故障。
希望本说明书可以为您的使用提供帮助。
如果您需要更多的技术支持或者有其他疑问,请联系我们的客服部门。
再次感谢您对我们的产品的信任和支持。
浅谈风力发电机中传感器的运用

浅谈风力发电机中传感器的运用摘要:风力发电机中传感器的运用现在越来越平凡,在风力发电机中的传感器像比是人类的感觉器官,人类如果没有感觉器官那还有什么意义呢!同样风力发电机中没有传感器也就像木头一样立在那,各种不正常状态很可能使风机瓦解、导致整个电网系统崩溃,所以在风力发电机中传感器是必不可少的。
在风力发电机中传感器运用非常之多。
例如温度传感器有很多个,他不仅要检测齿轮箱,发电机温度还要检测机舱环境,室外环境的温度,以保证风机正常运行;振动传感器,检测风机的振动的频率,保证风机在大风时的可靠并网发电;转速传感器时刻检测主轴的转速、发电机转子的转速等等,以保证风机在运行时不会发生飞车;液位传感器时刻检测齿轮箱液位同时和温度传感器配合形成冷却系统,保证齿轮箱不会发生温度过高减小齿轮的硬度,保证齿轮箱的正常转化的齿轮转速比,可靠的为发电机传递动力。
关键词:传感器风力发电机机温度齿轮箱目录绪论 (1)一、传感器的分类 (2)二、传感器的主要特性 (2)(一)传感器动态特性 (2)(二)传感器的分辨率 (3)(三)传感器的灵敏度 (3)三、传感器的特点 (4)第一章风力发电机中传感器的运用 (5)一、1.5MW风力发电中传感器的运用 (5)二、风力发电机中的传感器 (6)(一)温度传感器 (6)(二)转速、角度传感器(编码器) (8)第二章风力发电机中传感器中的检查 (15)一、温度传感器 PT100 检查 (15)二、风速仪与风向标检查 (15)三、转速传感器检查 (16)四、振动传感器检查 (16)五、压力传感器检查 (16)六、扭揽开关检查 (17)总结 (18)参考文献 (19)绪论传感器(英文名称:transducer/sensor)是一种检测装臵,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
风电用振动传感器

引言概述:
一、风电用振动传感器的原理
1.振动传感器的工作原理
2.风力发电机组振动监测的重要性
3.振动传感器在风力发电系统中的作用
二、风电用振动传感器的作用
1.监测风力发电机组的振动情况
2.预警风力发电机组的潜在故障
3.减少故障损失,提高风力发电系统的可靠性
4.优化风力发电机组的维护计划
5.提高风力发电系统的安全性和稳定性
三、风电用振动传感器的安装
1.安装位置的选择
2.安装步骤及要求
3.振动传感器与风力发电机组的连接方式
4.安装过程中需要注意的问题
5.风力发电机组运行中的传感器校准和调试
四、风电用振动传感器的维护
1.周期性的振动传感器检查和清洁
2.传感器电缆的维护与保养
3.传感器参数的定期校准
4.异常振动情况的处理
5.传感器的更换和升级
五、总结
本文系统地介绍了风电用振动传感器的原理、作用、安装和维护等方面的内容。
风电用振动传感器在风力发电系统中起着至关重要的作用,能够及时监测风力发电机组的振动情况,提供数据支持,帮助运维人员识别潜在故障并采取相应措施,保障风力发电系统的安全稳定运行。
为了有效利用风能,延长风力发电机组的使用寿命,降低维护成本,合理安装和维护风电用振动传感器是必不可少的。
通过正确安装和维护风电用振动传感器,可以提高风力发电系统的可靠性、安全性和经济性。
风力发电机的振动分析与控制

风力发电机的振动分析与控制在当今能源转型的大背景下,风力发电作为一种清洁、可再生的能源形式,得到了广泛的应用和快速的发展。
然而,风力发电机在运行过程中会不可避免地产生振动,这不仅会影响其运行效率和稳定性,还可能导致设备的损坏和故障,缩短其使用寿命。
因此,对风力发电机的振动进行深入分析,并采取有效的控制措施,具有重要的现实意义。
风力发电机的振动来源较为复杂。
首先,风的随机性和不确定性是导致振动的主要因素之一。
风的速度、方向和湍流强度的不断变化,会对叶片产生非定常的气动力载荷,从而引起叶片的振动。
其次,叶片在旋转过程中,由于自身的质量分布不均匀、制造误差以及安装偏差等原因,也会产生不平衡力,进而引发振动。
再者,传动系统中的齿轮、轴承等部件在运行时的摩擦、啮合以及疲劳损伤等,也会产生振动。
为了准确地分析风力发电机的振动,需要采用多种测量和分析方法。
加速度传感器是常用的测量工具之一,它可以安装在叶片、塔筒、机舱等关键部位,实时监测振动信号。
通过对这些信号进行时域分析,可以了解振动的幅值、周期等基本特征。
频域分析则能够揭示振动的频率成分,帮助找出振动的主要来源。
此外,还有模态分析,通过对风力发电机结构进行建模和计算,可以得到其固有频率和振型,从而判断是否存在共振的风险。
在对振动进行深入分析的基础上,可以采取一系列控制措施来减小振动。
从叶片设计的角度来看,可以通过优化叶片的形状、结构和材料,提高其气动性能和结构强度,降低风载荷引起的振动。
叶片的质量平衡调整也是一种有效的方法,通过在叶片上添加或去除一定的质量,使其在旋转时达到平衡状态,减少不平衡力产生的振动。
在传动系统方面,采用高精度的齿轮和轴承,并且定期进行维护和保养,可以有效降低由于部件磨损和故障引起的振动。
同时,安装减震装置,如减震器和阻尼器,可以吸收和耗散振动能量,减小振动的传递。
控制策略的优化也是风力发电机振动控制的重要手段。
例如,通过改进变桨控制算法,根据风速和风向的变化实时调整叶片的桨距角,使叶片受到的气动力更加平稳,从而减少振动。
风力发电机组传感器应用与选择指南

风力发电机组传感器应用与选择指南一、概述风力发电机组作为清洁能源的重要组成部分,在能源领域具有巨大的潜力和发展前景。
而传感器作为实现风力发电机组智能化运行和管理的关键技术之一,起着至关重要的作用。
本文旨在探讨风力发电机组传感器的应用和选择指南,帮助工程师和研究人员更好地了解传感器的重要性和选型原则。
二、传感器在风力发电机组中的应用1. 风速传感器风速传感器是风力发电机组的核心传感器之一,用于监测风速情况,帮助控制风机桨叶的转向角度,以最大化发电效率。
风速传感器的准确性和稳定性对于风力发电的发电效率和运行安全至关重要。
2. 温度传感器温度传感器用于监测风力发电机组的温度变化,如发动机运行温度、变流器温度等。
合理选择温度传感器,并保证其在恶劣环境下的稳定性和可靠性,对于保障风力发电机组的安全运行具有重要意义。
3. 振动传感器振动传感器被广泛应用于风力发电机组的叶片、轴承等部件,用于监测设备的振动情况,及时发现并预防设备故障。
选择专业的振动传感器,能够有效延长设备的使用寿命,降低维护成本。
4. 转速传感器转速传感器用于监测风力发电机组的转速情况,保证设备在安全转速范围内运行。
合理选择转速传感器,需要考虑其响应速度、精度和抗干扰能力等因素,确保传感器输出的准确性和稳定性。
三、传感器的选择指南1. 准确性和稳定性在选择传感器时,首要考虑的是其准确性和稳定性。
传感器的准确性直接影响到监测数据的准确性,而稳定性则关乎设备的长期稳定运行。
因此,建议选择具有较高准确性和良好稳定性的传感器产品。
2. 抗干扰能力风力发电机组常面临恶劣的环境条件,如强风、高温、潮湿等,传感器在这些条件下易受到外部干扰。
因此,在选择传感器时,需要考虑其抗干扰能力,确保传感器能够可靠地工作在各种环境下。
3. 响应速度风力发电机组的运行状态变化较快,因此传感器的响应速度也需要较快,以保证设备的实时监测和控制。
选择响应速度较快的传感器,可以提高设备的响应速度,降低故障发生的可能性。
风力发电增速齿轮箱的传感器技术和远程监测系统

风力发电增速齿轮箱的传感器技术和远程监测系统随着可再生能源的快速发展和全球气候变化的威胁日益加深,风力发电作为一种清洁、可持续的能源形式受到了广泛关注。
风力发电机组中的齿轮箱作为核心部件之一,承担着将风能转化为电能的重要任务。
然而,由于恶劣的工作环境和高负荷的运转条件,齿轮箱的故障频率较高,导致了维修成本的增加和发电效率的降低。
因此,发展风力发电增速齿轮箱的传感器技术和远程监测系统显得尤为重要。
增速齿轮箱的传感器技术是指在齿轮箱内安装传感器,实时监测齿轮箱的工作状态和健康状况。
这些传感器可以监测齿轮箱的振动、温度、油液状况等关键参数,从而判断齿轮箱是否存在故障隐患。
传感器技术的引入可以及时发现齿轮箱的异常情况,并提前采取相应的维修措施,确保风力发电机组的稳定运行。
目前,常用的增速齿轮箱传感器包括振动传感器、温度传感器和油液传感器。
振动传感器可以监测齿轮箱的振动频率和振动幅度,通过监测振动信号的变化来判断齿轮箱是否存在故障。
温度传感器可以监测齿轮箱的温度变化,当温度超过设定阈值时发出警报,以防止齿轮油过热导致故障。
油液传感器可以监测齿轮箱内润滑油的污染程度和油液的黏度,以及油液的流量和压力,从而判断齿轮箱是否需要更换润滑油或进行维护。
除了传感器技术,远程监测系统也是风力发电增速齿轮箱关键的一环。
远程监测系统可以将传感器获取的数据实时传输到指挥中心或运维团队,通过数据分析和算法来判断齿轮箱的工作状态,并及时发出警报或提醒。
该系统可以实现故障的早期预警和故障诊断,为维修人员提供及时准确的故障信息,从而提高齿轮箱的可靠性和维修效率。
远程监测系统还可以进行数据的远程存储和分析,为风力发电机组的运维提供数据支持。
通过对大量齿轮箱运行数据的统计和分析,可以获得齿轮箱的疲劳寿命、故障规律和维修周期等重要信息,为运维人员的决策提供科学依据。
同时,远程监测系统还可以与其他设备进行智能连接,实现风力发电机组的整体远程监控和调度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再生能源
风力发电是一种成长中的干净的可再生能 源。无论是单个机组还是组合机组的风力发 电场,它们都是目前世界上发展很快的新能 源。
风力发电机组原理是将风力机械能转化成电 能。风力发电的规模可以从 500 千瓦到 6 兆 瓦。 最常用的风力发电机组是水平轴布置。 有些是三桨叶,上风向并且带有偏航控制, 有的则是二桨叶,下风向,自然随风旋转。 偶尔你也会看到垂直布置的风力发电机组, 它们也被称为 Darrieus (打蛋形)风力发电 机组,根据法国发明家而命名。但是这种打 蛋形的设计不是很流行,逐渐被性能较好得 水平布置的风力发电机组所代替。
通用型加速度振动传感器
螺栓安装型的加速度振动传感器 风力发电机组通常在很高的塔上。其旋转组 件很难接近,因此最好是使用螺栓来安装加 速度振动传感器。安装平面例如主轴承,齿
2
• 维修费用非常高 • 不可能的工作高度 • 电能的损失很昂贵
轴向振动传感器 径向振动传有加速度振动传感器的水平布置的 风力发电机组
低频加速度振动传感器
主要轴承和转轴的速度大约是 30-60 rpm。这 也是齿轮箱输入轴的旋转速度。旋转频率范 围是 30 – 60 cpm (0.5 – 1.0 赫兹)的情况应采 用低频加速度振动传感器。 测量的范围包括 主轴旋转频率,叶片通过频率,主轴承频 率,齿轮箱输入轴轴承频率和齿轮啮合频率 等等。这些低频加速度振动传感器通常可以 提供 500mV/g 以及 12-180000 cpm (0.2 – 3000 赫兹) 的频率范围。
风力发电机组和低速电机驱动的风扇,例如 冷却塔,有很多相同之处。风力发电机组基 本上是一个大型低速风扇,但是它不是电能 驱动,没有将机械能通过减速箱驱动大型低 速风扇,相反的,它提供机械能,通过加速 箱驱动发电机产生电能。这个反向的过程带 有很多会产生振动的旋转部件,长时间的损 耗可能会导致最终失效。
1
传感器可以提供 100 mV/g 以及 30 – 900000 cpm (0.5 – 15000 赫兹)的频率范围。
低频加速度振动传感器
齿轮箱的轴向和垂直方向上 螺栓安装的通用型加速度振动传感器
安装在主轴承水平轴上的 低频加速度振动传感器
通用型加速度振动传感器
齿轮箱的中间轴和输出轴都会有比较高的旋 转速度,并且产生比轴承和齿轮啮合更高的 扰动频率。事实上,输出轴的旋转频率在通 常情况下比输入轴高 50-60 倍。测量其带动的 齿轮箱和发电机组的高旋转速度需要使用通 用型加速度振动传感器。通用型加速度振动